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1. Introduction  

 

Laminated composite plates made up of fiber-reinforced 

layers are frequently used in aerospace, civil, marine, 

automobile, and other engineering structures. The 

widespread use of laminate composites during the last three 

decades is due to their physical properties such as high 

specific strength and stiffness, resistance to corrosion and 

fatigue, and lightweight. On the other hand, most of the 

laminated composite plates are vulnerable to elastic 

buckling before reaching to the failure strength because of 

their thin-walled nature. Therefore, it is needed to find some 

methods for the buckling prediction of the plates. 

Several investigations have been carried out on the 

buckling behavior of laminated composite plates. Jiang et 

al. (2018) studied buckling, postbuckling and nonlinear 

vibration behaviors of composite laminated trapezoidal 

plates. Dong et al. (2017) investigated the local buckling 

analysis of an infinite thin rectangular symmetrically 

laminated composite plate restrained by a tensionless 

Winkler foundation and subjected to uniform in-plane shear 

loading. Becheri et al. (2016) presented an exact analytical 

solution for mechanical buckling analysis of symmetrically 

cross-ply laminated plates including curvature effects. 

Baseri et al. (2016) investigated buckling analysis of an 

embedded laminated composite plate. Singh and Kumar 

(2010) studied buckling and postbuckling responses, and 

the progressive failure of square laminates of symmetric 

lay-up with a central rectangular cutout under in-plane shear 

load. Altunsaray and Bayer (2014) investigated the lowest 

critical value of the compressive force acting in the plane of  
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symmetrically laminated quasi-isotropic thin rectangular 

plates. Singh et al. (2002) used a C0 finite element method 

for arriving at an eigenvalue problem using higher order 

shear deformation theory for initial buckling of laminated 

composite plates. Ashour (2003) employed a finite strip 

transition matrix technique, a semi analytical method to 

obtain the buckling loads and the natural frequencies of 

symmetric cross-ply laminated composite plates with edges 

elastically restrained against both translation and rotation. 

Kiani and Mirzaei (2018) studied the shear buckling 

behaviour of composite skew plates reinforced with aligned 

single walled carbon nanotubes. Kiani (2016) investigated 

shear buckling response of carbon nanotube reinforced 

composite rectangular plates in thermal environment. 

Kosteletos (1992) investigated the buckling behavior of 

laminated composite plates with clamped supports in all 

four-edges under uniform shear load. Shufrin et al. (2008) 

utilized a semi-analytical Kantorovich approach to obtain 

the buckling condition in the symmetric laminated 

rectangular plates with different boundary conditions under 

combined in-plane shear and compressive loading. 

Loughlan (1999) used the finite strip method to assess the 

impact of bend-twist coupling on the stability of laminated 

composite plates under shear loading. Iyengar and 

Chakraborty (2004) utilized the finite element method to 

assess the impact of transverse shear on the buckling of 

composite laminated plates under combined in-plane shear 

and compressive loading. Qiao and Huo (2011) presented a 

closed-form solution for local buckling of orthotropic plates 

under in-plane shear loading. Chen and Qiao (2015) 

employed Galerkin method to perform the shear buckling 

analysis of composite laminated plates. Liu et al. (2014) 

used Rayleigh-Ritz method and proposed a new shape 

function based on plate buckled displacement for buckling 

analysis of orthotropic plates under combined in-plane 

shear and axial loads. Biggers and Pageau (1994) evaluated 
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the piecewise-uniform approach to tailoring as a means of 

improving the shear buckling loads of composite plates. Xie 

et al. (2003) investigated shear buckling analysis of 

asymmetrical angle-ply laminates using the higher-order 

shear deformation theory. 

There are different types of elastic foundation models to 

describe the interactions between the plate and foundation. 

One of the simplest models is Winkler, which is one-

parameter model with closely spaced independent linear 

springs (Winkler 1867). In the foundation, the springs 

which are not situated under the loaded region, are not 

affected by the load. Pasternak (1954) added a shear layer 

to Winkler model and assumed a shear interaction between 

the springs that is performed by joining the ends of springs 

to a plate. Pasternak model is a two-parameter model which 

endures only transverse shear deformation. This model has 

been widely utilized to assess the mechanical behavior of 

structure–foundation interactions. Recently, the several 

studies have been carried out to understand the buckling 

behavior of the plate resting on Pasternak foundation. Rad 

and Shahraki (2014) investigated buckling responses of 

cracked functionally graded plates resting on Pasternak 

foundation under tension. They utilized classical plate 

theory based on the finite element method. Setoodeh and 

Karami (2004) studied the buckling behavior of laminated 

thick composite plates resting on Winkler and Pasternak 

foundations by employing a three-dimensional elasticity 

based layer-wise finite element method. Nazarimofrad and 

Barkhordar (2016) investigated the stability of orthotropic 

rectangular plate resting on Pasternak foundation for 

different boundary conditions. Aiello and Ombres (1999) 

examined buckling loads, free vibrations and vibrations 

with initial inplane stresses for moderately thick, simply 

supported rectangular laminates resting on elastic 

foundations. Kim (2004) investigated the stability and 

dynamic displacement response of an infinite thin plate 

resting on a Winkler-type or a two-parameter elastic 

foundation. Thai et al. (2013) proposed a simple refined 

shear deformation theory for bending, buckling and 

vibration of thick plates resting on elastic foundation. 

Dehghan and Baradaran (2011) used a combination of the 

finite element and differential quadrature methods to solve 

the buckling and free vibration equations of rectangular 

thick plates resting on elastic foundations. Khalili et al. 

(2013) used the Lindstedt-Poincare perturbation technique 

to study the effect of non-ideal boundary conditions on 

buckling load of laminated plates on elastic foundations. 

However, the previous shape functions need to be 

considered as a function of several terms (similar to Fourier 

series). It is needed to increase the number of terms to 

obtain an accurate solution. Therefore, we proposed new 

different plate shape functions only by one term to obtain an 

accurate solution for all boundary conditions. On the other 

hand, in the literature there is no any research on the shear 

buckling of laminated composite plates resting on Pasternak 

foundation. The aim of this paper is to investigate the shear 

buckling analysis of symmetrically laminated cross-ply 

plates resting on Pasternak foundation under pure in-plane 

uniform shear load to fill this gap. The classical laminated 

plate theory is used for the shear buckling analysis of  

 

Fig. 1 A laminated composite plate resting on Pasternak 

foundation 

 

 

laminated plates. The Rayleigh-Ritz method with novel 

plate buckled shape functions is proposed to solve the 

differential equations and a computer programming is 

developed to obtain the shear buckling loads. Finally, the 

effects of the plate aspect ratios, boundary conditions, 

rotational restraint stiffness, translational restraint stiffness, 

thickness ratios, modulus ratios and foundation parameters 

on the shear buckling of the laminated plates are 

investigated. 

 

 

2. Basic equations 
 

In this study, a symmetric laminated composite plate 

with constant thickness of h and dimensions of a andb 

resting on Pasternak elastic foundation was considered as 

shown in Fig. 1.  

The displacements of the plate in the (x, y, z) directions 

are denoted by (u, v, w). Based on the classical plate theory 

(CLPT), the displacement fields can be assumed as follows 

u = {u v w}T = {−z
∂

∂x
−z

∂

∂y
1}

T

w0 (1) 

where w0 is the displacements at the mid plane of plate. 

The strains and stresses of the plate are given by, 

εp = {−
∂2

∂x2
−

∂2

∂y2
−2

∂2

∂x ∂y
}

T

w0 (2) 

σp = {Mx My Mxy}T (3) 

where Mx , My  and Mxy  are the bending and twisting 

moments per unit length, respectively. The relations 

between the strains and stresses can be shown as follows 

σp = Dεp (4) 
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Due to the assumption of classical plate theory (CLPT) 

for a laminated composite plate, D can be written as 

D = [

D11 D12 D16

D21 D22 D26

D16 D26 D66

] (5) 

where Dij is the flexural stiffness matrix and is calculated 

by Eq. (6). 

Dij =
1

3
∑ Q̅ij

(k)

k

1

(hk
3 − hk−1

3 ),    (i, j = 1,2,6) (6) 

The strain energy of a laminated rectangular composite 

plate resting on Pasternak foundation can be written as 

follows 

Πi =
1

2
∫ ∫ [Mx

d2w0

dx2
+ My

d2w0

dy2
+ Mxy

d2w0

dxdy

a

0

b

0

+ kww0
2

+ ks ((
dw0

dx
)

2

+ (
dw0

dy
)

2

)] dxdy 

(7) 

The governing strain energy equation (Πi) of the plate 

based on Eq. (4) can be written as follows 

Πi =
1

2
∫ ∫ [D11 (

d2w0

dx2
)

2

+ 2D12

d2w0

dx2

d2w0

dy2

a

0

b

0

+ D22 (
d2w0

dy2
)

2

+ 4D66 (
d2w0

dxdy
)

2

+ kww0
2

+ ks ((
dw0

dx
)

2

+ (
dw0

dy
)

2

)] dxdy 

(8) 

where  kw is the vertical spring modulus of the foundation, 

ks is the shear modulus of the foundation. The potential 

energy of the applied load (Πe) under the uniform in-plane 

shear edge load (Nxy
0 ) can be calculated as 

Πe = −Nxy
0 ∫ ∫

dw0

dx

dw0

dy

a

0

b

0

dxdy (9) 

The total elastic potential Π of the plate system can be 

written as below 

Π = Πi + Πe (10) 

By substitution of the proper out-of-plane displacement 

shape function into Eq. (10), the standard eigenvalue 

problem of buckling can be solved by the Rayleigh-Ritz 

method. Table 1 shows the proposed shape functions used 

in this study for different boundary conditions. Wis 

unknown constant that will remain indeterminate according 

to the buckling theory. In addition, 𝜑 is the skew of the 

buckling mode and m is the buckling half-wave. In Table 

1, the letters S, C, F and RR-TR stand for simply supported, 

clamped, free and rotational-translational restraint boundary 

conditions, respectively. 𝛽 is for adjusting translationally-

restrained of edges in both y=0 and y=b which is defined as  

Table 1 Proposed shape functions for different boundary 

conditions 

Cases Shape functions Boundary conditions 

4S 

w0

= W sin (
π(mx − φy)

a
) sin (

πx

a
) sin (

πy

b
) 

 

2S2C 
w0 = W sin (

π(mx − φy)

a
) sin (

πx

a
) {[1

− cos (2
πy

b
)]} 

 

4C 

w0 = W sin (
π(mx − φy)

a
) {1

− cos (2
πx

a
)} {1

− cos (2
πy

b
)}  

2F2S w0 = W sin (
π(mx − φy)

a
) sin (

πy

b
) 

 

2F2C 
w0 = W sin (

π(mx − φy)

a
) {1

− cos (2
πy

b
)} 

 

RR-TR 

w0 = W sin (
π(mx − φy)

a
) sin (

πx

a
) ∗ 

{β + μ sin (
πy

b
) + (1 − μ) [1

− cos (2
πy

b
)]} 

 

 

 

follows.  

β =
2D22π

2D22π + ktb
 (11) 

where kt = 0, kt = ∞ and 0 < kt < ∞ are for free edge, 

non-free edge, and translationally-restrained edge, 

respectively. μ is for adjusting rotationally-restrained of 

edges in both y=0 and y=b which is defined as follows 

μ =
krb

2D22π + krb
 (12) 

where kr = 0, kr = ∞ and 0 < kr < ∞  are for simply 

supported edge, clamp supported edge, and rotationally-

restrained edge, respectively.  

Using the equilibrium condition of the first variational 

principle of the total potential energy (δΠ=0), the buckling 

condition reduces to the well-known Ritz equation  

dΠ

dW
= 0 (13) 

The following relations are used for presentation of the 

non-dimensional shear buckling load, non-dimensional 

linear Winkler foundation parameter and non-dimensional 

Pasternak foundation parameter, respectively 

N̅xy =
Nxy

0 . b2

π2 √D11D22
34

, KW =
kwb4

E2h3
,      KS =

ksb2

E2h3
 (14) 

Using the proposed mathematical model and solution  
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Table 2 Comparisons of the nondimensional shear buckling 

loads for different boundary conditions and aspect ratios 

(b/h=250) 

 Present study Finite element solution 

Boundary 

conditions 
a/b a/b 

 1 1.8 1 1.8 

4S 6.71 3.10 6.29 2.95 

2S2C 7.41 4.49 7.13 4.32 

4C 14.22 5.95 13.46 5.73 

2F2S 2.01 2.11 2.14 1.97 

2F2C 3.68 3.55 3.87 3.68 

 

 

(a) 

 
(b) 

Fig. 2 Comparisons of the buckled shapes for simply 

supported laminated square plate for MATLAB 

programming (a) and finite element solution (b) 
 

 

methodology, a generalized computer program is coded in 

MATLAB to obtain the shear buckling loads of laminated 

plates. 

 

 

3. Numerical results and discussion 
 

In this study, the validation of the present study with the 

finite element solution is conducted for symmetric cross-ply 

[0 90 0 90 0 0 0 90]s  laminated plates for different 

boundary conditions and aspect ratios (a/b). The material 

properties of elastic lamina are given by: E1=155.8 GPa, 

E2=8.89 GPa, G12=5.14 GPa, ν=0.3. As can be seen in 

Table 2, the nondimensional shear buckling loads of the  

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 The buckled shapes of the laminated square plates for 

MATLAB programming: (a) 4S, (b) 4C, (c) 2F2S, (d) 2F2C 

 

 

present study have very good conformity with those of the 

finite element solution for different boundary conditions 

and aspect ratios. Fig. 2 shows the buckled shapes of the 

simply supported (4S) square laminated plate for MATLAB 

programming and the finite element solution. As seen, the 

obtained buckled shapes for two methods are consistent to 

each other.  

Fig. 3 shows the buckled shapes of the laminated square 

plates in MATLAB programming for different boundary 

conditions. 

In this study, the effects of the plate aspect ratios, 

boundary conditions, thickness ratios, modulus ratios, 

foundation parameters and rotational and translational 

restraint stiffnesses on the shear buckling loads are 

investigated.  

Fig. 4 shows the effect of plate aspect ratios (a/b) on the 

nondimensional shear buckling load for 4S, 2S2C, 4C, 

2F2S and 2F2C boundary conditions without (W/O) 

foundation, Winkler foundation (KW=100, KS=0) and 

Pasternak foundation (KW=100, KS=10, b/h=250). As seen, 

laminated plates with Pasternak foundation give the highest 

results for the nondimensional shear buckling load. 

However, as a/b ratio increases the nondimensional shear  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4 Effect of aspect ratios on the nondimensional shear 

buckling for (a) 4S; (b) 2S2C; (c) 4C; (d) 2F2S; (e) 2F2C 

boundary conditions without (W/O) foundation, Winkler 

foundation and Pasternak foundation 

 

 

Fig. 5 Effect of plate aspect ratio and boundary conditions 

on the nondimensional shear buckling load with Pasternak 

foundation 

 

 

Fig. 6 Effect of thickness ratio (a/h) on the nondimensional 

shear buckling load for simply supported boundary 

condition 

 

 

buckling load generally decreases for different boundary 

conditions. 

Fig. 5 shows the nondimensional shear buckling loads 

versus plate aspect ratios for Pasternak foundation for all 

boundary conditions. As seen, by increasing the boundary 

constraints, the nondimensional shear buckling increases. 

4C and 2F2S boundary conditions give the highest and the 

lowest nondimensional shear buckling loads, respectively. 

Fig. 6 shows the effects of thickness ratio (a/h) on the 

nondimensional shear buckling load for 4S boundary 

condition for symmetric cross-ply square laminated plates 

without (W/O) foundation, Winkler foundation and 

Pasternak foundation. As seen, an increase in the thickness 

ratio results in a decrease in the shear buckling. However, in 

the higher thickness ratios, the nondimensional shear 

buckling load of the plate with Pasternak foundation is 

similar to the others. Fig. 7 illustrates the effects of the 

modulus ratio (E1/E2) on the nondimensional shear 

buckling for 4C boundary condition for a/b=1 without 

(W/O) foundation, Winkler foundation and Pasternak 

foundation. As can be seen in Fig. 7, as modulus ratio 

increases the nondimensional shear buckling load increases 

for without and with Winkler foundations. But, the effect of 

modulus ratio decreases for larger modulus ratios. On the 

other hand, as the modulus ra tio increases, the  
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Fig. 7 Effect of the modulus ratio ( E1/E2) on the 

nondimensional shear buckling load 

 

 

Fig. 8 Effect of the foundation parameter (Ks)  on the 

nondimensional shear buckling load 

 

 

Fig. 9 Effect of rotational restraint stiffnesses on the 

nondimensional shear buckling load (kt = 0) 

 

 

nondimensional shear buckling decreases for Pasternak 

foundation.  

Fig. 8 shows the effects of the foundation parameter 

(Ks)  on the nondimensional shear buckling load for 

Pasternak foundation for different boundary conditions are 

investigated (a/b=1, Kw=100). As seen, as the foundation 

parameter increases the nondimensional shear buckling load 

increases. 

In Figs. 9-10, the effect of rotational restraint stiffnesses 

(kr) on the nondimensional shear buckling load can be seen.  

 

Fig. 10 Effect of rotational restraint stiffnesses on the 

nondimensional shear buckling load (kt = ∞) 

 

 

Fig. 11 Effect of translational restraint stiffnesses on the 

nondimensional shear buckling load (kr = 0) 

 

 

Fig. 12 Effect of translational restraint stiffnesses on the 

nondimensional shear buckling load (kr = ∞) 
 

 

As seen, as rotational restraint stiffness increases the 

nondimensional shear buckling load increases. But the 

effect of kr for larger values on the nondimensional shear 

buckling load may be ignored. 

In Figs. 11-12, the effect of translational restraint 

stiffnesses (kt) on the nondimensional shear buckling load 

can be seen. As seen, as translational restraint stiffness 

increases the nondimensional shear buckling load increases. 

But the effect of kt  for larger values on the 

nondimensional shear buckling load can be ignored. 

374



 

Shear buckling analysis of cross-ply laminated plates resting on Pasternak foundation 

 

4. Conclusions 
 

This paper presents the shear buckling analysis of 

symmetric cross-ply laminated composite plates resting on 

Pasternak foundation. Different plate buckled shape 

functions are proposed for various boundary conditions. 

Finally, the effects of the plate aspect ratios, boundary 

conditions, thickness ratios, modulus ratios, foundation 

parameters and rotational and translational restraint 

stiffnesses on the shear buckling loads of the laminated 

plates are investigated. Laminated plates with Pasternak 

foundation give the highest results for the nondimensional 

shear buckling load. As plate aspect ratio increases the 

nondimensional shear buckling load generally decreases for 

different boundary conditions. The plate with clamped 

boundary condition gives the highest nondimensional shear 

buckling load of all. As the thickness ratio increases the 

nondimensional shear buckling load decreases. However, in 

the higher thickness ratios, the nondimensional shear 

buckling load of the plate with Pasternak foundation is 

similar to the others. As the modulus ratio increases, the 

nondimensional shear buckling load decreases for Pasternak 

foundation. As the foundation parameter increases the 

nondimensional shear buckling load increases. As the 

rotational and translational restraint stiffnesses increase the 

nondimensional shear buckling load increases. But the 

effects of rotational and translational restraint stiffnesses for 

the larger values on the nondimensional shear buckling load 

may be ignored. 
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