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1. Introduction  
 

Cables are the main load-bearing members of 

prestressed structure and other tensegrity structures, and the 

cable force has significantly influence on structural safety 

(Kim and Kang 2016). It is necessary to detecting the cable 

force during the process of health monitoring and safety 

assessment of structures. In order to obtain the actual state 

of the cable force, choosing a suitable testing method and 

devices to reduce the interference factor in measurement is 

the key problem to be solved. 

So far, some methods for identify cable force have been 

proposed, such as tension sensor method (Russel and 

Lardner 1998), fiber-grating sensor method (Shu et al. 

2013), frequency method (Wang et al. 2015, Rebelo et al. 

2010, Amabili et al. 2010, Xia et al. 2017, Sim et al. 2014), 

and magneto-elastic method (Tang et al. 2014). In tension 

sensor and the fiber-grating sensor methods, sensors must 

be installed before cable tension, and the measuring result is 

just the force increment after the sensors have been 

installed. Although the force of in-service cable can be 

measured with magneto-elastic method, sensors must be 

placed before tension as well. To measure the force of in-

service cable after construction, frequency method is widely 

used in many countries. However, for the short cable with  
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high frequency or the cable with complex boundary, the 

application of frequency method is restricted. 

Concerning abovementioned problems, the static force 

testing method is used to identify the cable force. According 

to mechanical characteristics of prestressed statically 

determinate structures, Zhang et al. (2006) proposed the 

cable force identification method for string structure but the 

actual service load is needed, which leads to limitations in 

practice. In addition, the accuracy of the calculated cable 

force depends on the estimation accuracy of the actual 

service load. Furthermore, Tian et al. (2013) developed 

cable force identification method for spoke structural roof 

based on displacement measurement. In this method, a 

finite element model is established in accordance with the 

measuring configuration of the structure, and then the same 

loads are applied to the actual structure and the finite 

element model. Finally, the cable force was estimated 

according to the difference between measured and 

calculated displacements values. However, the comparative 

model of this method is difficult to establish. The process of 

cable force identification is also complicated and the 

accuracy is hard to guarantee. 

Summarizing the existing cable force identification 

methods, Wang et al. (2013) proposed an applicable cable 

force identification method based on static testing method, 

cable stress stiffening effect and the principle of static 

equilibrium. Cable force identification formulas for certain 

acting locations of jacking force are presented. The 

calculated cable force in this method is only related to the 

displacement of jacking force location and the value of 

jacking force. Compared with the common cable force 

identification methods, the influences of the boundary 
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Fig. 1 Cable force identification principle 
 

 

condition and the length of the cable on calculation 

accuracy can be avoided in this method. However, the 

assumption that the cable is supposed to be ideally flexible 

is difficult to be satisfied in practice. 

In this paper, the principle of static equilibrium method 

is reviewed. A novel cable force identification method 

based on static equilibrium method is proposed with cable 

flexural rigidity considering. And its formula and solving 

method is also introduced. To verify its accuracy, the 

comparison with the finite element simulation result is 

conducted. Finally, to assess the influences of the 

parameters and the accuracy of the proposed method, an 

experiment for cable force identification is carried out. 
 

 

2. Basic principle of static equilibrium method 
 

The basic principle of static equilibrium method for 

cable force identification (Wang et al. 2013) is reviewed as 

follows. The segment of the testing cable is fixed with the 

cable clamps to avoid relative sliding between the cable and 

cable clamp. Then with the cable force increasing, the 

increment of the cable force will not be transferred to the 

lateral cable segments. 

As shown in Fig. 1, 𝐿 is the distance between the two 

ends (A and B), and 𝑇 is the cable force. Jacking force N is 

applied in the point O. L1 is the distance between the point 

O and the left end. Then a jacking displacement 𝛿 of the 

cable segment is induced. In equilibrium state, point O is 

forced to the point O1. 𝐿01 is the original length of the 

cable segment AO1. 𝐿02 is the original length of the cable 

segment BO1. 𝛥𝑇1  is the cable force increment of the left-

side cable segment. 𝛥𝑇2 is the cable force increment of the 

right-side cable segment. 𝜃1 is the angle of the left-side 

cable segment, and 𝜃2 is the angle of the right side cable 

segment. When the jacking force and the lateral jacking 

displacement are recorded, Eq. (1) is used to obtain the 

cable force T. 

T

=
cos 𝜃1 cos 𝜃2 (𝐿1 + 𝐿2)[𝑁 cos 𝜃1 + 𝐸𝐴 sin(𝜃1 + 𝜃2)]

sin(𝜃1 + 𝜃2) {𝐿1 cos 𝜃2 [𝑁 cos 𝜃1 + 𝐸𝐴 sin(𝜃1 + 𝜃2)]
 

[𝑁 cos 𝜃2 + 𝐸𝐴 sin(𝜃1 + 𝜃2)]

+𝐿2cos 𝜃1 [𝑁 cos 𝜃2 + 𝐸𝐴 sin(𝜃1 + 𝜃2)]}
− 𝐸𝐴 

(1) 

Specifically, when the jacking force is applied in the 

mid-span of the fixed cable segment, that is, 𝐿1 = 𝐿2 , and 

the jacking displacement 𝛿 is relatively small compared 

with the length of the fixed cable segment, Eq. (1) can be 

simplified as 

T =
𝑁𝐿

4𝛿
− 2 (

𝛿

𝐿
)

2

𝐸𝐴 (2) 

 

 

Fig. 2 Mechanical analysis model of the fixed cable 

segment 

 

 

where 𝐸  represents cable elastic modulus. 𝐴  is cross 

sectional area of the cable segment. 𝑁, 𝛿 can be measured 

by pressure sensor and displacement sensor. 

Eq. (2) of cable force identification is obtained by 

assuming that the cable is in an ideal flexible state. It can be 

used to test the cable with long fixed cable segment and 

small cross section. However, for convenient operation or 

limited field condition in practice, the length of the fixed 

cable segment is extremely small. Then the fixed cable 

segment under lateral jacking force behaves obvious 

characteristics of beam element. Thus, the effect of flexural 

rigidity cannot be ignored. 

 

 

3. Computational formula of the cable force 
identification considering flexural rigidity 
 

Eqs. (1) and (2) present the cable force identification 

method and the corresponding computational formula based 

on the static testing method. However, the effects of 

flexural rigidity cannot be ignored in practical cable force 

identification because the cable segment fixed by the clamp 

is usually short (Ceballos and Prato 2008, Park and Kim 

2014). 

The calculation results of Eq. (1) and Eq. (2) are 

corrected by calibration test to solve the above problem. To 

overcome the limitations, the effect of flexural rigidity in 

cable force identification is taken into consideration in this 

paper. 

To investigate the effects of flexural rigidity, a 

mechanical analysis model of the fixed cable segment is 

founded. As shown in Fig. 2, both ends of the cable are 

rigid embedded. 𝑇0  is the tension force of the cable 

segment. 𝑁 is the jacking force at mid-span, and 𝑇 is the 

horizontal force of support. The deformed cable is put in a 

rectangular plane coordinate system, and 𝑥 is the distance 

from the calculated section to the left end. 𝑧 is the vertical 

displacement of the cable, and 𝑙 is the original length of 

the cable segment. 

According to the principle of static equilibrium, it can 

be obtained as follows 

0 ≤ 𝑥 ≤
𝑙

2
, 𝑀𝑥 =

𝑁𝑥

2
− 𝑀0 − 𝑇𝑧 (3) 

Based on small deflection differential equation of elastic 

curve, it can be got as follows 
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Fig. 3 Deformation of the ideal flexible cable 

 

 

𝑑2𝑧

𝑑𝑥2
= −

𝑀𝑥

𝐸𝐼
 (4) 

𝑑2𝑧

𝑑𝑥2
−

𝑇𝑧

𝐸𝐼
= −

𝑁𝑥

2𝐸𝐼
+

𝑀𝑥

𝐸𝐼
 (5) 

Assume 𝑟2 =
𝑇

𝐸𝐼
(𝑟 > 0), then the general solution of 

Eq. (5) is 

𝑧 = 𝑐1𝑒−𝑟𝑥 + 𝑐2𝑒𝑟𝑥 (6) 

The particular solution of Eq. (5) is assumed to be 𝑧∗ =
𝑎1𝑥 + 𝑎2. Then 𝑧∗ is taken into Eq. (5) 

−
𝑇

𝐸𝐼
(𝑎1𝑥 + 𝑎2) = −

𝑁𝑥

2𝐸𝐼
+

𝑀0

𝐸𝐼
 (7) 

The solution of Eq. (7) is 

𝑎1 =
𝑁

2𝑇
 , 𝑎2 = −

𝑀0

𝑇
 (8) 

Then, 

𝑧 = 𝑐1𝑒−𝑟𝑥 + 𝑐2𝑒𝑟𝑥 +
𝑁𝑥

2𝑇
−

𝑀0

𝑇
 (9) 

According to the left boundary conditions, that is 𝑥 =
0, 𝑧 = 0. Then substitute into Eq. (9) 

0 = 𝑐1 + 𝑐2 −
𝑀0

𝑇
 (10) 

In addition, the derivation of Eq. (9) is 

𝑧′ = −𝑟𝑐1𝑒−𝑟𝑥 + 𝑟𝑐2𝑒𝑟𝑥 +
𝑁

2𝑇
 (11) 

According to left boundary conditions, the following 

can be inferred 

0 = −r𝑐1 + 𝑟𝑐2 +
𝑁

2𝑇
 (12) 

Combining Eq. (10) and Eq. (12), it can be obtained as 

follows 

𝑐1 =
𝑀0

2𝑇
+

𝑁

4𝑇𝑟
 (13) 

𝑐2 =
𝑀0

2𝑇
−

𝑁

4𝑇𝑟
 (14) 

Then 𝑧 and 𝑧′ can be obtained by substituting 𝑐1 and 

𝑐2 into Eq. (9) and Eq. (11) 

𝑧 = (
𝑀0

2𝑇
+

𝑁

4𝑇𝑟
) 𝑒−𝑟𝑥 + (

𝑀0

2𝑇
−

𝑁

4𝑇𝑟
) 𝑒𝑟𝑥 +

𝑁

2𝑇
𝑥

−
𝑀0

𝑇
 

(15) 

z′ = −r (
𝑀0

2𝑇
+

𝑁

4𝑇𝑟
) 𝑒−𝑟𝑥 + 𝑟 (

𝑀0

2𝑇
−

𝑁

4𝑇𝑟
) 𝑒𝑟𝑥 +

𝑁

2𝑇
 (16) 

According to the middle boundary conditions, 𝑥 =
𝑙

2
, 𝑧′ = 0, that is, 

0 = −r (
𝑀0

2𝑇
+

𝑁

4𝑇𝑟
) 𝑒−𝑟

𝑙
2 + 𝑟 (

𝑀0

2𝑇
−

𝑁

4𝑇𝑟
) 𝑒𝑟

𝑙
2 +

𝑁

2𝑇
 (17) 

and its solution is 

𝑀0 =
𝑁(𝑒𝑟

𝑙
2 + 𝑒−𝑟

𝑙
2 − 2)

2𝑟(𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2)

 (18) 

The following result can be obtained by substituting Eq. 

(18) into Eq. (15) 

𝑧 =
𝑁

2𝑇𝑟
(

𝑒𝑟
𝑙
2 − 1

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) 𝑒−𝑟𝑥

+
𝑁

2𝑇𝑟
(

𝑒−𝑟
𝑙
2 − 1

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) 𝑒𝑟𝑥 

+
𝑁

2𝑇
𝑥 −

𝑁

2𝑇𝑟
(

𝑒𝑟
𝑙
2 + 𝑒−𝑟

𝑙
2 − 2

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) 

(19) 

Let 𝑧1 =
𝑁

2𝑇
𝑥, then 

𝑧2 =
𝑁

2𝑇𝑟
(

𝑒𝑟
𝑙
2 − 1

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) 𝑒−𝑟𝑥

+
𝑁

2𝑇𝑟
(

𝑒−𝑟
𝑙
2 − 1

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) 𝑒𝑟𝑥 

−
𝑁

2𝑇𝑟
(

𝑒𝑟
𝑙
2 + 𝑒−𝑟

𝑙
2 − 2

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) 

(20) 

Thus, Eq. (19) becomes 

𝑧 = 𝑧1 + 𝑧2 (21) 

Fig. 3 shows the deformation of the ideal flexible cable 

with force at the mid-span, and the cables on both sides 

remain straight. At the force point O, the following can be 

obtained 

2𝑇 𝑠𝑖𝑛 𝜃 = 𝑁 ⟹ 𝑠𝑖𝑛 𝜃 =
𝑁

2𝑇
 (22) 

As 𝜃 is small enough, it can be obtained that sin 𝜃 ≈
tan 𝜃 ≈ 𝜃 . The deformation curve without considering 

flexural rigidity can be expressed as 

𝑧 = 𝑥 𝑡𝑎𝑛 𝜃 =
𝑁

2𝑇
𝑥 (23) 

𝑧  is the same as 𝑧1 . Thus, 𝑧1  reflects the 

characteristics of the flexible cable, while 𝑧2 represents the 

effect of flexural rigidity on the lateral jacking deformation 

of cable segment. 

N
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According to Eq. (19), when 𝑥 =
𝑙

2
, the followings can 

be obtained 

𝑧1 =
𝑁𝑙

4𝑇
 (24) 

𝑧2 =
𝑁

𝑇𝑟
(
2 − 𝑒−𝑟

𝑙
2 − 𝑒𝑟

𝑙
2

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) (25) 

The flexural stiffness correction coefficient is defined as 

𝛼 =
𝑧2

𝑧1

=
4

𝑙𝑟
(
2 − 𝑒−𝑟

𝑙
2 − 𝑒𝑟

𝑙
2

𝑒𝑟
𝑙
2 − 𝑒−𝑟

𝑙
2

) (26) 

Thus, the mid-span displacement of the cable segment 

can be expressed as 

𝑧 =
𝑁𝑙

4𝑇
(1 + 𝛼) (27) 

The following result can be obtained by substituting the 

boundary condition 𝑥 =
𝑙

2
, 𝑧 = 𝛿 into Eq. (19) 

𝑒𝑟
𝑙
2 =

1 −
𝛿𝑇𝑟
𝑁

+
𝑙𝑟
4

1 +
𝛿𝑇𝑟
𝑁

−
𝑙𝑟
4

 (28) 

Function 𝑇(𝑁, 𝛿) can be obtained by solving Eq. (28), 

and 𝑧(𝑁, 𝛿, 𝑥)can be obtained by substituting 𝑇(𝑁, 𝛿) into 

Eq. (19). As the lateral jacking displacement is extremely 

small, the axial tension is supposed to be equal to the 

horizontal force of supports 𝑇 . Through measuring the 

elongation of the fixed cable segment, the implicit formula 

of the cable force can be obtained as follows 

𝑇(𝑁, 𝛿) − 𝑇0

𝐸𝐴
×

𝑙

2
= ∫ √1 + (𝑧′(𝑁, 𝛿, 𝑥))2𝑑𝑥

𝑙
2

0

−
𝑙

2
 (29) 

 

 

4. Solution of cable force identification formula 
considering flexural rigidity 
 

Considering the difficulty in separating 𝑇(𝑁, 𝛿) from 

Eq. (28) and calculating the integral of Eq. (29), the 

numerical method is applied to solve the initial cable force 

(𝑇). 

Through numerical method, the followings can be 

obtained by substituting 𝑟 = √
𝑇

𝐸𝐼
 into Eq. (28) 

𝑒
𝑙
2

√ 𝑇
𝐸𝐼 (1 +

𝛿

𝑁
√

𝑇3

𝐸𝐼
−

𝑙

4
√

𝑇

𝐸𝐼
)

− (1 −
𝛿

𝑁
√

𝑇3

𝐸𝐼
+

𝑙

4
√

𝑇

𝐸𝐼
) = 0 

(30) 

Let 𝑓(𝑇) = 𝑒
𝑙

2
√

𝑇

𝐸𝐼 (1 +
𝛿

𝑁
√

𝑇3

𝐸𝐼
−

𝑙

4
√

𝑇

𝐸𝐼
) − (1 −

𝛿

𝑁
√

𝑇3

𝐸𝐼
+

𝑙

4
√

𝑇

𝐸𝐼
), then the first derivation of 𝑓(𝑇) is 

𝑓′(𝑇) = 𝑒
𝑙
2

√ 𝑇
𝐸𝐼 (

1

4√𝐸𝐼𝑇
+

𝛿𝑙𝑇

4𝑁𝐸𝐼
−

𝑙2

16𝐸𝐼
) + 

𝑒
𝑙
2

√ 𝑇
𝐸𝐼 (

3𝛿

2𝑁
√

𝑇

𝐸𝐼
−

1

8√𝐸𝐼𝑇
) +

3𝛿

2𝑁
√

𝑇

𝐸𝐼
−

1

8√𝐸𝐼𝑇
 

(31) 

Use Newton iterative method with 

𝑇𝑘+1 = 𝑇𝑘 −
𝑓(𝑇𝑘)

𝑓′(𝑇𝑘)
 (𝑘 = 0,1,2 ⋯ ) (32) 

As the cable force is usually less than 20%-40% of its 

ultimate bearing capacity in practice according to design 

specification (Chen et al. 2015, Kaveh and Rezaei 2015), 

the iterative initial values 𝑇0  is assumed to be 0.3𝑓𝑝𝑡𝑘𝐴. 

Iteration will stop when 
‖𝑇𝑘+1−𝑇‖𝑘

𝑇𝑘+1
≤ 휀, and 𝑇 = 𝑇𝑘+1. 

When 𝑇 is taken into Eq. (19), the displacement curve 

𝑧(𝑥) of the cable after being jacked can be obtained. When 

𝑇 is taken into Eq. (16) and Eq. (18), the slope 𝑧′(𝑥) of 

the curve can be obtained. 

In Eq. (29), 𝑁 and 𝛿 can be measured with devices. 

The cable is divided into 2n parts to calculate 

∫ √1 + (𝑧′(𝑥))2𝑑𝑥
𝑙

2
0

 and 𝑇0. 

∫ √1 + (𝑧′(𝑥))2𝑑𝑥

𝑙
2

0

≈ (√1 + (𝑧′(0))
2

+ √1 + (𝑧′(
𝑙

2
))2) 

×
𝑙

4𝑛
+ ∑ √1 + (𝑧′(

𝑙𝑘

2𝑛
))2

𝑛−1

𝑘=1

𝑙

2𝑛
 

(33) 

𝑇0 ≈ 𝑇 −
2𝐸𝐴

𝑙
(√1 + (𝑧′(0))

2 𝑙

4𝑛

+ √1 + (𝑧′(
𝑙

2
))2

𝑙

4𝑛
 

+ ∑ √1 + (𝑧′(
𝑙𝑘

2𝑛
))2

𝑛−1

𝑘=1

𝑙

2𝑛
−

𝑙

2
) 

(34) 

For convenient calculation, a dedicated calculation 

program called Pretension Identification of Cable based on 

Static Equilibrium Method (PTICBSM) is established on 

the basis of Fortran. 

 

 

5. Verification of calculation example 
 

A series of numerical experiments of general finite 

element analysis software ABAQUS and PTICBSM are 

used to assess the feasibility of the cable force identification 

method considering flexural rigidity. In numerical 

experiment, a 1000-mm long cable with 20-mm diameter is  
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Table 2 Parameters of cables 

A (mm2) E (N/mm2) EI (N×mm2) fptk (MPa) 
0.3fptkA 

(kN) 
L (mm) 

244.16 1.6×105 9.24×108 1670 122 1000 

 

Table 3 L/A of tested cable segment with different lengths 

L (mm) 1000 1500 2000 2500 3000 3500 4000 4500 5000 

L/A(mm-1) 4.10 6.14 8.19 10.24 12.29 14.33 16.38 18.43 20.48 

 
 

chosen as the test model. The prestressed force is 0.3𝑓𝑝𝑡𝑘𝐴. 

Considering the tension state and sectional geometrical 

feature of prestressed cable, beam element which can bear 

both bending moment and axial tension is reasonable to be 

applied to simulate the cable under the tension state 

(unrelaxed state) during the modeling in ABAQUS. 

According to the cable sectional area and principle of one-

way equivalent flexural rigidity, element B21 in ABAQUS 

is chosen and the initial tension is applied in the form of an 

equivalent temperature load. Table 1 presents comparisons 

between numerical experimental results of ABAQUS and 

calculation results of PTICBSM. Table 2 shows parameters 

of the cables. 

The analysis shows that the results from PTICBSM are 

in agreement with the numerical experimental results. The 

proposed method has high computational accuracy and can 

be used to identify the cable force in practice. 

To evaluate the effects of flexural rigidity, the cables 

with 20mm diameter are used and the cable segments with 

different lengths are also investigated. As shown in Table 3, 

the initial tension is 0.15fptkA, 0.30fptkA, and 0.45fptkA, 

respectively, that is, 61 kN, 122 kN and 183 kN, and the 

jacking rise span ratio is 1%. 

Fig. 4 shows the error between the results of finite 

element method and the results of the cable force 

identification method without considering flexural rigidity. 

It is indicated that if the L/A (ratio of cable length to 

sectional area) is larger, the error is smaller. When L/A 

remains unchanged, if tension T0 is smaller, the error 

becomes larger. In this calculation example, if T0≥0.30fptkA, 

L/A must exceed 16 (mm-1) to ensure that the error is less  
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Fig. 4 Error analysis of the cable force identification 

without considering flexural rigidity 

 

 

than 10%, and the length of the test cable should be not less 

than 3.9 m. Similarly, if the diameters of the cables are 36 

mm and 48 mm, when T0≥0.30fptkA, L/A must exceed 9.4 

(mm-1) and 7.1 (mm-1) to ensure that the error is less than 

10%, and the length of the test cable should be not less than 

7.2 m and 9.8 m. For convenient operation or limited field 

condition in practice, the actual length of the fixed cable 

segment is extremely small, which leads to a large error 

through the cable force identification method without 

considering flexural rigidity. Thus, the effects of flexural 

rigidity cannot be ignored in practical cable force 

identification. 
 

 

6. Experiment on cable force identification 
 

6.1 Experimental introduction 
 

In order to investigate the influence of flexural rigidity 

of the cable in actual cable testing process, the experiment 

of a short fixed cable segment is carried out. Three kinds of 

cables with diameters of φ20, φ36 and φ48 are used and 

mixed rare earth alloy coating cables are applied in the 

experiment. The length of the fixed cable segment is 1000 

mm. When the cable force increases, the cable segment can 

be fixed by the cable clamp to avoid relative slip between  

Table 1 Comparisons between numerical experimental results of ABAQUS and calculation results of PTICBSM 

Jacking 

displacement 

(mm) 

Jacking force 

(kN) 

Cable force of cable segment when 

jacked (kN) 
Initial cable force (kN) 

Identification error of 

cable force Numerical 

experiment 
PTICBSM 

Numerical 

experiment 
PTICBSM 

2 1.48 122.4 120.7 122.1 120.3 1.47% 

4 2.99 123.5 122.3 122.1 120.9 0.98% 

6 4.53 125.2 124.0 122.1 120.7 1.14% 

8 6.13 127.7 126.4 122.1 120.7 1.14% 

10 7.80 130.8 129.4 122.1 120.6 1.22% 

12 9.57 134.6 133.3 122.1 120.5 1.31% 

14 11.45 139.2 137.8 122.1 120.4 1.39% 

16 13.46 144.4 142.9 122.1 120.3 1.47% 

18 15.62 150.2 148.9 122.1 120.2 1.55% 

20 17.94 156.8 155.3 122.1 120.0 1.72% 
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Table 4 Design parameters of the cable clamp 

                       Cable diameter 

Cable clamp size (mm) 
φ20 φ36 φ48 

Width a 70 90 100 

Height b 20 30 38 

Gap d 6 6 6 

Length l 80 80 80 

Inner diameter of brass pad r 10 18 24 

Thickness of brass pad t 2 2 2 

 

 

Fig. 5 Configuration of the composite cable clamp 

 

 

Fig. 6 Composite cable clamp 

 

 

the cable and the cable clamp. The cable force increment of 

cable segment will not be transferred to the lateral cable 

segments. A special composite cable clamp (40 Cr tempered 

steel + brass) is used. Table 4 and Fig. 5 show the design 

parameters and configuration of the composite cable clamp. 

Fig. 6 is the actual picture of the composite cable clamp. 

As shown in Table 5, three groups of samples are 

included in the experiment, and each group has six levels of 

initial cable force. 

 

6.2 Experimental method and steps 
 

Fig. 7 shows the experimental device. Two sets of cable 

clamp are installed in different sides of the jacking point, 

and the distance between the two clamps is 1000 mm. The 

cable clamp is used to fix the cable in certain position. The 

cable clamp is fixed in the self-balancing loading device to 

avoid horizontal and vertical displacement of the cable 

clamp. Initial cable force T0, jacking force F, and jacking 

displacement δ are needed to be recorded. 

As shown in Fig. 8, jacking force is measured by a 

pressure sensor, and jacking displacement of force point is 

measured by a dial indicator, the followings are the specific 

experimental steps: 

Table 5 Load cases of cable force identification experiment 

Diameter 
T0(kN) 

LC1 LC2 LC3 LC4 LC5 LC6 

φ20 104.52 106.15 127.74 130.60 149.53 153.59 

φ36 311.28 315.58 379.85 387.50 438.00 449.68 

φ48 445.45 447.58 524.67 530.90 557.54 567.30 

 

 

(a) Plan view of experimental device 

 

(b) Vertical view of experimental device 

Fig. 7 Diagram of cable force identification experiment 

 

 

 

Fig. 8 Experiment of cable force identification 

 

 

(1) The cable is installed and the initial cable force T0 is 

applied. 

(2) The cable clamp is installed corresponding to the 

diameter of the cable and the cable clamp is fixed in the 

self-balancing loading device. 

(3) The pressure sensor and jack are installed, and the 

jack is lifted slowly until the jacking device touches the 

cable. 

(4) The dial indicator is installed and its initial reading is 

obtained. 

(5) The jack is lifted step by step and the readings of the 

dial indicator and pressure sensor are recorded. 

(6) The initial cable force is applied according to the  

Cable Anchor end

Cable clampCable clamp

Self-balancing loading device

Tension end

Self-balancing loading device

Tension end Anchor endCable
Dial indicator

Cable clampCable clamp

Jack

Pressure sensor
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Fig. 9 Relation curve between jacking displacement and 

jacking force of φ20 
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Fig. 10 Relation curve between jacking displacement and 

jacking force of φ36 
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Fig. 11 Relation curve between jacking displacement and 

jacking force of φ48 
 

 

load cases which are shown in Table 5. The above steps are 

repeated and the data are collected. 
 

6.3 Experimental result and analysis 
 

6.3.1 Relation between jacking displacement and 
jacking force 
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Fig. 12 Relation between initial cable force and jacking 

force when jacking displacement δ is equal to 10 mm 
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Fig. 13 Relation between initial cable force and jacking 

force when jacking displacement δ is equal to 15 mm 

 

 

Figs. 9-11 show the relation curve between jacking 

displacement and jacking force on the force point of cables 

φ20, φ36, and φ48 when the initial cable force differs. 

The results can be obtained as follows: 

1) When the initial tension (𝑇0) is a constant, the jacking 

displacement and jacking force obey the linear relationship, 

that is, increased jacking displacement corresponds to 

increased jacking force. 

2) When the cable cross section (A) is a constant, the 

cable with larger sectional area corresponds to larger 

jacking force, which owes to the increased effect of flexural 

rigidity. 

3) If the cable is assumed to be ideal flexible, for 

different cable cross section (A), when the initial cable force 

(𝑇0) remains constant and the jacking displacement (δ) is 

the same, the relationship between the cable cross section 

and jacking force can be obtained as follows 

∆𝑁

∆𝐴
= 8𝐸(

𝛿

𝐿
)3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (36) 

It means that the jacking force increases linearly with 

the increase of the cable cross section. When the same 

jacking displacement is needed, the jacking force of the 
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cable with larger cross section increases faster. It reflects 

that the effects of flexural rigidity increases with the 

increase of the cable cross section. 

 

6.3.2 Relation between initial cable force and jacking 
force 

Figs. 12 and 13 present comparison among the 

experimental data, the calculation results from PTICBSM 

and the cable force identification formula (without 

considering flexural rigidity) proposed by Wang et al. 

(2013) with cable φ20. 

The results show the following: 

(1) When the jacking displacement δ and jacking force F 

is constant, the tension from formula made by Wang et al. 

(2013) is larger than the calculation value of PTICBSM. 

The reason is that the fixed cable segment is extremely 

short, and the cable flexural rigidity has great influence on 

the calculation of cable force T0. 

(2) Compared with the experimental results, the error of 

the results made by Wang et al. (2013) is larger and the 

average errors are 51.87% and 48.73%, respectively. The 

results of PTICBSM are in good agreement with the 

experimental results, and the average errors are only 6.56% 

and 6.16%, respectively. The results prove that the 

calculation method considering flexural rigidity is much 

more consistent with the actual state of the cable, and it can 

be applied in practice. 

(3) With the proposed method in this paper, it is 

necessary to guarantee that no relative sliding occurs 

between the cable and the cable clamp. When the jacking 

rise span ratio is small (1% to 1.5%), the clamps are able to 

provide sufficient friction and the experimental value is 

close to the calculation value of PTICBSM. However, when 

the jacking rise span ratio increases, the error would 

increase due to insufficient friction. Therefore, in the 

process of cable force identification, the friction between 

the cable and the cable clamp must be sufficient by 

controlling the quality of cable clamp, and jacking rise span 

ratio should be ranged from 1% to 1.5%. 

 
 

7. Conclusions 
 

• The computational formula for the cable force 

identification considering flexural rigidity is investigated, 

and the calculation program PTICBSM based on the 

computational formula is used to identify the cable force. 

This study shows that the results of PTICBSM are 

extremely in good agreement with the finite element results. 

The proposed method has high computational accuracy and 

high resolution efficiency. It can be used to identify cable 

force in practice. 

• The relationship and variation law among jacking 

force, jacking displacement, initial cable force and sectional 

area (flexural rigidity) are studied with the cable force 

identification experiments of different cross sections. The 

results show that when the initial tension remains constant, 

the jacking displacement and jacking force basically obey 

linear relation. When the initial tension is constant, the 

cable with a larger sectional area requires larger jacking 

force, which owes to the increased effects of flexural 

rigidity. When the cable section is constant, the cable with 

larger initial tension requires stronger top jacking force, 

which owes to the influence of stress stiffening effect. 

• Compared with common cable force identification 

formula under ideal flexible condition, the cable force 

identification formula considering the effects of flexural 

rigidity has higher accuracy. Errors are large when the 

effects of flexural rigidity are not considered, while results 

from the cable force identification formula considering 

flexural rigidity are in good agreement with experimental 

results. It reflects that the method proposed in this paper is 

consistent with the actual condition of the cable. The cable 

force identification method considering flexural rigidity is 

proven to be accurate and feasible. In addition, the 

experimental results show that during actual cable force 

testing, the friction between the cable and the cable clamp 

must be sufficient by controlling the quality of the cable 

clamp, and the jacking rise span ratio should be ranged 

from 1% to 1.5%. 
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