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1. Introduction  
 

As it is known, ferrofluid has magnetic properties and it 

can be strongly magnetized in the presence of a magnetic 

field. Ferrofluid is containing the ferromagnetic 

nanoparticles and can be used in electronic devices, semi-

active dampers in mechanical and aerospace engineerings, 

loudspeakers, medical applications, heat transfer and 

Energy harvesting (Sanada 2018). 

Dynamic analysis of different structures in contact with 

fluid has been reported by some researchers. Temperature-

dependent nonlinear vibration and instability of embedded 

functionally graded (FG) pipes conveying viscous fluid-

nanoparticle mixture were studied by Raminnea et al. 

(2016). Vibration analysis of fluid conveying microbeams 

under non-ideal boundary conditions (BCs) was performed 

by Atcı and Bağdatlı (2017). Shokravi and jalili (2017) 

presented nonlinear vibration and instability of cylindrical 

shell conveying fluid-nanoparticles mixture flow. Vakili 

Tahami et al. (2017) studied Dynamic response of 

functionally graded Carbon nanotubes (FG -CNT) 

reinforced pipes conveying viscous fluid under accelerated 

moving load. Ghaitani amd Majidian (2017) addressed 

vibration and instability of embedded functionally graded 

(FG)-carbon nanotubes (CNTs)-reinforced pipes conveying 

viscous fluid. Vibration and stability of concrete pipes 

reinforced with carbon nanotubes (CNTs) conveying fluid 

were presented by Zamani Nouri (2017). Ghayesh and  
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Farokhi (2017) analyzed the coupled fluid-structure 

viscoelastic dynamical characteristics of a fluid-conveying 

viscoelastic microtube resting on a nonlinear elastic bed 

subject to large rotations. The free vibration analysis of 

fluid conveying Timoshenko pipeline with different 

boundary conditions using Differential Transform Method 

(DTM) and Adomian Decomposition Method (ADM) was 

investigated by Bozyigit et al. (2017). Zamani Nouri (2018) 

studied stability analysis of concrete pipes mixed with 

nanoparticles conveying fluid. 

Dynamic response of structure reinforced by CNTs 

considering agglomeration effect is one of the interest topic 

among the researchers. By considering the agglomeration 

effect of single-walled carbon nanotubes, free vibration 

characteristics of functionally graded (FG) nanocomposite 

sandwich beams resting on Pasternak foundation were 

presented by Kamarian et al. (2015). Duc et al. (2015) 

investigated on the nonlinear dynamic response and 

vibration of the imperfect laminated three-phase polymer 

nanocomposite panel resting on elastic foundations and 

subjected to hydrodynamic loads. Tornabene et al. (2016) 

studied the effect of Carbon Nanotube (CNT) 

agglomeration on the free vibrations of laminated 

composite doubly-curved shells and panels reinforced by 

CNTs. A free vibration analysis of Carbon Nanotube-

Reinforced Composite (CNTRC) conical shells was 

performed by Kamarian et al. (2016) considering the 

agglomeration effect of Carbon Nanotubes (CNTs). The 

static response of composite plates and shells reinforced by 

agglomerated nanoparticles made of Carbon Nanotubes 

(CNTs) was investigated by Tornabene et al. (2017). Duc et 

al. (2017) analyzed a new approach-using analytical 

solution to investigate nonlinear dynamic response and 
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vibration of imperfect functionally graded carbon nanotube 

reinforced composite (FG-CNTRC) double curved shallow 

shells. Thu et al. (2017) studied an analytical approach to 

investigate the non-linear dynamic response and vibration 

of an imperfect three-phase laminated nanocomposite 

cylindrical panel resting on elastic foundations in thermal 

environments. Based on the strain gradient theory (SGT), 

vibration analysis of an embedded micro cylindrical shell 

reinforced with agglomerated carbon nanotubes (CNTs) was 

investigated by Tohidi et al. (2017).  Shokravi (2017) 

studied nonlinear vibration of embedded nanocomposite 

concrete is investigated based on Timoshenko beam model. 

García-Macías and Castro-Triguero (2018) comprised 

general axisymmetric orientation distributions of fillers, 

both planar sinusoidal and helical wavy fillers, as well as 

different agglomeration schemes by means of a two-

parameter agglomeration model. Duc et al. (2018) 

presented the first analytical approach to investigate the 

nonlinear dynamic response and vibration of imperfect 

rectangular nanocompsite multilayer organic solar cell 

subjected to mechanical loads using the classical plate 

theory. Cong and Duc (2018) presented an analytical 

approach to investigate the nonlinear dynamic response and 

vibration of functionally graded multilayer nanocomposite 

plates reinforced with a low content of graphene platelets 

(GPLs) using first-order shear deformation theory and a 

stress function with full motion equations (not using 

Volmir’s assumptions). 

To the best of our knowledge, no investigation has been 

performed on the dynamic stability of pipes conveying 

ferrofluid. In this paper, the dynamic stability of pipes 

reinforced by agglomerated CNTs conveying ferrofluid is 

presented. The structural damping of the pipes is considered 

and the surrounding viscoelastic medium is modeled by 

visco-Pasternak model. Based on FSDT, energy method and 

Hamilton's principle, the motion equations are derived. 

Utilizing HDQM and Boltin’s method, the DIR of the 

structure is obtained and the effects of volume fraction and 

agglomeration of CNTs, magnetic field, structural damping, 

viscoelastic medium, fluid velocity and boundary conditions 

are shown on the DIR of the structure. 

 

 

2. Formulation 
 

Fig. 1 shows a pipe reinforced by agglomerated CNTs 

conveying ferrofluid subjected to axial magnetic field. The 

pipe has length L, average radius R and thickness h. The 

surrounding viscoelastic medium is simulated with spring, 

shear and damper elements. 

Based on FSDT, the displacement fields can be written 

as (Reddy 2002) 

1( , , , ) ( , , ) ( , , ),xu x z t u x t z x t   = +  (1) 

2( , , , ) ( , , ) ( , , ),u x z t v x t z x t   = +  (2) 

3( , , , ) ( , , ),u x z t w x t =  (3) 

where u, v and w are mid-plane displacements in the axial,  

 

Fig. 1 Schematic of pipe reinforced by agglomerated CNTs 

conveying ferrofluid subjected to axial magnetic field 

 

 

circumferential and lateral directions, respectively; 

( , , )x x t  and ( , , )x t  are the rotations of the normal to 

the mid-plane about x- and θ-directions, respectively. 

However, the nonlinear strain-displacement relations can be 

derived as 
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3. Mori-Tanaka model 
 

Based on Mori-Tanaka model and considering 

agglomeration of CNTs, the effective Young’s modulus E 

and Poisson’s ratio v of the composite material are given by 

(Mori and Tanaka 1973) 

9
,

3

KG
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K G
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+
 (9) 
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where the effective bulk modulus K and shear modulus G 

may be written as below 
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where ξ and ζ are agglomeration parameters; Kin and Kout 

are the effective bulk modulus of the inclusion and the 

matrix outside the inclusion, respectively. Also, Gin and Gout 

are the effective shear modulus of the inclusion and the 

matrix outside the inclusion, respectively and are given as 

follows 
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where rC
 

is volume percent of CNTs; , ,r r r    and 

r  can be obtained as 
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where kr, lr, nr, pr and mr are Hill’s elastic moduli;
 
Km and 

Gm are the bulk and shear moduli of the matrix phase which 

are defined as below 
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Moreover, α and β in Eqs. (11) and (12) are given as 

follows 
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Based on Kelvin-Voigt theory, the Young’s modulus can 

be written as (Lakes 2209) 

1E E g
t

 
→ + 

 
 (26) 

where g is the structural damping parameter. 

 

  

3. Motion equations 
 

3.1 Potential energy  
 

The potential energy of the structure is  
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where the resultant force and moments may be calculated as 
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where 
'k  is shear correction factor. Using Eqs. (4)-(9), the 

resultant force and moments can be written as shown in 

Appendix A. 
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3.2 Kinetic energy  
 

The kinetic energy of the structure may be expressed as 
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where ρ is the density of nanocomposite pipe; the moment 

of inertia can be written as 
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3.3 Work of viscoelastic medium 
 

The work of surrounded viscoelastic medium is 

2 ,
V W g

A

w
W k w k w c wdA

t


  
= − +  −  

  
  (33) 

where kw, kg and cv are spring, shear and damping modulus, 

respectively. 

 

3.4 Work of ferrofluid fluid 
 

In order to calculate the work down by fluid, the well-

down Navies-Stokes equation is used as follows (Wang and 

Ni 2009) 

2V
P V F ,

f body force

D

Dt
 = − +  +  (34) 

where V=(vr, vθ, vx) is the flow velocity in a cylindrical 

coordinate system,  ρf, P and μ are fluid density, static 

pressure and fluid viscosity, respectively. In the Navies-

Stokes equation, 
D

Dt
 can be defined as follows 

considering axial fluid velocity  

.
x

D
v

Dt t x

 
= +
 

 (35) 

At the point of contact between the inside tube and the 

internal fluid, their respective velocities and accelerations in 

the direction of flexural displacement become equal. These 

relationships thus can be written as 

.
r

w
v

t


=


 (36) 

In Eq. (34), Fbody force is the body force which is due to 

the axial magnetic field in this paper as follows 

BJF


=  (37) 

where J


 is electric current density and magnetic field 

inside the ferrofluid can be approximated with B


along the 

x direction. According to Ohm’s law, J


can be obtained 

(Qian and Bau 2005, 2009) 

( )BVJ


=  (38) 

where σ and V are electric conductivity solution and fluid 

velocity field. B


 is magnetic flux density and the SI unit 

of  magnetic flux density is the Tesla (T). The intensity of 

the magnetic flux density, B


, is affected by the intensity 

of the magnetic field, H


. The relationship between 

magnetic field strength and magnetic flux density is 

HB


=   (39) 

where μ is the magnetic permeability of the substance.  

The work down by fluid can be calculated as follows 
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 (40) 

The pulsating internal flow is assumed harmonically as 

follows 

0(1 cos( )) ,xv V t = +  (41) 

where V0, β and ω are the mean flow velocity, the harmonic 

amplitude and pulsation frequency, respectively.  

 

3.5 Work of magnetic field 
 

The work down by fluid can be calculated as follows 

(Kiani 2014) 

2 2
2
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   (42) 

where η is the magnetic permeability and Hx is the magnetic 

field.  

 

3.6 Hamilton’s principle 
 

Using Hamilton’s principle, the variational form of the 

equations of motion can be expressed by 

 ( )
0 0

0.
t t

V F Mdt K U W W W dt    = − − + + =    (43) 

By applying the Hamilton’s principle and sorting of 

mechanical displacement, five governing equations are 

obtained as follows 
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Substituting Eqs. (A1)-(A7) into Eqs. (44)-(48) yields 

the motion equations (Appendix B) 

In this paper, three types of boundary conditions are 

considered as 

• Simple-Simple (SS) 

0, 0,xx L u v w M=  = = = = =  (49) 

• Clamped- Clamped (CC) 

0, 0,xx L u v w  =  = = = = =  (50) 

• Clamped- Simple (CS) 
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4. Solution procedures 
 

Based on HDQM, the differential equations can be 

changed to algebraic equations as follows (Civalek 2004, 

Rehab et al. 2018, Henderson et al. 2018) 
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where 
)(n

ikA  and 
)(m

jlB are the weighting coefficients and 

Nx and Nθ are grid points which can be calculated by 

Chebyshev polynomials. Applying HDQM and using Eqs. 

(52)-(54) to motion equations and boundary conditions 

results governing equations can be expressed as 
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where [K]f, [K]ff and [C]f are stiffness matrix coefficients, 

damping coefficient matrix coefficients of pulsating fluid; 

[M] is matrices of mass; db and dd are related to the 

boundary and domain points, respectively.  To solve the 

Eq. (55), the Bolotin’s method is used. In this way 

displacement vector {d} be considered as follows (Patel 

2006) 

     
1,3,...

sin cos  ,
2 2k k

k

k t k t
d a b

 

=

 
= + 

 
  (56) 

According to the published works in the field of 

dynamic instability, the first dynamic instability region is 

the most important with respect to other regions (Patel 

2006). Finally, by substituting the Eq. (56) in Eq. (55) and 

separate sinus and cosinus coefficients, we have 
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1 1
2 2
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 (57) 

Using eigenvalue problem and direct iterative method, 

Eq. (57) can be solved to obtain the variation of ω with 

respect to α as DIR of system can be obtained. 

 

 

5. Numerical results 
 

 

For parametric study, a polymer pipe made from 

polyethylene (PE) with the Young’s modulus of Em=0.3 

Gpa, Poisson’s ration of vm=0.3, length to thickness ratio of 

L/h=20 and thickness to radius ratio of h/R=0.03 is 

considered. The pipe is reinforced by agglomerated CNTs 

with the Hills elastic modulus reported in (Mori and Tanaka 

1973). The inside fluid is water with AL3O4 magnetic 

nanoparticles with the density of ρf=1000 Kg/m3 and 

viscosity of μ=8.9×10-4 Pa.s. 

 

5.1 Convergence of HDQM 
 

In order to show the accuracy of the proposed numerical 

method, Fig. 2 is plotted. In this figure, DIR of the structure 

is plotted for different values of grid point numbers. It can 

be seen that with increasing the grid point numbers, the DIR 

shifts to left and the results start to converge at N=17. 
 

5.2 Validation 
 

In order to validate the present results, the CNTs as  
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Fig. 2 Convergence and accuracy of HDQM 

 

 

Fig. 3 Validation of present work with (Lakis and Sinno, 

1992) 

 

 

Fig. 4 The effects of CNTs volume percent on the DIR of 

the structure 

 

 

reinforcement of the pipe, ferrofluid, structural damping 

and viscoelastic medium are neglected. However, vibration 

of a pipe with thickness to radius ratio of h/R=0.02 is 

studied. Fig. 3 shows the dimensionless frequency (
5.02

)]1([ mmR  −= ) of the pipe against length to 

radius ratio. It can be seen that the present results are in a 

good agreement with (Lakis and Sinno 1992). 

 

Fig. 5 The effects of CNTs agglomeration on the DIR of the 

structure 

 

 

Fig. 6 The effects of boundary conditions on the DIR of the 

structure 

 

 

5.3 Parametric study 
 

Fig. 4 shows the effects of CNTs volume fraction on the 

dimensionless excitation frequency with respect to fluid 

harmonic amplitude. The regions inside and outside the 

boundary curves correspond to unstable (parametric 

resonance) and stable regions, respectively. As can be seen, 

with increasing the CNTs volume fraction, the DIR shifts to 

higher frequencies. In other words, increasing the CNTs 

volume fraction leads to higher resonance frequency which 

is due to increase in the stiffness of structure. 

Depicted in Fig. 5 is the effect of CNTs agglomeration 

on the dimensionless excitation frequency versus fluid 

harmonic amplitude. As can be seen, considering 

agglomeration of CNTs leads to lower excitation 

frequencies. In other words, with considering agglomeration 

of CNTs, the DIR will occur at lower excitation 

frequencies. It can, therefore, be concluded that the 

agglomeration reduces the stiffness of the structure.  

The effect of different boundary conditions is presented 

in Fig. 6 on the dimensionless excitation frequency versus 

fluid harmonic amplitude. It can be found that the CC 

boundary condition yields to higher resonance frequency. In 

other words, comparing the assumed boundary conditions,  
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Fig. 7 The effects of dimensionless flow velocity on the 

DIR of the structure 

 

 

Fig. 8 The effects of axial magnetic field on the DIR of the 

structure 

 

 

the DIR of structure moves to right for the case of pipe with 

CC boundary conditions. 

Fig. 7 illustrates the effect of dimensionless flow 

velocity (
5.0

00 ]/[ mm EvV = ) on the DIR of the 

structure. As can be seen, with increasing fluid velocity, the 

DIR occurs in lower pulsation frequencies. In addition, the 

greater fluid velocity leads to large instability zone and low 

pulsation frequency. 

Fig. 8 shows the effect of axial magnetic field intensity 

on the variations of the dimensionless pulsation frequency 

versus the fluid pulsation amplitude. As can be seen, with 

increasing the magnetic field, the DIR shifts to higher 

excitation frequencies. It is because with increasing the 

magnetic field, the stiffness of the structure improves.   

Fig. 9 demonstrates the DIR for different structural 

damping constant. As can be seen, the DIR and frequency 

of viscoelastic pipe is lower than those of non-visco 

structure (i.e., G=0). This remarkable difference shows that 

considering the nature of pipe as viscoelastic can yield the 

accurate results with respect to non-visco micro plate.  

The effect of different viscoelastic mediums is 

demonstrated in Fig. 10 for three cases which are without 

viscoelastic medium, visco-Winkler medium and visco- 

 

Fig. 9 The effects of structural damping on the DIR of the 

structure 

 

 

Fig. 10 The effects of surrounding viscoelastic foundation 

on the DIR of the structure 

 

 

Pasternak medium. It can be seen that considering 

viscoelastic medium increases the excitation frequency of 

structure and DIR shifts to higher frequencies. It is due to 

the fact that considering viscoelastic medium leads to stiffer 

structure. Furthermore, the excitation frequency which leads 

to DIR for the case of visco-Pasternak medium is higher 

than the visco-Winkler medium. It is because in the visco-

Pasternak medium indeed the normal loads, the shear forces 

are considered.  

 

 

6. Conclusions 
 

In this paper, dynamic stability of pipes reinforced by 

agglomerate CNTs conveying ferrofluid was presented. The 

structural damping effect was considered and the structure 

was subjected to axial magnetic field. The surrounding 

viscoelastic medium was modeled by visco-Pasternak 

foundation. Based on FSDT, energy method and Hamilton's 

principle, the motion equations were derived. Using HDQM 

and Bolotin's method, the DIR of the structure was obtained 

and the influences of different parameters such as volume 

fraction and agglomeration of CNTs, magnetic field, 
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structural damping, viscoelastic medium, fluid velocity and 

boundary conditions are shown on the DIR of the structure. 

The most important conclusions of this paper can be 

enumerated as follows: 

• With increasing the CNTs volume fraction, the DIR 

shifts to higher frequencies. 

• With considering agglomeration of CNTs, the DIR will 

be happened at lower excitation frequencies. 

• With increasing fluid velocity, the DIR occurs in lower 

pulsation frequencies. 

• It can be found that the CC boundary condition yields 

to higher resonance frequency. 

• With increasing the magnetic field, the DIR shifts to 

higher excitation frequencies. 

• The DIR and frequency of viscoelastic pipe is lower 

than those of non-visco structure (i.e., G=0). 
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