
Structural Engineering and Mechanics, Vol. 68, No. 3 (2018) 377-384 

DOI: https://doi.org/10.12989/sem.2018.68.3.377                                                                 377 

Copyright © 2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction  

 

Bi-stable shell structures can be stable in both its 

extended and coiled forms, as shown in Fig. 1. Bi-stable 

shells are similar to tape-springs; however, unlike tape-

springs, they can be made to be stable in both states and 

therefore do not require a spindle or casing to hold them. 

Bi-stable composite shells are usually manufactured 

with symmetric (Daynes et al. 2008, Li et al. 2014) or 

antisymmetric (Zhang et al. 2013, Zhang et al. 2014, Zhang 

et al. 2015) layup of fibers. Previous works on bi-stable 

composite shells have generated a number of analytical and 

computational models that capture various aspects of their 

behavior. Galletly and Guest (2004a) presented a beam 

model to describe the behavior of the bi-stable composite 

slit tube. The model assumed that the cross-section of the 

structure remained as an arc of a circle, with a radius that 

was allowed to vary. Furthermore, the shell model (Galletly 

and Guest 2004b) was presented, which did not make any 

assumption about the cross-sectional shape. Instead a 

differential equation was set up to model the transverse 

shape, and this was used to find the second equilibrium 

configuration. Kebadze and Guest (2004) investigated 

isotropic cylindrical shell whi ch had two stable 

configurations, due to a particular distribution of residual 

stresses induced by plastic bending. In addition, an 

inextensional two-parameter analytical model (Guest and  
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(a) The first stable configuration 

 
(b) The second stable configuration 

Fig. 1 Stable configurations of thin cylindrical shells 

 

 

Pellegrino 2006, He 2011) was proposed. For thin 

cylindrical shell which mid-surface did not stretch, the 

Gaussian curvature must remain zero. This implied that all 

possible configurations must be developable, and every 

possible configuration of the shell could be defined by two 

variables. Moreover, some researchers (Kumar 2010, 

Aghajari et al. 2011, Guo et al. 2015, Javed et al. 2016) 

investigated other mechanical properties of thin cylindrical 

shells. 
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Abstract.  Bi-stable structure can be stable in both its extended and coiled forms. For the un-stressed thin cylindrical shell, the 

strain energy expressions are deduced by using a theoretical model in terms of only two parameters. Based on the principle of 

minimum potential energy, the bi-stable behaviors of the cylindrical shells are investigated. The results indicate that the isotropic 

cylindrical shell does not have the second stable configuration and laminated cylindrical shells with symmetric or antisymmetric 

layup of fibers have the second stable state under some confined conditions. In the case of antisymmetric laminated cylindrical 

shell, the analytical expressions of the stability are derived based on the extremal principle, and the shell can achieve a compact 

coiled configuration without twist deformation in its second stable state. In the case of symmetric laminated cylindrical shell, the 

explicit solutions for the stability conditions cannot be deduced. Numerical results show that stable configuration of symmetric 

shell is difficult to achieve and symmetric shell has twist deformation in its second stable form. In addition, the roll-up radii of 

the antisymmetric laminated cylindrical shells are calculated using the finite element package ABAQUS. The results show that 

the value of the roll-up radii is larger from FE simulation than from theoretical analysis. By and large, the predicted roll-up radii 

of the cylindrical shells using ABAQUS agree well with the theoretical results. 
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Fig. 2 Initial configuration of the shell 

 

 

Fig. 3 Deformation of cylindrical shell 

 

 

In this paper, the bi-stable behaviors of un-stressed thin 

cylindrical shells are discussed. Using the two-parameter 

model, the strain energy expressions of isotropic, 

antisymmetric and symmetric cylindrical shells are derived. 

Based on the principle of minimum potential energy, the 

stability of the cylindrical shells is investigated. In addition, 

a finite element analysis of the process of rolling up a bi-

stable cylindrical shell is performed using ABAQUS codes. 

The results of this simulation provide considerable insights 

into the structural mechanics of bi-stable shells, as well as 

predicting the roll-up radii. 
 

 

2. Theoretical predictions 
 

2.1 Strain energy 
 

All of the work in this paper has assumed that the shells 

are stress-free in their initial configurations. And studying 

the bi-stable behaviors of thin cylindrical shells, the 

following assumptions are useful: (1) Kirchhoff straight 

normal assumption; (2) linear elastic deformation; (3) no 

stretching strain of the mid-surface of the shell. 

A curvilinear coordinate system will be used in the 

following analysis. The x and y-directions are defined to be 

parallel to the cylindrical and circumferential axes, 

respectively. And z-coordinate is perpendicular to the 

cylindrical surface. The x and y-directions will be principal 

directions of curvature throughout, and it will be also 

assumed that the curvature of the shell is uniform. 

Coordinate system and the definition for the curvatures are 

shown in Fig. 2. Note that, because of the uniform curvature 

assumption, it is unnecessary to choose a specific origin for 

the coordinate system. And it is assumed that the sign 

convention for moments follows from the sign convention 

for curvature, i.e., positive moments apply positive 

curvatures. Based on the principal, initial curvatures of the 

cylindrical shell are κ0x=0 and κ0y>0. 

For in-extensional deformation, the Gaussian curvature 

must remain zero. This implies that for every possible 

configuration of the shell there must be an underlying 

cylinder about which the shell is wrapped. Thus, the 

configuration of the shell can be defined by two variables, 

one defining the curvature of this underlying cylinder, and 

the other defining the orientation of the shell relative to the 

cylinder. The angle of the shell relative to the cylinder is 

defined as θ. The principal curvature of the cylinder is 

defined as C and its radius is 1/C (initial transverse radius, 

R), as shown in Fig. 3. The two parameters (C and θ) 

describe the main feature of the cylindrical shell at the 

deformed configuration. 

In the initial configuration of the cylindrical shell (θ=0), 

its curvatures are κ0x=0, κ0y>0. And in the deformed 

configuration, the curvatures can be expressed as κx=C(1-

cos2θ)/2, κy=C(1+cos2θ)/2, and κxy=Csin2θ. Thus, the 

changes in curvatures are given by 
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With the integration of the stresses and moments on the 

entire multilayer, the resultant moments and forces will be 

achieved as follows (Dogan and Arslan 2012, Ali and 

Mohammad 2016) 
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Generally, the shell has both bending and stretching 

strain energies. But for in-extensional deformation, 

stretching strain energy is not considered. Therefore, the 

bending strain energy per unit area can be written as 

1

2

Tu =  D  (3) 
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The isotropic cylindrical shell is firstly discussed. From 

Eq. (3), we can have 

3
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 (4) 

where E is the Young’s modulus, ν is the Poisson’s ratio, T 

is the total thickness of the isotropic cylindrical shell. 

For the antisymmetric laminated cylindrical shell, the 

bending strain energy per unit area can be expressed by 
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(5) 

Similarly, for the symmetric laminated cylindrical shell, 

xy
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the bending strain energy per unit area can be expressed by 

( ) ( ) ( )2 2 2
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(6) 

 

2.2 Equilibria and stability 
 

In the equilibrium position of the cylindrical shell, the 

partial derivatives of strain energy for the angle (θ) and the 

curvature (C) must be zero. So, we can have 
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To check whether these are stable equilibria, we need to 

check whether the strain energy corresponds to local 

minima. If they satisfy the conditions (
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), the equilibria will be 

stable. Otherwise, it is unstable equilibrium state. 

From Eq. (4), the isotropic cylindrical shell has two 

equilibrium points: θ1=0 and θ2=π/2. In the first equilibrium 

point (θ1=0) corresponding to the initial configuration of 

cylindrical shell, the strain energy is zero. So, the initial 

configuration of the cylindrical shell is the first stable state. 

In the second equilibrium point (θ2=π/2), we can have 
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. Clearly, the local 

minimum strain energy does not exist. It means that the 

second equilibrium point is not stable. Therefore, un-

stressed isotropic cylindrical shell is not a bi-stable 

structure. 

Similar to isotropic cylindrical shell, the antisymmetric 

laminated cylindrical shell also has two typical equilibrium 

points: θ1=0 and θ2=π/2. Actually, the antisymmetric 

laminated cylindrical shell might have four equilibrium 

points. But numerical investigations show only two 

equilibrium points can be stable equilibria. In the first 

equilibrium point (θ1=0), the strain energy is zero, which 

corresponds to the first stable configuration. In the second 

equilibrium point (θ2=π/2), we can have 
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If the strain energy satisfy the condition (
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), 

this equilibrium state is also stable state. From Eq. (8), we 

can have 
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Thus, it can be resulted that the antisymmetric laminated 

cylindrical shell exists the second stable configuration for 

S>0. 

For the symmetric laminated cylindrical shell, 

submitting Eq. (6) into Eq. (7), we cannot obtain the 

explicit solutions to the angle (θ) and the curvature (C). 

Solving these equations numerically shows that the 

symmetric laminated cylindrical shell may also have the 

second stable configuration, as shown in the following 

chapter. 
 

 

3. Results and discussion 
 

Based on the works above, the un-stressed isotropic 

cylindrical shell is not a bi-stable structure. Therefore, only 

the stabilities of the laminated cylindrical shells with 

antisymmetric or symmetric layups of fibers are discussed. 

In the following studying, the influences of the ply angle 

(β), the layer number (n), the single layer shell thickness (t), 

and the initial transverse radius (R) will be successively 

discussed. 

Because of the symmetry, the angle range (0º≤θ≤180º) 

is considered, as shown in Fig. 3. The material properties of 

the single layer shell are as follows: elastic modulus 

E1=27.6 GPa, elastic modulus E2=2.6 GPa, shear modulus 

G=0.964 GPa, Poisson’s ratio v12=0.305. 
 

3.1 Antisymmetric case 
 

The cylindrical shell is made of five layers ([+β/-

β/0/+β/-β]). The thickness of each layer is 0.21mm. The 

initial transverse radius of the cylindrical shell is 25mm. 

The influence of the ply angle (β) is shown in Fig. 4, where 

θ is the angle and u is the strain energy per unit area. We 

can see that the local minimum value of the strain energy is 

formed at θ=90º for the ply angles (β=35°, 45°, 55°), which 

coincides with the above analysis. Solving Eq. (5) 

numerically shows that the antisymmetric laminated 

cylindrical shells exist the second stable state for 

26.5°<β<63.1°. In addition, Fig. 4 shows that greater ply 

angle corresponds to greater strain energy in the second 

equilibrium point (θ=90º). 

Given the ply angle (β=45º), the influence of the layer 

number (n) is considered. The layup models are 

respectively [+45º/-45º/+45º/-45º], [+45º/-45º/0/+45º/-45º], 

[+45º/-45º/+45º/-45º/+45º/-45º], [+45º/-45º/+45º/0/-

45º/+45º/-45º], and [+45º/-45º/+45º/-45º/+45º/-45º/+45º/-

45º]. The thickness of single layer shell is 0.21mm. The 

initial transverse radius of cylindrical shell is 25mm. Fig. 5 

shows how the strain energy per unit area (u) varies with 

the angle (θ). It can be seen that the antisymmetric 

laminated cylindrical shell has local minimum value of the 

strain energy for all the numbers (n=4, 5, 6, 7, 8) in the 

equilibrium point (θ=90º). So, the layer number has little 

effect on the stability of the antisymmetric laminated  
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Fig. 4 Influence of the ply angle in the case of antisymmetry 
 

 

Fig. 5 Influence of the layer number in the case of 

antisymmetry 
 

 

Fig. 6 Influence of the ply angle in the case of symmetry 

 

 

cylindrical shell. 

The initial transverse radius of the cylindrical shell is 25 

mm. For the typical cylindrical shell with the ordering of 

the laminate ([+45°/-45°/0/-45°/+45°]), the influence of the 

single layer shell thickness (t=0.11 mm, 0.16 mm, 0.21 mm, 

0.26 mm, 0.31 mm) is discussed. The results show that the 

thickness (t) has little effect on the stability of the 

antisymmetric laminated cylindrical shell. 

In addition, the thickness of the single layer shell is 0.21 

mm. For the typical cylindrical shell with the ordering of 

the laminate ([+45°/-45°/0/-45°/+45°]), the influence of the 

initial transverse radius (R=15 mm, 20 mm, 25 mm, 30 mm, 

35 mm) is considered. The same results can be obtained: the 

initial transverse radius (R) also has little effect on the 

stability of the cylindrical shell. 

The above results show that: the ply angle has 

significant influence on the stability of the antisymmetric 

laminated cylindrical shell; the layer number, the single  

 

Fig. 7 Influence of the layer number in the case of 

symmetry 

 

 

Fig. 8 Influence of the single layer shell thickness in the 

case of symmetry 

 

 

layer shell thickness, and the initial transverse radius have 

effect on the strain energy of the cylindrical shell, but little 

effect on the stability. Furthermore, the antisymmetric 

laminated cylindrical shell has no twist deformation in the 

second stable configuration (θ=90º), which makes it 

possible to compactly roll up a very perfect cylindrical 

shell. 

 

3.2 Symmetric case 
 

In this chapter, only antisymmetric layup changes into 

symmetric layup and other parameters are just the same 

with the previous chapter. 

Firstly, the influence of the ply angle (β) is considered, 

as shown in Fig. 6. Solving Eq. (6) numerically shows that 

the symmetric laminated cylindrical shells exist local 

minimum value of the strain energy for 32.7°<β<46.9°. In 

the case of β=35º, there are two local minimum values of 

the strain energies corresponding to the angels (θ=79.1º and 

θ=83.2º). In the case of β=45º, there are three energy 

minima corresponding to the angels (θ=71.9º, θ=74.8º, and 

θ=76.9º). But all the strain energies change very little, 

resulting in the stable configuration being difficult to obtain 

in actual engineering. 

Secondly, the influence of the layer number (n) is 

considered. Fig. 7 shows that the symmetric laminated 

cylindrical shells exist local minimum value of the strain 

energy for the layer number (n=5, n=6, n=7, and n=8). In 

the case of n=5, there are three energy minima, which are 

the same as that of the above results (seen Fig. 6). In the 
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Fig. 9 Influence of the initial transverse radius in the case of 

symmetry 

 

 

case of n=6, there are three energy minima corresponding to 

the angels (θ=83.2º, θ=83.9º, and θ=85.4º). For another two 

cases (n=7 and n=8), the similar conclusions can be drown. 

Based on the angel (θ) as shown in Fig. 3, the shells have 

twist deformation in the other stable configurations (θ≠90º) 

except for the initial configuration (θ=0). 

Thirdly, the influence of the single layer shell thickness 

(t) is considered. Fig. 8 shows that the cylindrical shells 

have three energy minima. For all the cases (t=0.11 mm, 

t=0.16 mm, t=0.21 mm, t=0.26 mm, and t=0.31 mm), there 

are three local minimum values of the strain energies 

corresponding to the same angels (θ=71.9º, θ=74.8º, and 

θ=76.9º). It can be concluded that the single layer shell 

thickness (t) has no effect on the stability of the symmetric 

laminated cylindrical shell. 

Fourthly, the influence of the initial transverse radius 

(R) is considered. Fig. 9 shows that the cylindrical shells 

have the local minimum value of the strain energy. In the 

case of R=15 mm, there are two energy minima 

corresponding to the angels (θ=71.9º and θ=76.6º). In the 

case of R=20 mm, there are three energy minima 

corresponding to the angels (θ=71.9º, θ=75.3º, and 

θ=76.2º). Another three cases (R=25 mm, R=30 mm, and 

R=35 mm) are similar to the case of R=20 mm, and the 

strain energies have three minima. The results show that the 

initial transverse radius (R) has little effect on the stability 

of the symmetric laminated cylindrical shell. 

 
 
4. Numerical simulations 

 

4.1 Deformation process 
 

The cylindrical shell has a great geometric nonlinear 

deformation during its flattening and curling. ABAQUS 

software is very good at dealing with nonlinear problems so 

that it will be used in the numerical simulations. 

The symmetric laminated cylindrical shell has poor 

stability in its second stable state and it is difficult to 

achieve the numerical simulation results. Therefore, only 

the computational study of the antisymmetric laminated 

cylindrical shell is carried out using ABAQUS here. Taking 

the typical cylindrical shell with the ordering of the 

laminate ([+45°/-45°/0/-45°/+45°]) as example, the layup  

 

Fig. 10 Layup method 

 

 

Fig. 11 Numerical model 

 

 

method is shown in Fig. 10. The properties of the 

cylindrical shell are as follows: the initial transverse radius 

R=25 mm, the thickness of the single layer shell t=0.21 

mm. This layup model is similar to the existing method 

(Dogan et al. 2010). In order to compare with the 

theoretical results, the material constants are the same as the 

previous values: elastic modulus E1=27.6 GPa, elastic 

modulus E2=2.6 GPa, shear modulus G=0.964 GPa, 

Poisson’s ratio v12=0.305. 

The whole shell is analyzed, but only a single node is 

restrained in all six degrees of freedom. No stress 

concentrations arise at this node, because the loads applied 

to the shell are self-equilibrated. The particular node that is 

constrained is the node right at the center of the shell but, of 

course, any other node can be chosen. The shell is modeled 

using S4R shell element of ABAQUS (Patel et al. 2011), 

which is found to be the robust for this type of analysis. 

Meanwhile, the automatic stabilization is successfully used. 

This method carries out a pseudo-dynamic simulation as 

soon as a negative pivot is detected during the inversion of 

the stiffness matrix. Thus, the algorithm is able to cope with 

localized snaps that occur in the mesh. Fictitious nodal 

masses and a small amount of numerical damping are 

introduced by ABAQUS to stabilize the snap. The 

numerical model of the cylindrical shell is shown in Fig. 11. 

On the first issue, attempts are firstly made to drive the 

change of configuration by imposing edge rotations along 

the initially straight edges of the shell. This seems the 

obvious way of proceeding, based on the standard practice  
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(a) Initial configuration 

 

(b) Flattening configuration 

 

(c) Bending configuration 

 

(d) Final configuration 

Fig. 12 Bi-stable deformation process of the shell 

 

Table 1 Roll-up radii considering the influence of the ply 

angle 

β (°) 
r (mm) 

theoretical analysis FE simulation 

35 61.7 78.7 

40 46.3 55.5 

45 35.9 42.2 

50 28.8 34.7 

55 24.3 - 

 

 

of using nodal displacements or rotations as control 

parameters in the analysis of structures that exhibit 

snapping. The problem with imposing edge rotations in the 

present case is that they are about fixed axes, which is 

incompatible with the large rotations that occur during 

rolling-up of the shell. It is found that applying edge 

moments using the follower option works much better.  

Table 2 Roll-up radii considering the influence of the layer 

number 

n 
r (mm) 

theoretical analysis FE simulation 

4 35.0 42.7 

5 35.9 42.2 

6 35.0 43.2 

7 35.3 43.7 

8 35.0 44.0 

 

Table 3 Roll-up radii considering the influence of the single 

layer shell thickness 

t (mm) 
r (mm) 

theoretical analysis FE simulation 

0.11 35.9 40.9 

0.16 35.9 41.6 

0.21 35.9 42.2 

0.26 35.9 42.8 

0.31 35.9 43.4 

 

 

The maximum value of the edge moment that is assigned is 

greater than the moment required to flatten the shell. Fig. 12 

shows a complete bi-stable deformation process of the shell. 

Fig. 12(a) is the initial configuration of the cylindrical shell. 

In the configuration of Fig. 12(b), the shell is flattened. 

Then the shell bends reversely, as shown in Fig. 12(c). In 

the end, all loads are removed, and the final configuration is 

shown in Fig. 12(d). The radius of the final configuration is 

the roll-up radius (r) of the cylindrical shell. 
 

4.2 Comparison 
 

Based on the above results from theoretical analysis and 

FE simulation, the roll-up radii of the cylindrical shells will 

be compared. 

Firstly, the influence of the ply angle (β) is considered. 

The cylindrical shells are made of five layers ([+β/-β/0/+β/-

β]). The thickness of each layer is 0.21 mm. The initial 

transverse radius of cylindrical shell is 25 mm. The roll-up 

radii of the cylindrical shells are listed in Table 1. The 

results show that the values of the roll-up radii from FE 

simulation are larger than that from theoretical analysis. It is 

because that the theoretical assumptions limit the possible 

displacements of the cylindrical shell. And the two-

parameter analytical model may also affect the values of the 

roll-up radii. In addition, Table 1 shows that greater ply 

angle (β) corresponds to smaller roll-up radius (r). In the 

case of β=55°, the cylindrical shell has poor stability in its 

second stable state, and even the roll-up radius cannot be 

simulated using the finite element software. 

Secondly, the influence of the layer number (n) is 

considered. The roll-up radii of the cylindrical shells are 

listed in Table 2. Because of the same reasons as above, the 

values of the roll-up radii from FE simulation are larger 

than that from theoretical analysis. Overall, the layer 

number has little effect on the roll-up radii of the cylindrical 

shells. 
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Table 4 Roll-up radii considering the influence of the initial 

transverse radius 

R (mm) 
r (mm) 

theoretical analysis FE simulation 

20 28.7  34.2  

25 35.9  42.2  

30 43.0  50.1  

35 50.2  57.9  

40 57.4  65.4  

 

 

Thirdly, the influence of the single layer shell thickness 

(t) is considered. The roll-up radii of the cylindrical shells 

are listed in Table 3. The theoretical results show that the 

single layer shell thickness has no effect on the roll-up radii 

of the cylindrical shells. But the simulation results show 

that the roll-up radii slightly rise with the increasing single 

layer shell thickness.  

Fourthly, the influence of the initial transverse radius 

(R) is considered. The roll-up radii of the cylindrical shells 

are listed in Table 4. The results show that the roll-up radii 

of the cylindrical shells almost increases linearly with the 

increasing initial transverse radius. 

By and large, the predicted roll-up radii of the 

cylindrical shells using ABAQUS agree well with the 

theoretical results. 
 

 

5. Conclusions 
 

The strain energy expressions of the un-stressed thin 

cylindrical shells are deduced by using a two-parameter 

analytical model. Based on the principle of minimum 

potential energy, the following conclusions can be drawn: 

• The isotropic cylindrical shell has two equilibrium 

states. The first equilibrium position is corresponding to the 

initial configuration of the cylindrical shell, which is the 

first stable configuration. But in the second equilibrium 

position, the cylindrical shell has no local minimum strain 

energy. It means that the second equilibrium position is not 

stable. So, the isotropic cylindrical shell is not a bi-stable 

structure. 

• The antisymmetric laminated cylindrical shell has four 

equilibrium points. But the numerical investigations show 

that only two equilibrium points can be stable equilibria. 

The initial state, whose strain energy is zero, is the first 

stable configuration of cylindrical shell. In another 

equilibrium position of the shell, the analytical expressions 

of the stability are derived based on the extremal principle. 

The results show that: the ply angle has significant 

influence on the stability of the cylindrical shell; the layer 

number, the single layer shell thickness, and the initial 

transverse radius have effect on the strain energy of the 

cylindrical shell, but little effect on the stability. In addition, 

the antisymmetric laminated cylindrical shell has no twist 

deformation in its second stable state, which can achieve a 

compact coiled configuration. 

• The explicit solutions for the stability conditions of the 

symmetric laminated cylindrical shell cannot be derived 

because of the complex strain energy equations. Solving 

these equations numerically shows that the symmetric 

laminated cylindrical shell may also be bi-stable, but its 

stability is difficult to achieve. And the symmetric 

laminated cylindrical shell has twist deformation in its 

second stable configuration, which tends to coil into a helix 

shell rather than a compact coiled one. 

• The values of the roll-up radii from FE simulation are 

larger than that from theoretical analysis. By and large, the 

predicted roll-up radii of the cylindrical shells using 

ABAQUS agree well with the theoretical results. In 

addition, the roll-up radius of the cylindrical shell decreases 

with the increasing ply angle or with the decreasing initial 

transverse radius; the layer number and the single layer 

shell thickness have little effect on the roll-up radius. 
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