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Free vibration analysis of elliptic and circular
plates having rectangular orthotropy

S. Chakravertyt and M. Petytt

Institute of Sound and Vibration Research, University of Southampton
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Abstract. The natural frequencies and modes of free vibration of specially orthotropic elliptic and
circular plates are analysed using the Rayleigh-Ritz method. The assumed functions used are two-
dimensional boundary characteristic orthogonal polynomials which are generated using the Gram-
Schmidt orthogonalization procedure. The first five natural frequencies are reported here for various
values of aspect ratio of the ellipse. Results are given for various boundary conditions at the edges i.e.,
the boundary may be any of clamped, simply-supported or free. Numerical results are presented here
for several orthotropic material properties. For rectilinear orthotropic circular plates, a few results are
available in the existing literature, which are compared with the present results and are found to be in
good agreement.
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1. Introduction

In recent years lightweight structures have been widely used in many engineering fields and so
vibration analyses of different shaped plates have been studied extensively for its practical
applications. The application of composite materials in engineering structures require information
about the vibration characteristics of anisotropic materials. The free vibration of orthotropic plates
is an important area of such behaviour. Orthotropic materials have extensive application in
modern technology such as in modern missiles, space crafts, nuclear reactors, printed circuit
boards etc. A vast amount of work has been done for theoretical and experimental results for
vibration of orthotropic skew, triangular, circular, annular and polygonal plates as mentioned by
Leissa (1969, 1978, 1981, 1987) and Bert (1976, 1979, 1980, 1982, 1985, 1991). But the authors
have found very little work on the vibration of elliptic and circular plates with rectangular
orthotropy. The investigation presented here gives extensive, accurate and a wide variety of new
results to study the free vibration of specially rectilinear orthotropic (i.e., whose symmetrical axes
coincide with the principal elastic axes of the plate material) elliptic and circular plates.

For a circular plate with rectangular orthotropy, only a few results are available in the existing
literature, namely Rajappa (1963), Leissa (1969), Sakata (1976), Narita (1983), Dong and Lopez
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(1985) and also some of the references mentioned therein. Rajappa (1963) has used Galerkin's
method and reported only the fundamental frequency of circular orthotropic plates with clamped
and simply supported boundaries. Reduction methods have been used by Sakata (1976), who has
given only the fundamental frequency for a clamped orthotropic circular plate. Narita (1983) gives
some higher modes for a circular plate with clamped boundary by a series type method. Dong and
Lopez (1985) analysed a clamped circular plate with rectilinear orthotropy by a modified
application of the interior collocation method.

Compared with circular plates, even less work has been carried out for elliptical plates with
rectangular orthotropy. The only two references known to the authors are Sakata (1976) and
Narita (1985). Sakata (1976) deals with only the fundamental frequency for a clamped elliptic
plate. He obtained his results by using a simple co-ordinate transformation of a clamped
orthotropic circular plate to give a reduction formula for the fundamental frequency of an elliptic
orthotropic plate with the same boundary. A Ritz method analysis is carried out by taking a
complete power series as a trial function by Narita (1985) to obtain the first few natural
frequencies for an orthotropic elliptical plate with a free boundary. Numerical results are
illustrated there by two figures only, for two types of orthotropic material properties.

Sakata (1979) in a two-part article, describes in Part I three exact reduction methods. Part II
describes a generalised reduction method. The reduction method is used to derive an approximate
formula for estimating the natural frequencies of orthotropic plates. Vibration of an orthotropic
elliptical plate with a similar hole has been analysed by Irie and Yamada (1979). In another paper
Irie et al. (1983) deals with the free vibration of circular-segment-shaped membranes and clamped
plates of rectangular orthotropy. An interesting paper is that of Narita (1986), who has analysed
the free vibration of orthotropic elliptical plates with point supports of arbitrary location. Only
those papers which deal with rectangular orthotropic circular or elliptical geometries, are
mentioned here.

Here two dimensional boundary characteristic orthogonal polynomials have been used in the
Rayleigh-Ritz method. Recently orthogonal polynomials have been used extensively to find the
vibration characteristics of different types of plate geometries with various boundary conditions at
the edges. Some of the references in this connection are Bhat (1985,1987), Dickinson and Blasio
(1986), Kim and Dickinson (1987, 1989), Laura et al. (1989), Liew and Lam (1990) and Liew et
al. (1990). Chakraverty (1992) and Singh and Chakraverty (1991, 1992, 1993, 1994) have already
applied this method to free vibration of isotropic circular, elliptic, annular, skew and triangular
plates and also elliptic plates with variable thickness and have obtained excellent results. They
have also reported the orthogonal polynomials generated over all the above mentioned domains in
a recent paper (1994). One can directly use those polynomials for solving the related problem
without generating them again and again for each specific problems. Chakraverty and Chakrabarti
(1993) and Chakraverty (1996) have also applied this method to the determination of the static
deflection of circular and elliptic plates. In a more recent paper the authors (1997) use this method
for non-homogeneous elliptic plates, viz. when the modulus of elasticity and the density of the
material are non-homogeneous. The main aim of the present study is to use this method to
analyse elliptic and circular plates with rectangular orthotropy and to report many new results,
which are not found in the open literature. Here the same orthogonal polynomials generated by
Chakraverty (1992) and Singh and Chakraverty (1991, 1992) have been used to determine the
transverse vibration of elliptic and circular plates with rectangular orthotropy having clamped,
simply-supported or free boundary at the edges.

To use the method, three steps have to be followed. The first step consists of the generation of
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the orthogonal polynomials in the domain occupied by the plate. Since there exists no three term
recurrence relation, as in the one dimensional case, the well-known Gram-Schmidt
orthogonalization procedure has been used. The second step is to use these generated polynomials
in the Rayleigh-Ritz method, which produces a standard eigenvalue problem rather than a
generalized one. This is the extra advantage of using these polynomials which make the analysis
numerically efficient, straight forward and simple. It also gives a faster rate of convergence. The
third and the last step is to solve this standard eigenvalue problem to give the vibration
characteristics. '

2. Basic equations and method of solution

Let the domain occupied by the elliptic plate be
S ={(x,y),x¥a2+y%/b?<1, x,yeR}, 1)

where a and b are the semi major and minor axes of the ellipse respectively as shown in Fig. 1.
The maximum strain energy V,,., of the deformed orthotropic plate is given by Timoshenko and
Woinowsky (1953) as

Vinar =(1/2) [[[D+ W3 +2v< Dy W Wiy + Dy W, +4D, W, ] dydix ' )
R

where W(x, y) is the deflection of the plate, W,, is the second derivative of W with respect to x.
The D coefficients are bending rigidities defined by,

Dx =Exh3/(12(1 —VxVy ))

Dy =Eyh3/(12(1 _Vy Vx))

Dy Vx :Dx Vy (3)
where E,, E, are Young's moduli and v,, v, are Poisson's ratios in the x, y directions, G,, is shear

modulus and % is the uniform thickness.
The maximum kinetic energy is given by,

Tax =(1/2) ph 67 [| Wdydx @)
R
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Fig. 1 Geometry of the elliptic plate
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where p is the mass density per unit volume and  is the radian natural frequency of the plate.
Now equating the maximum strain and kinetic energies we have the Rayleigh quotient as,

[[ (D= W +2v.Dy Wi Wiy +D, W3 +4Dsy W, ] dyex
R

W= ©)

hp ([ W?dydx
R
Substituting the N-term approximation
N
W(x,}’)':zcjd’j(x,)’) (6)
j=1

and minimizing @’ as a function of the coefficients c;'s we have,

S @y —Wb,)c; =0, i=1,2,..,N ™)
where, =
a; = [[ (D:/H) 6770+ Dy /H) §]70) +v: (D /H X070, + 0977
¥ +2(1-ve(Dy/H)) ¢ 9" dYdX ®)
b, = H ¢ ¢;dYdX 9)
/12=Z4ph «?/H (10)
and H =Dyvy +2Dy, (11)

The ¢'s are orthogonal polynomials and are described in the next section. ¢ is the second
derivative of ¢, with respect to X and the new domain R’ is defined by

R ={X,Y), X>+Y¥m?<1, X,YeR}

where, X=x/a, Y=y/a and m=b/a.
If the ¢/'s are orthogonal, Eq. (7) reduces to

N
3 (a; - 28,;)c; =0, i=1,2,..,N (12)
j=1

where, §,;=0, if i+j
=1, if i=j.

The three parameters D,/H, D,/H and v, define the orthotropic property of the material under
consideration. It is interesting to note here that for an isotropic plate these parameters reduce to D,
/H=D,/H=1 and v,=v,=v. Eq. (12) is a standard eigenvalue problem and can be solved for the
vibration characteristics.

3. Generation of orthogonal polynomials

Although the present polynomials have been generated by exactly the same way as described in
earlier studies (Chakraverty 1992, Singh and Chakraverty 1991, 1992), the method is described
below for the sake of completeness.

We start with a linearly independent set
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Fie,y)=fe, yfix,y)}, i=12-N (13)

where f(x, y) satisfies the essential boundary conditions and f(x, y) are taken as the combinations
of terms of the form x* y" where [, and n, are nonnegative integers. The function f is defined by,

fex,y)=(1-x2-y/m2Yf (14)

If we take right kand side of Eq. (14) as u” where u=1-x"-y’/m’ then it is clear that the
boundary of the ellipse oS is given by u=0 and at the centre u=1. The curves u=constant will be
concentric ellipses. From Eq. (14), it is to be noted that

i) if p=0, f=1 on dS

i) if p=1, f=0 and df /dn =0 on dS

iii) if p=2, f=0 on dS
Hence the functions ff, also satisfy the same conditions on dS. When p=0, f=1 on dS and so ff; are
free since their values on oS depend upon /; and n,. Therefore it is clear that p takes the value of 0,
1 or 2 according as the boundary of the elliptic (or circular) plate is free, simply-supported or
clamped.

From F(x, y), we generate an orthogonal set by the well-known Gram-Schmidt process. For this
we define the inner product of two functions f and g by,

<f.g>=[[f@x,y)g(x,y)drdy (15)
R
The norm of f is therefore given by
Wfll=<f.f>" (16)
Proceeding as in Chakraverty (1992) and Singh and Chakraverty (1991, 1992) the Gram-

Schmidt orthogonalization process can be written as,

¢1 =F1a
i-1

¢i =F,—Za,,¢l s i=2’”',N (17)
j=t

oy =<F;, 0;>/<¢;,¢;>, j=1,2,-,(-1)

where ¢,'s are orthogonal polynomials. The normalized polynomials are generated by
9:=0:/110. (18)

All the integrals involved in the inner product are evaluated in closed form by the formulas given
in earlier works (Chakraverty 1992, Singh and Chakraverty 1991, 1992).

4. Numerical work and discussions

In all there are five parameters viz., D,/H, D,/H, v,, p and m. It would be a gigantic task to
present the results for all possible combinations of these parameters. So seven different types of
material have been selected, the properties of which are given in Table 1. The first three (M1, M2
and M3) have been taken from a paper by Lam et al. (1990), M4 from Kim and Dickinson (1990)
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Table 1 Material properties

Material D.,/H D,/H v
M1: Graphit-epoxy 13.90 0.79 0.28
M2: Glass-epoxy 3.75 0.80 0.26
M3: Boron-epoxy 13.34 1.21 0.23
M4: Carbon-epoxy 15.64 0.91 0.32
MS: Kevlar 2.60 2.60 0.14
M6 2.0 0.5 0.3
M7 0.5 20 0.075

and M5 from Dong and Lopez (1985). Lastly, M6 and M7 are taken from Narita (1985). In order
to make comparison with the few known results for circular plates, a few more materials are
considered in Table 3.

In the following subsections, the results for elliptic and circular plates with different boundary
conditions are discussed.

4.1. Clamped boundary

Figs. 2 to 8 show the first five natural frequencies for various values of m=0.2, 0.4, 0.5, 0.6, 0.8
and 1.0 for the materials M1 to M7 respectively. The clamped boundary results are denoted by
‘C’. All the results except for the fundamental mode for an elliptic plate (i.e., when m=1.0) with
a clamped boundary are new and are not found elsewhere. So, comparison can only be made for
an elliptic plate for the fundamental frequencies. A few results are available for a clamped circular
plate as discussed in Section 1, which are also compared here.

Sakata (1976) has given a formula for finding the fundamental frequency for a clamped elliptic
plate as

W= 41.52
pha*

Dy + % (@/bYH +(a/b)'D,} (19)
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Fig. 2 First five frequencies for M1 for C: clamped, S-S: simply-supported and F: free boundary
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Fig. 3 First five frequencies for M2 for C: clamp- Fig. 4 First five frequencies for M3 for C: clamp-
ed, S-S: simply-supported and F: free boun- ed, S-S: simply-supported and F: free boun-

dary dary

Sakata mentions that Rajappa (1963) indicates that an accurate value of the numerical coefficient
in Eq. (19) should be 40.0. He also reported that, the coefficient is 39.22 according to McNitt's
solution (1962) for an isotropic clamped elliptical plate, which is obtained by the use of Galerkin's
method. Finally he mentioned that upon taking the deflection function used in each analysis and
the resultant solution into consideration, one should assume that the more accurate coefficient of
Eq. (19) is 39.22.

As per the above discussions by taking the numerical coefficient of (19) as 41.52 due to Sakata
(1976), 40.0 due to Rajappa (1963) and 39.22 due to McNitt (1962), the fundamental frequencies
for M1 to M7 for various values of m have been computed and reported in Table 2. In this table Ag,
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Fig. 5 First five frequencies for M4 for C: clamp- Fig. 6 First five frequencies for M5 for C: clamped,
ed, S-S: simply-supported and F: free S-S: simply-supported and F: free boundary
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Fig. 7 First five frequencies for M6 for C: clamp- Fig. 8 First five frequencies for M7 for C: clamp-
ed, S-S: simply-supported and F: free ed, S-S: simply-supported and F: free
boundary boundary

Az and A, denote the frequencies computed by the numerical coefficients given by Sakata, Rajappa
and McNitt in Eq. (19) respectively and the last column corresponds the results computed by the
present method. It would appear from Table 2 that using the coefficient of McNitt one obtains
results which are closer to the present one than the other two.

Before discussing further comparison, it is important to mention here that to find all the first
five natural frequencies the results have been obtained first for various combinations of symmetric-
symmetric, symmetric-antisymmetric, antisymmetric-symmetric and antisymmetric-antisymmetric
modes about the two axes of the ellipse. Then the first five frequencies have been chosen from
them to ensure that none will be left out.

Narita (1983) has reported a few higher modes for a clamped circular plate for five types of
orthotropic material properties. Comparisons have been made with these in Table 3 which indicate
good agreement. In this table for each of the combinations of symmetric and/or antisymmetric
motion the first row cited is obtained using the present method.

Table 4 gives the comparison of the present results with those of Dong and Lopez (1985), who
have reported the results for a Kevlar (material MS) clamped circular plate. They have given a
table for a factor K in the frequency formula

1 .[D:

w=K —
a? N ph

(20)

Our present frequency parameter is given by (10). In order to compare with Dong and Lopez the
present changed frequency parameter will be used

2 =MD, /H =K

Dong and Lopez (1985) gives results for five modes for sym./sym., sym./anti. and anti./anti. We
have found that all the results compared show good agreement.
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Table 2 Comparison of fundamental frequencies for clamped boundary with

Sakata(1976), Rajappa (1963) and McNitt (1962)

MAT. m As Ar Ay A
M1 0.2 128.96 126.58 125.34 121.58
04 39.722 38.988 38.606 38.515
0.5 30.716 30.148 29.853 29.820
0.6 26.535 26.045 25.790 25.727
0.8 23.230 22.801 22.578 22.362
1.0 22.098 21.690 21.477 21.053
M2 0.2 147.24 144.52 143.11 136.51
0.4 40.383 39.637 39.249 38.849
0.5 28.280 27.757 27.485 27.376
0.6 22131 21.722 21.509 21.476
0.8 16.742 16.433 16.272 16.242
1.0 14.720 14.448 14.306 14.225
M3 0.2 180.60 177.27 175.53 168.53
0.4 51.841 50.883 50.385 50.152
0.5 38.308 37.601 37.232 37.181
0.6 31.904 31.315 31.008 30.966
0.8 26.823 26.327 26.069 25.907
1.0 25.130 24.666 24.424 24.057
M4 0.2 158.10 155.18 153.66 148.67
04 47.966 47.079 46.618 46.501
0.5 36.953 36.270 35.915 35.876
0.6 31.909 31.319 31.012 30.937
0.8 28.016 27.498 27.229 26.959
1.0 26.735 26.241 25.984 25.442
M5 0.2 261.08 256.26 253.75 236.43
04 67.016 65.778 65.133 63.077
0.5 44.080 43.266 42.842 42.043
0.6 31.880 31.291 30.984 30.666
0.8 20.351 19.975 19.779 19.726
1.0 15.596 15.308 15.158 15.142
M6 0.2 117.26 115.09 113.96 109.24
04 32.664 32.061 31.747 31.435
0.5 22.932 22.509 22.288 22.195
0.6 17.891 17.561 17.389 17.358
0.8 13.303 13.057 12.929 12.910
1.0 11.466 11.254 11.144 11.097
M7 0.2 229.37 225.13 222.93 207.23
0.4 58.630 57.547 56.983 54.622
0.5 38.211 37.505 37.138 36.017
0.6 27.173 26.671 26.409 25.847
0.8 16.332 16.030 15.873 15.717
1.0 11.466 11.254 11.144 11.097

61
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Table 3 Comparison with Narita (1983) for clamped circular plate

(D./H, D,/H)
Mode
(1.469, .735) 0.5, 0.5) 05, 2) 2, 0.5) 2,2
SS-1 10.591 8.0762 11.097 11.097 13.514
* 10.59 8.090 11.05 11.05 13.51
AS-1 20.066 16.801 26.462 19.062 28.119
* 20.09 16.82 19.09 26.22 28.06
SA-1 23.836 16.801 19.062 26.462 28.119
* - 16.82 26.22 19.09 28.06
SS-2 33.285 26.157 30.255 30.255 47.756
* - 26.09 30.20 30.20 47.31
AA-1 35.891 28.917 37.178 37.178 44.459
* - 28.97 37.21 37.21 44.59
SS-3 43.728 31.359 49.134 49.134 52.542
* - 31.42 48.75 48.75 52.48

*Taken from Narita (1983)

Table 4 Comparison of results with Dong and Lopez (1985) for Kevlar circular plate

K
M Sym/Sym Sym/Anti Anti/Anti
* % % * *k * %k

1 9.4396 9.3963 19.549 19.548 30.368 30.587
2 33.433 33.503 46.210 46.357 63.922 64.073
3 35.522 36.502 55.465 56.299 73.356 73.932
4 62.556 63.064 88.838 82.978 106.50 104.56
5 79.491 80.038 102.79 99.755 132.84 128.40

*Taken from Dong and Lopez (1985), **Results from present method

4.2. Simply-supported boundary

Again the first five natural frequencies are presented for various values of m for the mentioned
material properties and the corresponding results are cited in Figs. 2 to 8 and denoted by ‘S-S’. The
authors have found no results in the existing literature for this boundary condition except one for
the fundamental frequency of a circular plate with material M6 given by Rajappa (1963). A value

of 5.3591 is reported which compares with 5.1628 obtained with the present method.

4.3. Free boundary

The results for this boundary condition are denoted by ‘F’ in Figs. 2 to 8. Only one reference
by Narita (1985) is known to the authors for this boundary condition, who has presented the
results in two figures for materials M6 and M7. The authors have obtained approximate results
from the graphs given by Narita for m=0.5 and 1.0. All other results are entirely new. These

values are slightly larger than the ones obtained with the present method.
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4.4. Special case (isotropic plate)

As mentioned in earlier sections, the present problem reduces to that of an isotropic plate if D,/
H=D,/H=1 and v,=v,=v, for which results are already reported by Chakraverty (1992) and Singh
and Chakraverty (1991, 1992), where they have already made comparison with all the existing
results for the isotropic case. Using the present computer program taking D,/H=D,/H=1 and v,=
v,=0.3, we have again computed the results for various values of m which are given in Fig. 9.

These are found to be exactly the same as reported in earlier papers (Chakraverty 1992, Singh and
Chakraverty 1991, 1992).

4.5. Discussion of the results

It is seen from Figs. 2 to 8 (for materials M1 to M7), that for any boundary conditions i.e., for
clamped simply-supported or free, the frequencies decrease as m is increased. For a clamped
boundary the frequencies are a maximum and for a free boundary these are a minimum for each
m for all the materials considered here.

As mentioned by Narita (1985) for a free boundary, the frequencies for m=1.0 in cases M6 and
M7 are identical, since one case is just that of a 90 degree rotation of the other. This is true for
all the boundary conditions (clamped, simply-supported and free) for m=1.0. Also Narita rightly
mentions that as m is decreased, both cases show different variations. The results for M6 are
lower than the corresponding ones for M7, due to the smaller bending rigidity in the x-direction.

To fix the number of approximations N needed, calculations were carried out for different
values of N until the first five significant digits had converged. It was found that the results
converged in about 8 to 10 approximations for clamped and simply-supported boundary and in 12
to 15 approximations for free boundary. Fig. 10 gives results for the convergence of the first three
natural frequencies for clamped, simply-supported and free (i.e., p=2, 1 and O respectively)
boundaries with N increasing from 2 to 15. These results were obtained for the material M6 and
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taking the aspect ratio of the ellipse to be 0.5.

5. Concluding remarks

Although this approach has been extensively used in isotropic plate vibration problems, it has
been applied successfully in this study for the first time to the present problem of an orthotropic
plate with a curved boundary (especially for elliptical). The effect of orthotropy has been fully
investigated over a wide range of material properties. Most of the results are new and not found
elsewhere. The use of two dimensional boundary characteristic orthogonal polynomials in the
Rayleigh-Ritz method makes the problem a computationally efficient and simple numerical
technique for finding vibration characteristics. It is important to mention here (as reported in
earlier papers also) that the generation of orthogonal polynomials is very much sensitive to the
numerical errors as the approximations are increased due to the rounding errors, which grow to an
extent rendering the results to diverge. Therefore, all the computations have been carried out in
double precision arithmetic and then the results converge as shown in Fig. 10. The present study
can be generalized to other type of orthotropic plate geometries considering various complicating
effects, such as plates with variable thickness, elastic foundation, considering in-plane forces etc.
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Notations
a, b semi major and minor axes of the elliptic plate (Fig. 1)
X,y cartesian coordinates
XY non-dimensional coordinates
R=S the interior of the plate
R’ the interior of the transformed plate after the transformation X=x/a, Y=y/a
as boundary of the transformed plate '
m aspect ratio of the elliptic plate
w displacement
E, E, Young's moduli in x and y directions
, Y Poisson's ratio in x and y directions
' D, Bending rigidities in x and y directions

shear modulus

uniform thickness of the plate

mass density per unit volume
circular frequency

constants defining mode shapes
constants defined by Eqgs. (8), (9)
order of approximation
non-dimensional frequency parameter
defined in equation (11)

suitably chosen functions

bif
(1 -x*-y/m®y

integer which can have values 0, 1 or 2

3

&

=
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<f, g>
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inner product of functions f and g
norm of the function f
orthogonal polynomials
orthonormal polynomials
constants defined in Eq. (17)
clamped boundary
simply-supported boundary

free boundary
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