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a non-tensorial point of view

Juha Paavolat and Eero-Matti Salonent

Helsinki University of Technology, Laboratory of Structural Mechanics,
P.O. Box 2100 FIN-02015 HUT, Finland

Abstract. The present paper shows a new non-tensorial approach to derive basic equations for
various structural analyses. It can be used directly in numerical computation procedures. The aim of the
paper is, however, to show that the approach serves as an excellent tool for analytical purposes also,
working as a link between analytical and numerical techniques. The paper gives a method to derive, at
first, expressions for strains in general beam and shell analyses, and secondly, the governing
equilibrium equations. The approach is based on the utilization of local fixed Cartesian coordinate
systems. Applying these, all the definitions required are the simple basic ones, well-known from the
analyses in common global coordinates. In addition, the familiar principle of virtual work has been
adopted. The method will be, apparently, most powerful in teaching the theories of curved beam and
shell structures for students not familiar with tensor analysis. The final results obtained have no novelty
value in themselves, but the procedure developed opens through its systematic and graphic progress a
new standpoint to theoretical considerations.
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1. Introduction

Nowadays, when the amount of time allotted to be used for teaching traditional theoretical topics
at universities tends to diminish, it is important to improve the efficiency of the use of time.
Realizing this fact encourages teachers to look for new ideas which could make learning easier and
more interesting, lowering at the same time the threshold which has too often prevented fresh
interest towards mechanical problems. Analytical calculation methods have traditionally taken the
biggest part of the capacity reserved for teaching in engineering mechanics. But, the importance of
numerical procedures, and particularly that of the finite element method has become more and more
central in solving problems in this field. The time used for teaching both these themes has now to
be shared optimally, and if possible, to find out new methods which could be applied both in
analytical and numerical techniques instead of their traditional totally separated roles. It seems that
under these circumstances the principle of virtual work plays an extremely important role. It is a
direct starting point for deriving the governing finite element equations but it can equally well be
used for obtaining the corresponding analytical equilibrium equations. The principle describes any
structural problem as a scalar equation, in which scalar quantities - intensities of internal and
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external virtual work done-are integrated over the volume and surface of the structure. It is
essential that the evaluation of these invariant scalars can be performed in any coordinate system.
The system does not need to be conformable with the geometry of the structure. This property can
be made use of in structural analyses, so that only familiar rectangular Cartesian coordinates are
employed. Strains and stresses can be expressed at various points using different coordinate systems,
in which the directions of coordinate axes can vary from point to’ point.

Curved structures, say beams and shells, are usually considered using coordinate systems
coinciding with certain characteristic lines of the structure. In analytical procedures it is thus
natural to express the displacement field using the unit basis vectors of these systems. As the
directions of these vectors are usually not constant, quite complicated expressions for strains are
inevitably obtained. In the literature there are mainly two alternative ways which are used in
deriving the basic equations. The first one, utilizing various figures of the differential geometry
for incremental elements, e.g., Fliigge (1966) and Oden (1967), may be useful in connection with
rather simple geometries. In particular, it has advantages when the figure needed is prepared
skillfully. Much depends on the quality of the figure. When more complicated structures are
considered it leaves, however, the reader a little unsure about the exactness of final results. The
other method, applied frequently, can be called tensor formalism method, e.g., Fliigge (1972) and
Malvern (1969). There is no doubt about the correctness of this procedure, but it demands a lot of
previous knowledge of tensor analysis. Students, especially, usually do not have this background,
and consequently this method can not be utilized in teaching.

The present paper introduces a non-tensorial procedure for deriving expressions for strains and
equilibrium equations for structures, supporting both numerical and analytical purposes. Same type
of ideas have before been thought up by Morley (1984), (1987a, b). In the numerical computation
technique, particularly in thin shell analyses, these ideas have been utilized starting with Irons and
Ahmad (1980). The procedure has the advantages of both above-mentioned approaches:
demonstrative presentation of simple geometrical figures and mathematical exactness of the tensor
formalism method. In addition, the procedure requires knowledge only of very fundamental vector
calculus not too demanding for students. The presentation is based on the utilization of local fixed
Cartesian coordinates, in which the expressions needed can be formulated as simply as in any
common global Cartesian coordinate system. The role of local coordinates serves as a tool to
execute all these mathematical operations required. The transformation to relevant curvilinear
coordinates takes place at the final stage of the derivation. The method has proved to be of some
educational value. It, for instance, serves the possibility to derive first the basic equations of general
Timoshenko's beam and Reissner-Mindlin's plate theories and then the equations of the traditional
Euler-Bernoulli's and Kirchhoff-Love's theories simply as special cases. Until now, this has been a bit
problematic.

As framework, attention is firstly paid to the principal technique and to the mathematical tools
required. Consideration continues by applying the theory to derive expressions for strains in the
general beam analysis. To avoid too complicated expressions in this context, for shells the same
procedure is applied here only in the case of rotational symmetry. Finally, corresponding equilibrium
equations are derived by using, in addition, the principle of virtual work.

2. Coordinate systems

Three different coordinate systems are used in the following presentation. The whole structure
under consideration is studied in a global Cartesian coordinate system x, y, z with unit vectors i, j,
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k. These basis vectors, likewise the ones all through this presentation, form a right-handed system.
Consideration is limited here to one-dimensional beam and two-dimensional surface structures.
Therefore, the geometry of the structure is defined by determining a reference line for a beam and
reference surface for a shell. For a beam this line may be say the beam axis and for a shell the
middle surface. The geometry is described, as usually, using curvilinear line and surface
coordinates. The position vectors on the reference line or surface are

7 =7;(a)=x(a)z+y(a)7’:z )k . (1a)
7o =To (0 P=x (0, P)i +y (& Pj +z (a Pk (1b)

in which the line coordinate is denoted by o and the surface coordinates by o and 8. The general
position vectors are obtained by adding to these the unit normal vectors:

(0, n)=7, () +n e (0) (2a)
7(o B, n)=7: (ct, By+n & (ot B (2b)

which are pointwise perpendicular to the reference line or surface. The normal coordinate n is
rectilinear measuring the distance from the reference line or surface. The unit vectors in the
directions of coordinate lines are denoted by e, E;,, en. In analytical presentations the
consideration is limited here to the cases in which coordinate lines o« and S are orthogonal. In
numerical manipulations, instead, the orthogonality assumption is not necessary.

An additional local Cartesian coordinate system X, Y, Z, employed as a temporary tool, is
erected in general at the point of consideration, i.e., at the point where, for example, expressions
for strains are pursued, or, at an integration point in a numerical procedure. Here, in accordance
with the one- or two-dimensional nature of problem, the origin of the local system is put on the
reference line or surface. Coordinate lines X and Y are taken to be tangents to the reference
surface on which they can be oriented otherwise arbitrarily. In beam analyses X-coordinate is
tangent to the reference axis. Coordinate Z coincides with normal » at each point. The Lamé
coefficients or scale factors H,=|or,/ do| and Hy= |or, /9] likewise the radii of curvatures R,, R,
and torsion R,5= Ry, are defined, as is usual, only on the reference surface or line so that they do

Fig. 1 Visualization of a local fixed coordinate system
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not depend on n. Fig. 1, focusing on the immediate neighbourhood of point O, shows the relation
between the general curvilinear and the fixed local coordinate systems, and explains the directions
of the relevant unit vectors. Unit vectors in the fixed directions are denoted by r R J , K. There is
no need for any continuity requirement for these coordinates which are defined at each point of
consideration, separately. Neither do the coordinates have to conform any way with the geometry
of the structure. In the continuation, when orthogonal systems are considered only and the aim is
to find the expressions for strains in curvilinear coordinates, it is appropriate to choose the unit
vectors of the local Cartesian coordinate system to coincide with the ones of a curvilinear one at
each point.

Since the geometry of the structure is given in curvilinear line and surface coordinates and the
expressions of strains are searched for in local orthogonal ones the interdependence between
derivatives evaluated in both these systems is needed. For this purpose the well-known chain rule

9 _& 3, v 2,20

da da dX oJa Y Jdo 9dZ

9 _& o 22

o8 dB X 9B dY 9B 9Z

9 _X 9 ¥ 2 0

M 9n X om Y om OZ ®)
will be utilized. This is in matrix form

' 3 (

o | [ax av az] |
da o do da aX
Jol_jox ar az| |2 @
B B B B | |or
| |ax ar az| |2
on on on om| |OZ

The terms of the coefficient matrix or Jacobian are easily evaluated by differentiating the expressions

X=(P-7)T

Y=("-715)J
z=(7-7,)-K 5)

of which the two first ones only, for simplicity, are shown in Fig. 2. The figure describes an
orientation of the local coordinate system on a two-dimensional surface at point O. It is
noteworthy that the position vector r,, and the fixed basis vectors are constant with respect to
differentiation. Thus, the differentiation gives

fax oy az| [oF » oF - o7 =

g2 2 = S r=E.yer.

Jda Jduo Jdo Jo Ja Jo K

X oY oZ o »or 2 ¥ =

ec 9 e\ (=2 .2y et 6
o5 3 o8| |as ' ap K ©
X 9Y oZ o » of 2 Ir =

o2 22 P2 g .7y yer,

_an on an_ _an on on K_
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Fig. 2 Evaluation of the local coordinates

for the Jacobian. The final form introduced by Irons and Ahmad (1980) and applied in this paper is

BRERES S e
aX Jdo Jdo Jdo o
P F > > =2 P %
Ol_jo o 7o gl |9
Var(~| 28 " 38 op B (
) F oo oo 2 3
g T 1785 57K 9
oz _an I on J on | on

Applying basic vector calculus, the derivatives of the unit vectors e, e_,;, e, with respect to
surface coordinates

oH, H,
z 0 -L% Y .
H, B R,
0 | 1 OoH, H, 5
! = — 0 —_— 4
da |“*[ | H, 0B e | 1f(
2 B _Ho )5
) R, Ry (6"
oy | 0 L H) ®)
o H, da Ryl |%®
9 | = _i_aHﬁ _ﬂ -
B | | H. o Ry | 18
H H
2 -8 =B 0 2,
. J | RqB Rp v J

which are needed in the continuation are obtained. The derivation is given in most text-books of
shell theory.
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Fig. 3 Boundaries in one- and two-dimensional problems

In addition, the general rule for integration by parts, called also Green's or divergence theorem,
will be needed. In the beam analysis it is simply

dh dg
[8 <o d@=lgh nada—[ 22 h da ©

Here, g=g(a) and h=h(c) and the term in brackets includes substitutions from each end of the
beam, with v the normal to the end surfaces and n,=é, - ¢, Fig. 3a.

In two dimensions the corresponding formula takes a more complicated form, e.g., Wempner
(1981):

E)h

58 a dodB= L—nads—fﬁ h dadp

jB 35 dadB= j nﬂds—JB h do.dB (10)

with g=g(o, B) and h=h(c, f), and v the normal to the boundary surface. The notations n,=¢), - €,
and nz=¢, - e, for the direction cosines are used, Fig. 3b.

3. Displacement and strain fields

The displacement vector % of each point in a structure can be expressed using the basis vectors
of any of the three above-mentioned coordinate systems. In global coordinates

w=ui + v? +wk (11)

and in local Cartesian and curvilinear ones, correspondingly

X=Ul+ VI +WK (12a)
d=uze,+ uﬁE‘)g+ Un € (12b)

Here, the displacement components as coefficients are
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u=?-?, v=u-j, w=i k (13a)
v=i-T, v=u-7, W=w-K (13b)
Uy=1U - €, uﬁ=ﬁ)-273, Un =U - €n (13c)

The strains defined in local Cartesian coordinates can now be obtained easily by applying the
familiar expressions introduced usually in common global orthogonal coordinates. These
components, expressed here in the local coordinates, are

U _ o v _oV oW _ow 7, oW 2
“Tw I %= vz “aY_)K
dV v » oW Jdu o o Ju
== = — e = —. - . 14
& =%y ag"’yz" x oz BXL)K-‘-&%I (14)
8Z=a_w=a_u,§, ny_aU oV_ou p ou P

Z oz B S ST

The latter part of each formula is obtained by substituting the coefficient from Eqs. (13b) into the
former part and taking into account that the unit vectors of the local coordinate system are
constants. The scalar product expressions are computationally very useful. In numerical analyses
for example, strains can immediately be evaluated using these after the displacement vector or its
interpolant is known. These type of expressions were also given in Green and Zerna (1954) and
applied later for numerical purposes by Irons, Irons and Ahmad (1980).

4. Principle of virtual work

The equilibrium equations and boundary conditions for stresses and stress resultants are derived
most often also utilizing various differential geometrical figures. The equations required are
deduced by considering free body diagrams of infinitesimal body elements. This approach is often
graphic and offers an excellent tool in simple cases and should be used in these, but as soon as
the structure under consideration is a little more complicated the method will be, however, rather
unwieldy. As is well known, the principle of virtual work offers an alternative and systematic way
to derive the relevant equations. Here it is used emphasizing the simultaneous application of local
Cartesian coordinate systems.

The principle of virtual work is

SWi +8W* =0 5)

or in a body in equilibrium the sum of virtual works done by (i)nternal and (e)xternal forces
vanishes with respect to each virtual displacement state. The general expressions for the virtual
work done are

SWi=-— jv‘a‘: 5 2dv (16a)
5We=jv?-57dv+jst?.6yds (16b)

where & and € are the stress and strain tensors, and f and 7 the body force and traction vectors,
respectively. V is the volume of the body and S, the surface loaded by given tractions. On the
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remaining body surface S, the geometrical boundary conditions are given. In a three-dimensional body
these expressions can be written in a familiar component form using global coordinates x, y, z as

SWi =—jv[ox5& + 0y 86 + 0 86 + Ty Oy + T2 8z + T OYc ] AV (17a)
SW* =jv[fx5ux + f, 8uy + f. 8u; ] dV +Is, [t: Sux + 1, Suy +1t. 6u.]dS (17b)

In the linear analysis considered here the expressions for the variations J,, J¢,--- are obtained
directly by the replacement ¥ — & in Eq. (14) or by components u — &u, v — év and w — dw in
the corresponding definitions Eq. (11).

The expressions for the internal and external work can also be presented by applying the
definition of an integral, i.e., expressing the volume integrals as limits of Riemannian sums. This
means that the domain in the consideration is splitted into a infinite number of subdomains (AV,
AS, — 0) in which the expressions are written. Hence

Wi =-lim 2[m&x+oy&y+@6ez+rxy6xy + 52 0%z + T Oy ] AV (18a)
6W ].]m z[fx&lx +fy6uy +f26uz]AV + hm z[txaux +ty 6uy +tz&lz]AS’t (18b)
n —ee ‘ n —>oo0

i=

But, since the terms under integration signs and in the sums: the intensities of the virtual work
due to internal forces — & : 8¢, due to volume forces f & and due to surface tractions 7 - &7
are scalars, invariants which are independent of the coordinate system applied, relations (18) can

also be expressed at each subdomain j applying the local Cartesian coordinate system X, Y, Z
connected exactly to each point in question, i.e.,

6Wi_ IIIHZ[O'X&X +Gya£y +0—Z 582

+ Ty, aJﬁ’ij + vz, 8}3/ij T %x, 57’2ij] AV; (19a)
SW° = lim Z[fx.&tx. + fy,Ouy + f7 0u; 1 AV

+ lim Z[tx 6uX +ty 6uy +1 5uz 14s:;, (19b)

n—)°°

In these the components fXj=f e X f,,j:f e y, tzj=t -er are introduced. The unconventional

expressions Eq. (19) cannot be represented here with integral notation over the whole domain
as an infinite number of coordinate systems are defined. These forms are, however, important
for instance in taking advantages due to one- or two-dimensionality. This means that the
simplified assumptions about certain vanishing strain and stress components can be easily
taken into account by directing the local coordinate systems appropriately at each point. In
numerical calculations the expressions can, however, be evaluated ‘numerically’ over the
whole domain or over the finite number of subdomains by modifying the expressions with the
correcting or weighting factors as

N
- ij [ox, 6sz + oyj&:yj + 0y, &Zj
j=1
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Ty, 6?§(ij tyz 6?’1/]2] +zx, 572;"’;] AV; (20a)
N
6W = ZWJ [fxl_auxj + ijaqu + fzjauzj] AV]
j=1

N
+ 2 w] [tX] &lXj + th 6“}/]_ + th &lzj] AStj (20b)
j=1

Here, N is the number of subdomains or integration points. In addition, the expressions are written
having fixed abscissae values and weighting factors w; defined in the integration scheme applied.

The procedure adopted is closely related to various techniques of numerical integration, in
which the infinite Riemannian sums are replaced by finite ones. The present consideration,
actually, demonstrates the fact that integration applied is independent of the coordinate
transformation. In other respects, it follows the same idea applied in the derivation of the
expressions for strains: all the definitions and mathematical manipulations needed are performed
using the local Cartesian coordinates.

In analytical derivations the expressions, Eq. (19) can be brought back to integral forms by
introducing finally a suitable curvilinear coordinate system conforming with the geometry of the
structure. This procedure will be applied in the following when deriving the basic equilibrium
equations.

5. Curved beam analysis

As an introduction to shell problems, a curved beam in the global x, z plane shown in Fig. 4 is
considered. The curvilinear coordinate « coincides with the beam axis and normal » measures the
distance from the axis in the plane of the beam. The corresponding unit vectors are ¢, and én.
The expressions for strains, for example, at an arbitrary point P are to be found. A local Cartesian
XZ-coordinate system is spanned, following the above-mentioned practice, at point O where the
normal through P intersects the beam axis. The rule of Eq. (7) for differentiation is simplified in
this case to the form

-1

P oF » oF 2 9
x| 3¢ T3a X |3a
a[=|lar o 2l |2 @)
oz on on )

From Eq. (2a),

22)

In these the expressions (8) for the derivatives of unit vectors are utilized. Making use of Eqs. (22)
in the differentiation rule, Eq. (21) and taking into account the vector relations € =1 and &,=K at
point P yields the rule
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9 [= : 9 (23)
F3 0 o
or .
9 _pya n)y 9
aX Ha |1+ R,,J o
9 _ 9
Z @)

in which the Jacobian matrix and its inverse take a simple diagonal form.
The displacement of the beam is defined applying Timoshenko's beam theory as (Fig. 4)

w(an)=[u(@)-n&0)] €,(0) +w () & () (25)

The functions u=u, (a) and w=u, () represent the displacement components of the corresponding
pomt on the beam axis, and 6(c) the rotation of a material fiber originally perpendicular to the
axis. In fact 6(e), which is positive in the clockwise direction, is the rotation component about
the axis perpendicular to the beam plane, i.e., 6;(cr), but here the subscript B is dropped out
because no confusion can arise. Timoshenko's beam theory takes approximately into account shear
deformations in the beam, by allowing a normal to the beam axis to deviate from its
perpendicular position under deformation.

The only nonzero strain components &, and 7,, are from Egs. (14) and (25) at P with T =e,

and K=é,.
07 - —1a—>
& =€,4= a; IT=H;! (1+RLaJ a—Z-E’a
ow T n\'ow >, od -
- ou — | = a+2=.8, 26
Yox =Yoo= 7 K+8Z I=Hj [1+Ra] o e+an € (26)

The derivatives needed are

@ _(du _ do) dey  dw . de
da | da da | °
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a—-)
a_: =— 02, 27)
Taking into account formulas, Eq. (8) yields
-
ow _ldu _,d0  wp |3 |dw_u=—nby, o
Joa doo do R, da R,

o _
U __ge, (28)
on

Thus, the strain components obtain the final formulas
-1
du de w
& =g,=[1+2- — 4+
%= ta ( Raj {Hada " H do R,,J

n ' dw u—-no
yzxzy,,f(ui—] (H v uon8lg @)

It is often of interest to find out the terms dependent at most linearly on the normal coordinate
n. Eqgs. (29) can be presented as a series according to the increasing powers of n as follows

g=dt_yw _n| du w  Red9 G
R, R, R,

" H,do H_da H,do.

—(1-n dw _ u _
””“‘(l Ra+0("2)) [Hadoc R, OJ G0)

In the Euler-Bernoulli beam theory the shear deformation 7,, is assumed to vanish. This
condition applied in the latter one of Egs. (29) or (30) constraints the rotation:

g=_dv _ 4 (1)
H,doa R,
Substituting this into the expression of axiai strain yields an exact result
-1
du n w u dR, d dw
= + |1+ — —-n|— + 32
%= H da ( Raj R, | Rz Hedo  H,da {Hada] (32)
and a corresponding series expression
dR

£,= du W « ,_d dw +0(n? (33)

H,da R, R2 RZ H,da H,da| H,da

Results obtained can easily be simplified for some special cases. For example, applying them for a
straight beam, in which R, =ec and changing still the symbols to the familiar ones as o — x with
H,=1 and n — y results in an equation
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e = du _ d*w
T de )

which is one of the most well-known formulas of engineering beam theory.

(34)

6. Equilibrium equations

The principle of virtual work is recalled for general beam analysis. Two nonzero strain
components of Eq. (26) exist at point P (Fig. 3). The formulas for the internal and external work
are expressed applying the kinematic assumption of Eq. (25) for the displacement and the local
Cartesian coordinate system spanned again at point O on the beam axis. The expression for the
internal work in Eq. (19a) takes the form

SWi=— lim 2 (O-X,-S‘L:Xj + TZij 51/Zij)AVj (35)

n e i3]

Using the definitions (26) gives

1~ oo
i=

T - 90U » 00u z , 06u »
oW ——hmzi o'Xj[an 'IjJ-'-TZ’X’[an .Kj+a_Zj-Ij AV; (36)
At point P on the normal through the origin of the local Cartesian coordinate system, Fig. 4,
where the local coordinate system coincides with the curvilinear one, the inverse of the Jacobian
matrix takes the form (23). The elementar volume in Eq. (36) is

. J .
AV; 50 AXj -0 a

lim AV, = lim AX, dA =H0{1 + é’—j dodA (37)

The notation A for the cross-sectional area is used. Evaluating the derivatives required at point P
following the formulas (23) to (29) produces as substituted into Eq. (36) together with the vector
equalities T = e, and K=¢, the expression :

-1
: déu d &6 ow
- 1 L _
swi==[ 1], "“[ - Ra) [Hada " H.da Ra}

-1
rr f1e ) [ 4O _du-ndb|_ . solp (14 )l de (38)
R, | |Hyude ~— =, R,

Defining the normal force, shear force and bending moment resultants as
NazLGa‘M, Qa=LTnaM1 Ma=LGan‘L4 (39)

and incorporating them into expression (38) gives
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W = [ |N,| 20 Bw |y 40O, | dOw K _g55llH,d,  (40)
o H,doo R, H,do H,da R,

The expression for the work (20b) done by external forces takes in the beam analysis the form

SW = lim 3 [fy 8U; + £, SW,14V; + lim Y [t 8U; +1, W,14S, (41)
n—e £ i j n—e 27 j /

which can be formulated at point P correspondingly using the variation of the displacement vector
(25) as

SW* = [[fu(Bu~n6)+ f, 5w]H0{1 N RL] dAdo

+ js [to(8u —n80) + 1. 5w dS 42)

Defining the external load resultants on the beam axis and corresponding ones at the end surfaces
as

7a=Lfa(1+ u JdA to=], tadd

Ry
?n=Lfn[1+Rlaj¢4 =,
Fo=], fan (1+Rla]dA o=, tanda (43)

gives for the work due to external loads the expression
SW* = [fudut + fnOw — fo86] Hodot+ [10u + 12 Sw —1656], (44)

Possible tractions on the mantle surface of the beam can be included, if necessary, with obvious
expressions. Now, the expressions of the internal (41) and external (44) work done are inserted
into the principle of virtual work (15) which gives

| P LR PR Vg L ) LR A
o H,doo R, H,do H,doe R,

— fouOU — fn W +?959} Hydo+ [t,du + tn 6w —14,00],=0 (45)
Integrating once by parts using the rule (9) yields an equation

a Qa & an _& 7
ja [Hada+—lg+f“}5u+[Hada Ra+fn}6w
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dM,, -
- [Hada -Q,+ fe} 06}, H do

H[(=No+t Jou +(=Qu+ )W + My~ o) 86],=0 (46)

which gives the equilibrium equations for a general beam analy;sis

o +&+f_a=0
R,

H,do
_dQ_a —_ ivﬁ +an =0
H,da R,
dM, =
% _Qu+f =0 47
Had(X Qa f 6 ( )
and corresponding boundary conditions
=N+t =0 u-i =0
—Qu+tt =0} at a=a: w-w =0; at a=04 (48)
M,—7 4=0 6-6 =0

at each end of the beam. The mechanical boundary conditions are applied on ¢, with boundary
tractions. The geometrical ones are a consequence of the requirements for kinematically admissible
virtual displacements due to the conditions du =&w =80=0 on ¢, with given displacements
denoted in this context with an overbar. Also, mixed conditions can be applied. When the Euler-
Bernoulli assumption with constraint (31) for the rotation is assumed, the equilibrium equations
obtained are directly those two which can be derived from Egs. (47) by eliminating the shear force
Q.. Now, the boundary conditions take the form

_Na_ﬂoi+t_a+—020
R R u-i =0
- ~_ +1n=0[on o w-w =0 on a, 49
H,da _ (“49)
_ dw adw -0
My—1,=0 Hydo  H,do

The expression of the shear force is obtained from the last one of Egs. (47). The results can be
examined, for example, with the well-known formulas in the case of a straight beam.

7. General shell geometry

Intention is now shifted to shell structures (Fig. 5). The coordinate system applied is o, B, n

-

with unit vectors é,, &, ¢,. Here, a and B are the surface coordinates and n the coordinate in
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Fig. 5 General shell with relevant coordinates

the normal direction. The coordinate lines for the surface coordinates are assumed to be
mutually orthogonal on the reference surface of a shell. The derivatives of the position vector
(2b) are

R W N GO I L
doc o o |7 Re| ® TRy *
or ar,, oe, n - n \=
= —:—H ——e€,+Hgil+— |e
F aﬁ Y PRy @ P Rg|P
i_g; (50)
on

in which formulas (8) are exploited, are substituted into the Jacobian matrix in Eq. (6). Utilizing
the fact that the unit vectors of local rectangular and curvilinear coordinate systems are specified
to coincide at point O, i.e., €,=1, ¢;=J and ¢, =K, results in a nondiagonal Jacobian matrix

[~ P - ]
o 7o po g Hf1+ 2| -H,-2 o
oo oo Jo a R
oF » or » or 2
I =J —K|= 51
B " B~ OB ~Hp Hygf1+2-)0 G
" Rop R,
or T or .7 o or 5%
_an on on 1L 0 0 1

It is obvious that the reason for the nondiagonal matrix is due to the fact that coordinates & and
are not necessarily orthogonal on the surface through point P despite of the orthogonality on the
reference surface. Likewise, the strain components in various coordinates at each point outside the
reference surface are no more equal, i.e., € ,# & etc.

To avoid unnecessary complications in the continuation, o and 8 are assumed to be principal
coordinates and the corresponding directions principal directions which is the usual practice in



174 Juha Paavola and Eero-Matti Salonen

most textbooks on shell theory. Hence the torsion or geodesic torsion of the structure vanishes i.e.,
1/R,=0 which makes that the Jacobian matrix in Eq. (51) diagonal and its inversion is trivial.
According to the Reissner-Mindlin theory the displacement of a generic point of a shell is (Fig. 5)

(o, B,n)=[udos B)- " 65(% B)len(e, l3)+[up(a,ﬁ) n6,(a, B)es(c, B)
+w(a B)en(a, B) (2

This is an obvious counterpart of the Timoshenko's beam theory expression (25).

8. Shells of revolution

Only shells of revolution are considered in the following. The method presented is applicable to
general shell analyses as well, but to avoid too complicated ‘expressions in this context the
consideration is limited to a simpler case. In the continuation, o is the meridional and B the
circumferential coordinate. Due to the axisymmetric geometry and loading, the displacement com-
ponent in the circumferential direction vanishes yielding uz=6,=0. In addition, all the other dis-
placement functions are constant with respect to the coordinate 8. The axisymmetric kinematics is

w(o, n)=[u() - n6(D)eq (o B) +w(c)en(a B) (53)

Function 6(c)) = 640) is the rotation component of a material fibre, originally perpendicular to the
surface, about the coordinate line parallel to B-axis. Its positive direction is chosen as shown in
Fig. 6. Strain components are again to be determined at point P on a normal through O. Due to
the kinematics in Eq. (53), the strains &,=¥,5~¥;. =0.

Substituting now the derivatives of the displacement vector into the expressions of strain
components, Eq. (14), taking into account the differentiation rule Eq. (7) with Jacobian matrix Eq.
(51) the strains at point P will be

=[1+LJ—1 du_ _  dO _w

R, | |Hda "Hyda R,
€= 1+ (u— )~ dHﬂ + =
-1
dw u—noé
=1+ -~ -6 54
tha [ Ra] (Hada R, J (54)

It may be noted that the expressions for €, and ¥,, are exactly of the same form as for the
Timoshenko beam; formulas, Eq. (29). These can be presented - if wanted - again according to
the increasing powers of coordinate n. By introducing the abbreviations, associated with a
traditional geometrical interpretation of the deformation state, the strains are

E,=€+nk,+0((n?»

£ﬁ=£[§’+nlc,;+0(n2)

ha=Yiat n Ko+ O(n?) (55)

The terms with a superscript ‘circle” refer to the strains on the reference surface
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g0 du_ w
“ H,dao R,
dH
80=__u_ B +i
H,B Hada Rﬁ
dw u
o — -—— -0 56
Vie= H da " R, (56)

The coefficients k correspond traditionally to the changes of curvature. But, according to the
Reissner-Mindlin assumptions their exact geometrical meaning does no more, due to shear
deformations, represent pure changes of curvatures. The coefficients are

o =— L du + i RadG
* R,|H,da R, H,da
1 1u +R59 dHﬁ w
Kﬁ =—— —_—t —
R;| H; Hydo R,
Y
Ka=— —If (57)

Kirchhoff-Love's theory for thin plates assumes the normals to the reference surface to remain
normals also after deformation. It yields vanishing shear deformations ,,=0. The rotation is
constrained due to this requirement. Here, setting the last one of Eqgs. (54) or (56) equal to zero
gives

__daw u
H,da R,

(58)

Incorporating this into strains (54) results in the traditional expressions of shell theory, Washizu
(1975), including two nonzero strain components:
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du n\'| w u dR, d dw
= +1+=—] | =-n|55 +
Ea H,do ( Ra) R, "|RZ Hyde~ H,da [HadaJ

-1 dH, ‘ dH,
g=(1+2) (142 Hp o w_n dw & (59)
Rg R, |Hg H,do Ry Hp H,da H,do

Also these can be arranged according to the increasing powers of n, corresponding to Egs. (55).
Thus the deformations of the reference surface are naturally still those given by the first three of
expressions (56), but the coefficients of n are instead of Eqgs. (57) of the form

u dR, w d (dw}
“«="RZ RZ

RZ H,da R2 H,do|H,da
= |- L |w w1 dw dHp (60)
"\R, Ry |H Hyda R Hy Hyda H,da

It is easy to verify the correctness of equations derived, by comparing them with the
corresponding ones presented in many fundamental textbooks, for instance with Washizu (1975).
Instead, some books, Novozhilov (1964) for example, include certain additonal approximations
during the derivation resulting in some slight deviations in the corresponding equations.

9. Equilibrium equations

Recalling the principle of virtual work for deriving the equilibrium equations for a shell follows
precisely the procedure applied above in the beam problem. The local Cartesian coordinate system is
spanned again at point O, Fig. 5. The coordinate transformation defines the Jacobian matrix (51) and .
determinant for differentiation and integration operations at point P at which the discrete integration is
replaced by the continuous one applying curvilinear coordinates. The elementar volume is

AV -0 AXJ.,AYJ. - o s

lim AV, = lLim AX,AY,dZ =H,Hy(1+ 2 |[1+ 2 |dodBdn (61)
i o it B R R

This together with the variations of strain components (54) and vector equalities I'=e,, T =¢; and

—

K =¢, at point P incorporated in the expression for the internal virtual work (20a) yield

oW~ Na[—di+@]—m 450 +Nﬂ[g dHy +@]
o p

H,da R, H,do Hg H,da Ry

% dHﬁ +Qa[;{16¢;va zu

M, - _so||H Hydad 62
? Hy H,do J «Hpdadp 62)
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This corresponds to the expression (40) of the beam analysis and includes the notations

No=| o, [l+—)dn M,,,:jno,,n(nRi)dn

B
N,;=L0'ﬁ[1+—£—]dn MB=LGpn(1+RL)dn
= 1+ |d 63
0. jnr,,a(+Rﬁ) n (©3)

for the stress resultants. The formula for the work due to external loads, the counterpart of Eq. (44)
of the beam analysis, is given in the form

SW* = Lﬁ [fabu + fudw — fo86) H,Hpdodf
+ L[t‘,,au +7a 0w —1,400]dp (64)

in which the boundary line coincides with the circumferential coordinate line B In addition, the
notations for the volume forces and surface tractions on the reference surface of a shell, as follows

fa=J; fa(l-i-RLa][l-'-RLJdn t_a=J;tadn

B
frsl fn(1+RLa](1+Rip)dn Fu=[ tndn
f—9=.|; fan(l+RLa](1+Rlﬁjdn t_o:J; t ndn (65)

are introduced. Possible tractions on the upper and lower surface of the shell can be included, if
necessary, with obvious expressions. Substituting the expressions (62) and (64) due to internal and
external work into the principle of virtual work (15) and applying the two-dimensional Green's
theorem (10) results directly in an equation

I L | 20N ‘NﬁdHB + L0 7, | b
¥} HO!HB do do Ra

] Qa+f9 69

3 1 d(HgM,) M, dHj
H,Hg da Pda

gL AE0) Na Ny = | H,Hydodp
H,Hy da R, Ry

+ [~ Na+72) 8u + My ~19) 86+ (-Q,+ ) Sw]df=0 (66)
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This yields the well-known general equilibrium equations for a shell of revolution
dN,, +Na—Np dHp +&+fa=0
H,do Hg H,da R,
Mo Ma=My dHy _, o _
H,do Hg H,do
an+Qa d Hy _&_ﬂ+fn=0 (67)
H,da Hg H,do R, Ry

From these the shear force Q, can be eliminated resulting in only two independent equilibrium
equations, finally. The general boundary conditions of a shell

—N,+t ,=0 u-u =0
M,-% =0} ons, 6-6 =0}on s, (68)
—Qu+f =0 w-—w =0

are obtained from Eq. (66). Geometrical boundary conditions, with given displacement
components provided with an overbar, are again due to the requirements of a kinematically
admissible virtual displacements. It is still to be noticed when the Kirchhoff-Love theory with the
constrained rotation component (58) is assumed, that the boundary conditions will take a little
different forms, like

~Ny— =2 +F +t=2= -
o B o Ra j udl_t =
_ w w
Ma—t 9:0 on s E— —E= on Sy (69)

_dM,  M,-M; b7 =0 w—w =0
H,do Hy H,da

The results obtained can again be verified by comparing them with the ones in any text-book
about the shell theory, for example with Washizu (1975). All the results derived are well-known,
but the way in which they were deduced here is different, for educational purposes more feasible
compared with traditional procedures.

10. Conclusions

The present paper shows an approach which introduces a new non-tensorial way to derive basic
equations for any problem in curvilinear geometries. The paper proves local Cartesian coordinate
systems to work well, in addition to numerical computation procedures, in analytical
considerations of curved beam and shell structures. The coordinates which do not have to conform
with the geometry of the structure serve as a convenient tool for deriving the equations needed.
The geometry may be very complicated, but expressions formulated using local orthogonal
coordinates are formally as simple as the familiar expressions in global coordinates. The method
is very systematic depending only on rather basic mathematics which makes it usable, particularly,
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for educational purposes. Equally well, the procedure introduced can be utilized in generating the
basic equations for geometrically non-linear analyses.
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Notations

A, A, A, cross-sectional areas

Xy z global Cartesian coordinates

f; (f.f,f)  volume force vector with references to relevant coordinates
o Bn curvilinear coordinates

Yoo Yoz Yox shear strains with references to relevant coordinates

HaHE) Lamé coefficients

IJK local unit vectors

&&E axial strains with references to relevant coordinates
ijk global unit vectors

M, M, bending moment resultants

£ strain tensor

N, Ng membrane force resultants

0, 6; rotation components

ny, ng direction cosines

K.KsKyp  curvatures with references

Q.05 shear force resultants

Kin Kt to relevant coordinates

R,RsR,s  radii of curvatures and torsion

v norr‘n.al out of the boundary

r,r, position vectors

0.0,0, axial stresses with references to relevant coordinates
S, S, S. surfaces

S5, S5 Su coordinate along the boundary

g stress tensor

- - - .
tt,t) surface traction vector with references to relevant coordinates
Ty Tl shear stresses with references
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displacement vector

local displacement components
variation

global displacement components
partial derivative

volume

scalar product of vectors

virtual works due to (i)nternal and (e)xternal forces
scalar product of tensors
determinant

local Cartesian coordinates
order estimate





