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1. Introduction  
 

The observations from severe earthquake events that 

have occurred recently showed that the earthquake risk in 

urban areas is increasing rather than decreasing. In this 

regard, a rational and effective seismic risk mitigation 

program is necessary to reverse this situation. The 

development of more reliable seismic-resistant design 

provisions is one of the most effective steps towards this 

end. Most of the current seismic design provisions for new 

civil engineering facilities are based on force based 

procedure. These provisions allow structures to undergo 

inelastic deformation during moderate and severe 

earthquake ground motions. While non-linear time history 

analysis methods can simulate the actual seismic behavior 

of structures effectively, due to their high computational 

costs and complexity, current seismic design codes usually 

propose alternative simplified analysis methods. Based on 

this concept, the earthquake input energy dissipation 

through the hysteretic energy mechanism is achieved by the  
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use of response modification factor (R). response 

modification factor is generally utilized to decrease the 

design base shear from those that are required by the 

structure to remain elastic in the event of severe 

earthquakes, and is generally defined by the following 

equation 

R R R =  (1) 

where Rμ is the conventional ductility-dependent response 

modification factor (denoted as response modification 

factor in this study), reflecting nonlinear hysteresis behavior 

in a structures, and Rw is used to incorporate other reduction 

factors such as reduction due to element redundancy, 

overstrength and strain hardening. 

Several research studies have investigated the response 

modification factor (Rμ), especially for fixed-base 

structures. The pioneer and well known studies on response 

modification factor were conducted by Veletsos and 

Newmark (1960) and Newmark and Hall (1969). They 

proposed simplified formulas for strength reduction as 

functions of structural period and target ductility ratio. The 

effect of soil conditions on response modification factor 

were studied by Elghadamsi and Mohraz (1987). They 

concluded that response modification factors for systems 

located on alluvium soils are not significantly different from 

those for systems located on rock. Based on the results 

obtained from 124 strong ground motions, Miranda (1993) 

suggested that the magnitude and epicentral distance have a 
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negligible influence on the response modification factors, 

whereas the effect of soil condition (especially soft soil) can 

be significant. Subsequently, many studies have been 

performed on response modification factor of fixed-base 

SDOF as well as MDOF systems (Fischinger et al. 1994, 

Miranda and Bertero 1994, Ordaz and Pérez-Rocha 1998, 

Santa-Ana and Miranda 2000, Karmakar and Gupta 2007), 

which led to different proposed equations.  

Previous studies showed that the response modification 

factors of fixed-base stiffness-degrading structures are 

generally smaller than those of the corresponding non-

degrading systems for period of vibrations less than about 

0.4 sec (Nassar and Krawinkler 1991, Rahnama and 

Krawinkler 1993).  In the current design process, in most 

cases, the SSI effects are neglected. However, a review of 

the observation from past earthquakes, such as Mexico City 

earthquake, showed that the soil beneath the structure can 

considerably affect the seismic demands especially for 

buildings on soft soil profiles. Generally, soil-structure 

systems have a longer period of vibration compared to the 

corresponding fixed-base structures. Moreover, the soil-

structure interaction (SSI) effect can increase the effective 

damping ratio, because of radiation and material damping 

of soil. Hence, to include the SSI effects in the seismic 

design process, modern seismic provisions such as FEMA-

440 (2005)  and ASCE-7-16 (2010) suggest an equivalent 

fixed-base system with modified fundamental period and 

damping ratio. 

Ghannad and Jahankhah (2007) evaluated the effects of 

soil-structure interaction on response modification factor 

using 54 strong motions. They concluded that SSI reduces 

inelastic Rμ values when compared to their fixed-base 

counterparts, and hence using the fixed-base response 

modification factors for soil-structure systems can lead to 

the underestimation of seismic design forces. The results of 

their study show that by using fixed-base response 

modification factor to estimate the inelastic strength 

demand of a soil-structure system, the systems may exhibit 

ductility ratios considerably higher than the target value. In 

another relevant study, Eser et al. (2012) investigated the 

effects of SSI on strength reduction ratio through the use of 

equal fixed-base SDOF systems. They proposed a new 

equation for Rμ of soil-structure systems as a function of 

structural period, target ductility and period lengthening 

ratio. Several other research efforts have focused on the 

evaluation of SSI effects on the response modification 

factor of SDOF and MDOF systems (Avilés J.a Pérez-

Rocha 2005, Lu et al. 2016). However, the results of these 

studies were mainly restricted to the structural systems 

without considering strength and stiffness degradations.  

As discussed above, several studies in the past have 

demonstrated the significant effect of SSI on the seismic 

demands of structures. However, the effect of SSI on the 

response modification factor of systems with stiffness 

degrading hysteretic model has not been well investigated. 

In this study a comprehensive parametric study is 

performed to evaluate the effects of SSI on Rμ values of 

stiffness degraded systems, as a more realistic model for 

reinforced concrete structures subjected to strong ground 

motions. By considering a wide range of key design 

parameters (including three different hysteric models), 

simplified equations are proposed to estimate the response 

modification factor of stiffness degraded and non-degraded 

soil-structure systems. 

 

 

2. Structural and geotechnical description of the 
soil-shallow-foundation models 
 

The response of a structure to earthquake strong ground 

motion is affected by the interaction between three linked 

subsystems: soil, foundation and structure (Gioncu and 

Mazzolani 2010). In this study, due to its simplicity and 

sufficient accuracy, the conventional lumped-mass Cone 

model which was developed by Wolf (1994) is based on the 

one dimensional wave propagation theory is utilized to 

simulate the complex soil-structure interaction 

phenomenon. The soil is considered as a homogenous half-

space medium modeled by an equivalent linear discrete 

model based on the concept of truncated cone model. The 

supporting soil is substituted with a three degree of 

freedoms (3-DOFs) spring and dashpot system. Two DOFs 

are defined to model the translational (sway) and rotational 

(rocking) movements of the foundation, respectively, 

ignoring the insignificant influence of the vertical and 

torsional movements of the foundation. The third DOF is 

added to the soil model to incorporate the frequency-

dependent rotational dashpot and spring coefficients (Wolf 

1994). This extra internal rotational DOF, 
1 , is augmented 

to a polar mass moment of inertia, M  , situated in series 

with the rotational dashpot. The main parameters of the 

soil-foundation model are as follows (Wolf 1994) 
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In Eqs. (2)-(4), kh= sway stiffness, ch= sway viscous 

damping, kφ = rocking stiffness and cφ = rocking damping. 

In addition, ρ= specific mass, υ= Poisson’s ratio, Vp and Vs 

= dilatational and shear wave velocity of soil, respectively, 

and r = the equivalent circular foundation radius. Moreover, 

an additional mass moment of inertia ΔMφ equal to 0.3π(υ-

1/3)ρr5 is added to If for υ greater than 0.3 in order to 

modify the effect of soil incompressibility (Wolf 1994). The 

parameters m and h are used to describe the effective mass 

and effective height of the structure, respectively. The 

discrete soil-shallow-foundation system utilized in this 

study is depicted in Fig. 1. 

The superstructure is modeled as a nonlinear SDOF 

system with the same damping ratio and period of vibration 

as those of the fixed-base structure. In the present study, as 

shown in Fig. 2, three types of hysteresis behaviors are  
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Fig. 1 The discrete shallow-foundation soil-structure system 

used in this study 

 

 

Fig. 2 Hysteretic models used in this study: (a) non-

degrading bilinear model; (b) modified Clough Stiffness 

degrading model; (c) peak-oriented stiffness degrading 

model 

 

 

considered, including (a) non-degraded bilinear elsto-plastic 

with strain hardening (BL), (b) modified Clough hysteretic 

model (CL) in which the unloading stiffness is kept equal to 

the initial elastic, and (c) peak-oriented stiffness degrading 

model (SD) with degradation at both unloading and 

reloading branches. Strain hardening ratio (α) in all 

hysteresis behaviors is equal to 0.02. 

In this study, to investigate the effect of stiffness 

degradation on response modification factor of SSI systems 

two types of aforementioned hysteretic behaviors with 

stiffness degradation including CL and SD models are 

considered. In CL model, the stiffness degradation is only 

dependent on the displacement amplitude. In fact, the model 

has a bilinear envelop; however after the initial yielding, 

further loading branches are directed towards the furthest 

unloading point in the direction of loading (Miranda and 

Ruiz-Garcia 2002). The unloading stiffness in this model is 

kept equal to the initial elastic stiffness. On the other hand, 

in SD model the degradation occurs at both unloading and 

reloading branches in which unloading stiffness reduces 

based on the following equation 

0
y

un
m

u
K K

u


 

=  
 

 (5) 

where K0 is initial stiffness, uy and um are yield 

displacement and maximum inelastic displacement of the 

structure, respectively. In addition, Kun is unloading 

stiffness and βμ is the parameter showing the intensity of 

stiffness degradation which is taken as 0.5 indicating a  

 

Fig. 3 Deformed shape of the SSI system subjected to 

earthquake ground motion 

 

 

moderate degradation (Erberik 2011). 

The results of Hassani et al. (2018) and Bararnia et al. 

(2018) studies indicate that there are two key design 

paramtertes that can influence the inelastic displacement 

ratios of SSI systems. The first parameter is the non-

dimensional frequency (a0), which is defined as structure-

to-soil stiffness ratio 

0

fix

s

h
a

V


=  (6) 

where ωfix = the natural frequency of vibration for fixed-

base systems, Vs = shear wave velocity and h= structure 

effective height. Note that for ordinary building structures 

the practical range of a0 can vary from zero (rigid soil with 

negligible SSI effect) to three (soft soil with predominant 

SSI effect). The other SSI influential parameter is the 

slenderness (aspect) ratio (h/r), which is defined as the 

structure height (h) normalized to the radius of foundation 

(r). In this study, other less important parameters such as 

foundation mass ratio, soil Poisson’s ratio and soil material 

damping ratio are set to the typical values suggested by 

(Bararnia et al. 2018, Hassani et al. 2018). 
 

 

3. Equations of motion for dynamic soil-structure 
interaction of SDOF oscillator system 
 

The dynamic equations of motion of the 4-DOF SSI 

system illustrated in Fig. 1 can be written as (Nakhaei 2004) 
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As shown in Fig. 3, 
hu  and u represent the 

components of horizontal displacement resulted from the 

sway and the rocking motions at the top story. 
ru  is the 

superstructure deformation, and 
hl ru u u= + . 

Using Eqs. (7)-(10), the general dynamic equation of the 

4-DOF soil-struture system can be expressed as 

[ ]{ } [ ]{ } [ ]{ } { } ( )gM U C U K U L u t+ + = −  (11) 

Where gu  represents the earthquake input acceleration 

time histories. U stands for the displacement vector equal to 

[u1, uf, φ, hφ1]T. The notation T represents the transpose 

form of the matrix. The influence coefficient vector, L, is 

defined as L = [m, mf, m, 0]T . [M], [C], and [K] respectively 

denote mass, damping, and stiffness matrices of the SSI 

system, and are defined as follows 
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(12) 

To take into account for the soil material damping, 
0 , 

an extra connected dashpot is augmented to each spring and 

similarly an extra connected mass is added to each dashpot 

in the element of  soil-foundation system based on the 

Voigt viscoelasticity model (Wolf 1994). Therefore, the 

mass and damping matrices of the SSI system are changed 

to the following equations normalized to the effective 

structural mass 
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(14) 

Note that the influence coefficient vector, L, is also 

modified to L = [1, mf /m, 1, 0]T.  As mentioned above, the 

non-dimensional parameters of 
0a  and h r  are 

commonly treated as the governing parameters in assessing 

the SSI effects. All components of the mass, stiffness and 

damping matrices indicated in Eqs. (13) and (14) can be 

expressed based on these non-dimensional parameters as 

follows 
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(16) 

Moreover, the additional mass moment of inertia M  

(for considering soil incompressibility) and the mass 

moment of inertia 1m  (for the additional internal 

rotational degree of freedom) can be written as 

1 3

22
2

2

1 11
0.3 ( )( ) ( )   

3 33 0.25(1 )( )
1 1

0  0  
3 3

f f

m hM
forforI I m h rr hmh

m rmh
for for

   


 

− −

−

 
−  +  

+ = + + 
  
  

 

(17) 

1

2
2 1 3

2 2

9
(1 )( ) ( ) ( )

128 s

m m h

rmh r h

  


 

− −= −  (18) 

The adopted two-dimensional soil-shallow-foundation-

structure models introduced in Eqs. (11)-(18) are developed 

in MATLAB (2014) to perform nonlinear dynamic analysis. 

The analyses are performed in the time domain, using 

Newmark’s beta method with default parameters γ = 1/2 

and β = 1/4 as the time stepping method with an event-to-

event solution approach. This method has been also 

implemented in general-purpose finite elements computer 

programs such as DRAIN-2DX (Prakash and Powell 1993) 

and PERFORM-3D (Computers and Structures 2006). The 

dynamic loads are incrementally exerted to the model of the 

soil-structure systems using a step-by-step solution strategy, 

while variable load increments are used to control 

equilibrium errors at each step of the analysis. An event is 

defined as any state change causing an alteration in the 

structural stiffness. Using the energy balance and 

equilibrium force calculations capability implemented in the 

developed computer program, equilibrium iterations are 

repeated until convergence. This is achieved through 

reducing the energy errors (difference between external 

work (or input energy) and sum of static elastic-plastic 

work, kinetic energy, and viscous damping work) and the 

difference between internal force and externally exerted 

force) are reduced below a target value. Note that in the 

step-by-step dynamic analysis, energy balance and/or 

equilibrium may not be fully satisfied at the end of each 

time step. In such cases, energy balance and equilibrium 

conditions can be satisfied by modifying the velocities and 

acceleration, respectively. These corrections will usually 

improve the accuracy (Prakash and Powell 1993). 

 

 

4. Selected earthquake ground motions 
 

To perform nonlinear dynamic analysis, an ensemble of 

20 earthquake ground motions is selected from the database 

provided by PEER (http://ngawest2.berkeley.edu/). The 

selected ground motions have the following characteristics: 

(i) They correspond to sites of soil profile similar to class D 

based on FEMA-P-1050 (2015); (ii) They were recorded 

during 9 different strong earthquake events with moment  
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magnitude larger than 6.5; (iii) Their closest distance to the 

fault rupture is larger than 10 Kilometers; (iv) At least one 

of the two horizontal components has a PGA and a PGV 

larger than 0.2 g and 15 cm/sec, respectively; and (iv) They 

are not classified as ground motions having pulse like 

characteristics. In this study, for each event, the horizontal 

component with larger PGV was used for the analyses 

(named strong component). The main characteristics of the 

considered ground motions are provided in Table 1, while 

their elastic response spectra with their mean values are 

presented in Fig. 4. 

 

 

 

Fig. 4 Elastic response spectra of selected earthquake 

ground motions 

 

 

5. Response variable and methodology 
 

Proper structural design is generally achieved when the 

local ductility demand values of all structural elements are 

lower than their capacities. Thus, it is necessary to estimate 

the required lateral strength to ensure that the global 

displacement ductility demand is limited to a certain target 

value. To calculate the displacement ductility demands 

under a given strong ground motion, the lateral yield 

strength, fy, is defined as 

e

y

f
f

R
=  (19) 

where fe is the lateral strength required to ensure the 

structure remains in the elastic range and R is the response 

modification factor. Displacement-based ductility factor for 

a given response modification factor R, is the defined as the 

maximum displacement (um) normalized to its yield 

displacement (uy) 

m

y

u

u
 =  (20) 

For a given strong ground motion and structure, the 

problem is to calculate the minimum lateral strength (fyμ) in 

order to assure that the ductility ratio in the structure 

reaches the predefined target value. In the present study, 

two iteration algorithms proposed by Song and Gavin 

(2011), and Ganjavi and Hao (2012) are utilized to achieve 

the response modification factor (Rμ) corresponding to the  
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Table 1 Earthquake ground motions used in this study based on NEHRP site class D  

EQ 
Index 

Record ID Event Mw Station Name NEHRP site class Distance (Km) 
Strong Component 

A(g) V(cm/sec) D(cm) 

1 RSN68 San Fernando 6.61 LA - Hollywood Stor FF D 22.8 0.2 21.7 15.9 

2 RSN162 Imperial Valley-06 6.53 Calexico Fire Station D 10.5 0.3 22.5 9.9 

3 RSN169 Imperial Valley-06 6.53 Delta D 22 0.3 33 20.2 

4 RSN174 Imperial Valley-06 6.53 El Centro Array #11 D 12.6 0.4 44.6 21.3 

5 RSN721 Superstition Hills-02 6.54 El Centro Imp. Co. Cent D 18.2 0.4 48.1 19.3 

6 RSN728 Superstition Hills-02 6.54 Westmorland Fire Sta D 13 0.2 32.3 22.3 

7 RSN752 Loma Prieta 6.93 Capitola D 15.2 0.5 38 7.1 

8 RSN776 Loma Prieta 6.93 Hollister - South & Pine D 27.9 0.4 63 32.3 

9 RSN777 Loma Prieta 6.93 Hollister City Hall D 27.6 0.2 45.5 28.5 

10 RSN778 Loma Prieta 6.93 Hollister Differential Array D 24.8 0.3 44.2 19.7 

11 RSN783 Loma Prieta 6.93 Oakland -Outer Harborr D 74.26 0.3 41.9 9.6 

12 RSN953 Northridge-01 6.69 Beverly Hills - 14145 Mulhol D 17.2 0.5 66.7 12.2 

13 RSN960 Northridge-01 6.69 Canyon Country - W Lost Cany D 12.4 0.4 44.4 11.3 

14 RSN1003 Northridge-01 6.69 LA - Saturn St D 27 0.4 41.6 5 

15 RSN1077 Northridge-01 6.69 Santa Monica City Hall D 26.5 0.9 41.6 15.2 

16 RSN1107 Kobe 6.9 Kakogawa D 22.5 0.3 26.9 8.8 

17 RSN1116 Kobe 6.9 Shin-Osaka D 19.2 0.2 31.3 8.4 

18 RSN1158 Kocaeli 7.51 Duzce D 15.4 0.3 58.9 44.1 

19 RSN1203 Chi-Chi 7.62 CHY036 D 16 0.2 44.8 34 

20 RSN3749 Cape Mendocino 7.01 Fortuna Fire Station D 20.4 0.3 38.1 16.7 
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Fig. 5 The flowchart showing the general iteration process 

to obtain Rμ spectrum based on two algorithms 

 

 

predefined target ductility. Fig. 5 shows the general iteration 

process adopted to calculate the minimum lateral strength 

(fyμ) in the soil-structure systems based on the two 

aforementioned iteration algorithms. 

The relative elastic and inelastic displacements of the 

structure are used to calculate response modification factor 

of the soil-structure system. It means that displacements 

resulting from rigid body motions of the foundation have 

been removed. In fact, to determine lateral displacements in 

a soil-structure system, inelastic displacement of fixed-base 

structure resulting from nonlinear behavior is added to the 

rigid body displacements resulting from the rocking motion 

of the foundation. Albeit this approach leads to increasing 

the absolute structural displacements of SSI system, the role 

of SSI in nonlinear deflections of superstructure is not 

considered. Therefore, in computing the inelastic 

displacement factors of SSI systems, the rigid body 

displacements of the stories due to sway and rocking 

motions of the foundation are removed from the total elastic 

and inelastic deformations of the structure. 

An extensive parametric study was performed to 

evaluate the effects of SSI key design parameters on the 

response modification factor (Rμ) of structures with 

different stiffness degrading and non-degrading hysteric 

behaviors. The results were obtained under 20 ground 

motions, 35 different periods of vibration ranging from 0.1 

to 3 sec, 3 hysteresis models, 3 aspect ratios (h/r=1,3,5), 4 

non-dimensional frequencies (a0 = 0, 1,2,3) and 5 levels of 

displacement ductility (μ=2,3,4,5,6). The results of the 

parametric study are explained in details in the upcoming 

section.  

 

 

6. Ductility-dependent response modification factor 
of soil-structure systems with different hysteretic 
behaviors   
 

The soil-structure systems introduced in the previous 

section (6300 models in total) were subjected to the 20 

earthquake ground motions listed in Table 1. The average  

 

Fig. 6 Effect of ductility demand on response modification 

factor spectra for SSI systems with different hysteretic 

behaviors and a0; (h/r= 1; average of 20 earthquakes) 

 

 

Fig. 7 Effect of ductility demand on mean response 

modification factor spectra for SSI systems with different 

hysteretic behaviors and a0; (h/r= 3) 

 

 

results for different non-dimensional frequencies, ductility 

demands and hysteretic behaviors are depicted in Figs. 6-8 

for squat (h/r= 1), average (h/r= 3) and slender (h/r= 5) 

structures, respectively. In all figures provided in this paper, 

the horizontal axis is the natural period of vibration for 

fixed-base system, Tfix, and the vertical axis is ductility-

dependent response modification factor. As seen, a similar 

trend can be observed for the variations of average response 

modification factors with respect to the period of vibration 

for all the hysteretic models considered in this study. For 

the case of short-period systems with low SSI effect (a0= 1), 

the Rμ values are less than the target ductility demands. This 

behavior is more pronounced as the ductility demand 

increases. Nevertheless, by increasing the vibration period, 

response modification factors increase and tend towards the 

target ductility demands for long-period soil-structure 

systems. In addition, it is shown that increasing the soil 

flexibility (i.e., increasing a0 value) generally results in 

decreasing the response modification factors. These results 

are consistent with those reported by Ghannad and 

Jahankhah (2007) and  for  respectively SDOF and  

MDOF soil-structure systems with non-degrading hysteretic  
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Fig. 8 Effect of ductility demand on mean response 

modification factor spectra for SSI systems with different 

hysteretic behaviors and a0; (h/r= 5) 

 

 

models. However, the effects of stiffness degradation of the 

superstructures on the response modification factors of SSI 

systems were ignored in the previous studies. This 

phenomenon is especially important for reinforced concrete 

structures under strong ground motions and will be 

investigated and discussed in the next subsections. 

 

6.1 Effect of soil flexibility and aspect ratio 
 

As stated in the previous section, the Rμ of a soil-

structure system is different from that of its fixed-based 

system counterpart. For a more detailed study of the SSI 

effects, a new parameter γ is introduced as the ratio of Rμ for 

the SSI system to the corresponding fixed-base system, 

when subjected to the same ground acceleration as follows 

SSI

fixed

R

R






−

−

=  (19) 

The parameter γ, is determined for all the SSI systems 

having different periods of vibration and ductility demands 

(μ) under the selected ground motions listed in Table 1. This 

parameter can be considered as the numeric representation 

to assess the influence of soil flexibility on the response 

modification factors of structures, which is usually ignored 

in the current design approaches.  

The value of γ less than 1.0 indicates that using response 

modification factors determined based on fixed-based 

assumption will result in an underestimation of the strength 

demands and hence unconservative (unsafe) design 

solutions. higher expected ductility demands. Conversely, 

the γ values larger than 1.0 imply that SSI has beneficial 

impact on the seismic performance of the system and, 

hence, using response modification factors calculated based 

on fixed-base assumption for seismic design of a soil-

structure system leads to overestimated strength demands 

and therefore conservative (safe) design solutions. The 

results provided for various hysteretic models in Fig. 9 can 

be used to assess the effects of the following key design 

parameters: (a) Level of inelastic behavior μ for constant 

values of a0 = 2 and h/r = 3, (b) Non-dimensional frequency  

 

Fig. 9 Effect of SSI interacting parameters on response 

modification factor spectra for soil-structure systems with 

different hysteretic behaviors (average of 20 earthquakes) 

 

 

a0 for constant values of h/r = 3 and μ = 4, and (c) Aspect 

ratio h/r for constant values of a0 = 3 and μ = 6.  

As can be seen from Fig. 9(a), ductility demand has 

negligible effect on the γ value of the short-period 

structures, whereas for the systems with longer periods 

increasing the ductility demands leads to decreasing the γ 

value, implying larger differences between the Rμ of the 

soil-structure system and the corresponding fixed-base one. 

Fig. 9(b) shows that regardless of the structural hysteretic 

model, increasing the soil flexibility (and therefore SSI 

effects) results in a significant reduction of Rμ for the entire 

range of periods. In fact, the more the SSI effect the greater 

is the difference between the response modification factor 

of the flexible-base and the fixed-base systems. This 

confirms that using Rμ of fixed-base systems leads to 

significant underestimation of inelastic strength demands of 

soil-structure systems especially for the case of 

predominant SSI effects (i.e., 
0a = 2, 3). Therefore, very 

large ductility demands can be expected when structures 

located on soft soil are designed based on the fixed-base 

response modification factor. Aspect ratio or so-called 

slenderness ratio is another SSI interacting parameter that 

can affect the response modification factor of the system 

when compared to its fixed-base counterpart. As shown in 

Fig. 9(c), this parameter has imperceptible influence on 

short-period soil-structure systems with different 

superstructure hysteretic models. In contrast, for SSI 

systems with longer-periods (i.e., Tfix>0.5 s), Rμ 

considerably decreases as aspect ratio increases. Figs. 6-9 

show a similar trend for all hysteretic models used in this 

study. However, the results indicate that the influence of 

each design parameter is affected by the selected hysteretic 

models as will be discussed in the next section. 

 

6.2 Effect of hysteretic behavior of the superstructure 
 

As stated before, previous studies on the effects of SSI 

on the inelastic response of structures were mainly 

restricted to the structural systems without considering 

strength and stiffness degradations. However, RC structures 

may exhibit considerable strength and stiffness degradations  
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Fig. 10 Effect of hysteretic behavior on response 

modification factor spectra for soil-structure systems 

(average of 20 earthquakes) 

 

Table 2 Constant coefficients of Eq. (23) for BL hysteretic 

model (non-degrading systems) 

h/r a b c 

1 01.2 0.8375 4.095exp( )a− + + −  0.703

00.85 0.0254 a− + +  0.466

01.13a−  

3 00.78322 0.323 1.1177exp( )a+ + −  1

00.766 0.02155 a− + +  1.058

00.973a−  

5 01.175 0.2064 0.34988exp( )a+ + −  1.154

00.6397 0.022768 a− + +  1.316

00.767a−  

 

 

under strong ground motions. To examine the effect of 

superstructure stiffness degradation on the response 

modification factor of the soil-structure system, two new 

parameters βCL and βSD are introduced representing the ratio 

of the response modification factor for systems with non-

degrading structures (Rμ-BL) to those for stiffness degrading 

structures using Modified-Clough (Rμ-CL) and Peak-oriented 

(Rμ-SD) models, respectively. 

BL BL

CL SD

CL SD

R R

R R

 

 

 
− −

− −

= =  (20) 

The βCL and βSD parameters can be efficiently used to 

assess the influence of the structural stiffness degrading 

behavior on the seismic response and inelastic strength 

demands of the SSI system (through Eq. (17)).  

The average values of βCL and βSD are calculated for all 

soil-structure systems subjected to the 20 selected 

earthquake ground motions. The results are presented in 

Fig. 10(a) for various μ and constant values of a0= 2 and 

h/r= 1, in Fig. 10(b) for various a0 and constant values of 

h/r=3, μ=4, and in Fig. 10(c) for various h/r and constant 

values of a0= 3, μ= 6.  From the Fig. 10(a) it is observed 

that for short-period systems, increasing the ductility 

demand leads to an increase in both βCL and βSD values. It is 

shown that for high inelastic systems, the βCL and βSD can 

reach up to 1.12 and 1.22 for CL and SD models, 

respectively. This implies that neglecting the stiffness 

degradation of superstructures can result in underestimation 

of inelastic strength demands in soil-structure systems, 

leading to an unexpected high level of ductility demand in 

the structures located on soft soil. Fig. 10(b) shows that for 

short-period systems, non-dimensional frequency (
0a ) has 

a negligible effect on βCL and βSD, whereas for long-period 

systems increasing a0 generally results in an increase in the 

β values. The results also indicate that for fixed-base 

systems, using Rμ corresponding to non-degrading systems  

Table 3 Constant coefficients of Eq. (23) for CL hysteretic 

model (Modified-Clough stiffness degrading systems) 

h/r a b c 

1 01.86 1.072 9.07exp( )a− + + −  0.775

00.95 0.0347 a− + +  0.56

01.39a−  

3 00.157 0.337 7.83exp( )a− + + −  1.1

00.9 0.0311 a− + +  1.23

01.22a−  

5 00.42 0.032 8.9exp( )a− − + −  1.44

00.82 0.044 a− + +  1.84

00.96a−  

 

Table 4 Constant coefficients of Eq. (23) for SD hysteretic 

model (Peak-oriented stiffness degrading systems) 

h/r a b c 

1 02.044 1.124 8.35exp( )a− + + −  0.807

00.85 0.036 a− + +  0.44

01.23a−  

3 00.6 0.37 7.83exp( )a− + + −  1.16

00.77 0.0293 a− + +  1.09

01.073a−  

5 00.484 0.0152 7.8exp( )a− − + −  1.51

00.65 0.04 a− + +  1.73

00.862a−  

 

 

will provide conservative estimates of strength demands. 

Nevertheless, for systems with sever SSI effects (i.e., a0= 2 

and 3) using Rμ calculated based on non-degrading systems 

will lead to underestimation of the strength demands 

especially in long-period systems. Finally, Fig. 10(c) 

indicates that the aspect ratio h/r has generally an 

insignificant influence on the β values.  

 

 

7. Practical equation for estimating Rμ of SSI 
systems with stiffness degradation   
 

As discussed before, estimating the required strength 

demand of the design structure to achieve a predefined 

target ductility is an important step in the current seismic 

design practices. However, the results of the present study 

and those reported by other researchers (Avilés J.a Pérez-

Rocha 2005, Lu et al. 2016) demonstrated that using 

response modification factors of fixed-base systems for 

flexible-base structures could lead to underestimation of the 

actual seismic strength demands and therefore 

unconservative design solutions. Moreover, the present 

study showed that ignoring the superstructure stiffness 

degradation effects can also result in underestimated results. 

To address these issue, in this section a simplified equation 

is developed for estimating ductility-dependent response 

modification factors for soil-structure SDOF systems with 

stiffness degrading structures through nonlinear regression 

analyses using Levenberg-Marquardt approach in 

MATLAB (MATLAB 2014). The proposed equation is a 

function of fundamental period of fixed-base systems, Tfix, 
ductility level, μ, hysteretic behavior of superstructure, and 

also SSI key parameters including a0, and h/r 

1
1

1 exp( )fix c

R
b

aT
T




 
 −

= +  
 − − + 
 

 (23) 

where a, b, c are coefficients which depend on a0, h/r, µ and 

can be calculated from the equations provided in Tables 2-4 

for different hysteretic models. Figs. 11-13 show a 

comparison of mean inelastic response modification factors  
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Fig. 11 Comparison of the mean response modification 

factors obtained from nonlinear dynamic analyses with 

those calculated from Eq. (23): (h/r=1, Average of 20 

earthquakes) 

 

 

Fig. 12 Comparison of the mean response modification 

factors obtained from nonlinear dynamic analyses with 

those calculated from Eq. (23): (h/r=3, Average of 20 

earthquakes) 
 

 

obtained from nonlinear dynamic analyses with those 

calculated using Eq. (23) for different key SSI parameters, 

inelastic behaviors and hysteretic models. As observed, 

despite its simplicity, the proposed expression shows very 

good agreement with the numerical data, implying that it 

has the capability to capture efficiently both SSI and 

structural stiffness degradation effects on response 

modification factors of soil-shallow-foundation systems. 

To assess the efficiency and reliability of the proposed 

equation to predict the actual values of Rμ, three different 

statistical parameters were used, including (i) root-mean-

square error (RMSE), (ii) R-square, and (iii) index of 

agreement (Ia).  

RMSE is a criterion of correctness usually used to 

compare predicting errors of various methods for specific 

data which does not exist among the datasets due to its scale 

dependency, and is calculated for n various anticipations as 

the mean square root of the deviations squares as follows 

2

1
ˆ( )

n

i ii
y y

RMSE
n

=
−

=
  (24) 

 

 

Fig. 13 Comparison of the mean response modification 

factors obtained from nonlinear dynamic analyses with 

those calculated from Eq. (23): (h/r=5, Average of 20 

earthquakes) 

 

 

where yi and ˆ
iy  represent the calculate and the anticipated 

values, respectively, and n is the number of measurements. 

Lower RMSE values (closer to zero) represent better 

predictions.   

R-square is defined as the square of the interrelationship 

among the response and the anticipated response values, 

and is described as the sum of squares of the regression 

(SSR) normalized to the total sum of squares (SST). SSR and 

SST are expressed as 

2

1
ˆ( )

n

ii
SSR y y

=
= −  (25) 

2

1
( )

n

ii
SST y y

=
= −  (26) 

where the parameter y  is the associated mean values of the 

calculated parameters. According to the above equations, R-

square can be defined as 

R-square=
SSR

SST
 (27) 

R-square can take on any value between 0 and 1, with a 

value closer to 1 indicating that the model could efficiently 

represent the variability of the data around its mean 

(MATLAB 2014). 

The parameter Ia is defined as a measure of the intensity 

of the model anticipation errors and can be calculated by the 

following expression 

( )

2

1

2

1

ˆ( )
1

ˆ

n

i ii

n

i ii

y y
Ia

y y y y

=

=

−
= −

− + −




 (28) 

The Ia values are between zero and one, where one 

shows an excellent match and zero signifies there is 

no correlation at all (Willmott et al. 2012).  

The numerical measures of RMSE, R-square and Ia for 

the data presented in Figs. 11-13 are summarized in Table 5. 

The results clearly demonstrate the reliability and accuracy  
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Table 5 Calculated statistical indices 

 h/r RMSE R-Squared Ia 

BL 

1 0.153 0.976 0.990 

3 0.125 0.980 0.990 

5 0.119 0.982 0.990 

CL 

1 0.154 0.970 0.994 

3 0.125 0.983 0.996 

5 0.120 0.983 0.995 

SD 

1 0.126 0.984 0.996 

3 0.118 0.983 0.996 

5 0.119 0.981 0.995 

 

 

of Eq. (23) in predicting the Rμ values, where RMSE index 

was always less than 0.153 and R-Squared and Ia indices 

were above 0.970 and 0.990, respectively. 

 

 

8. Sensitivity analysis on the accuracy of the 
proposed equation subjected to an ensemble of 
synthetic earthquake ground motions 
 

In this section a sensitivity analysis is performed to 

investigate the adequacy of the proposed practical 

expression when the stiffness degrading SDOF soil-

structure systems are subjected to a set of synthetic 

spectrum compatible earthquake ground motions. To this 

end, an ensemble of SSI systems whose inelastic strength 

demands were already computed by Eq. (23) are analyzed 

under 7 synthetic earthquake accelerograms compatible 

with the mean spectrum of the 20 selected ground motions. 

For each synthetic earthquake, the ductility demands of SSI 

systems are calculated and then compared with the target 

ductility ratio. For a selected earthquake ( )gu t , the 

modulating function parameters, ψ, is calculated by 

matching the expected cumulative energy of the stochastic 

process with those of preselected target accelerogram over 

the entire ground motion duration. For this purpose, the 

cumulative energy of preselected target ground motion 

accelerogram, Ea(t), and the expected cumulative energy of  

the synthetic earthquake, Ex(t) are defined by (Rezaeian and 

Kiureghian 2010) 

( ) ( )a gE t u d =   (29) 

2

0
( ) ( , )

t

xE t q d  =   (30) 

where 
2 ( , )q   is the modulating function that is obtained 

by matching the two cumulative energy (CE) curves 

through minimizing the following error function ɛq 

(Rezaeian and Kiureghian 2010).  

0

0

( ) ( )

( )

n

n

t

x a

q t

a

E t E t dt
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Fig. 14(a) cumulative energy curve of the target 

accelerogram and the fitted modulating function, (b) 

associated modulating function superimposed on the target 

accelerogram 
 

 

Fig. 15 Individual and mean response spectra of the 

synthetic earthquake ground motions 

 

 

The ɛq error function represents the difference between 

the area underneath the target accelerogram energy curve 

and the expected synthetic accelerogram. The numerator in 

Eq. (31) denotes the absolute area between the two 

aforementioned CE curves, while the denominator states the 

area underneath the target accelerogram energy curve. Fig. 

14 shows the Ea(t) and Ex(t) functions after matching 

process. The modulation function used in this study is the 

modified function proposed by Housner and Jennings 

(1964). To verify the accuracy of the results, after 

determining the modulation function, the mean spectrum of 

compatible synthetic earthquake ground motions was 

calculated by using the computer program, SeismoArtif 

(2016). Fig. 15 compares the acceleration response 

spectrum of the individual synthetic earthquakes with the 

mean spectrum. 

To investigate the adequacy of the proposed Eq. (23) for 

estimating the inelastic strength demands of SSI systems 

with stiffness degradation, soil-structure systems with 

various target ductility demands (μ= 2, 3, 4 ,5, 6) and 

different hysteretic behaviors were analyzed under each of 

the 7 synthetic ground motions. Fig. 16 compares the 

resulted ductility demands (grey points) and the mean 

ductility ratios (blue points) for different target ductility 

demands. In this figure, the data points below and above the 

red line indicate that the obtained ductility demands are 

smaller and larger than the target values, respectively. As 

observed, there is a good agreement between the results of 

mean and target ductility demands, demonstrating the 

adequacy of the proposed expression (Eq. (23)) to estimate 

inelastic strength demands of SSI systems with stiffness 

degradation of structures. Based on the results, the 

maximum difference between the target and average of  

168



 

Seismic response modification factors for stiffness degrading soil-structure systems 

 

 

Fig. 16 Comparison of the mean response modification 

factors obtained from numerical analyses subjected to the 

selected synthetic earthquakes with those calculated from 

Eq. (21): (a) Tfix= 0.5, a0= 1 and h/r= 1  ; (b) Tfix= 1, a0= 2 

and h/r= 3; (c) Tfix= 2, a0= 3 and h/r= 5 

 

 

actual values was 15%, which can be considered acceptable 

for the preliminary design of buildings in common practice.    

 

 

9. Conclusions 

 
A comprehensive parametric study was performed to 

investigate the influence of key SSI interacting parameters 

(non-dimensional frequency and slenderness ratio), natural 

period of vibration, ductility demand and hysteretic 

behavior on the response modification factors (Rμ) of soil-

structure systems. To achieve this, the nonlinear dynamic 

response of 6300 soil-structure systems were studied under 

an ensemble of 20 strong ground motions recorded from 

pervious earthquake events as well as 7 synthetic spectrum 

compatible ground motions. The results were then used to 

propose a practical equation to predict the response 

modification factors for stiffness degrading soil-shallow-

foundation systems. Based on the results of this study, the 

following conclusions can be drawn:  

• Regardless of the structural hysteretic model, 

increasing the soil flexibility (i.e., increasing a0 value) 

generally results in a considerable reduction of Rμ for the 

entire range of periods. Therefore, using response 

modification factors of fixed-base systems may lead to 

underestimation of inelastic strength demands of structures 

located on soft soil. While the slenderness ratio has 

negligible effects on the response modification factor of 

short-period soil-structure systems, Rμ decreases in long-

periods systems (i.e., Tfix>0.5 s) by increasing the 

slenderness ratio. 

• The stiffness degradation of superstructure can 

considerably affect the response modification factor of the 

soil-structure system, especially for high inelastic structures 

(i.e. μ= 6), where βCL and βSD factors reached up to 1.12 and 

1.22 for CL and SD hysteretic models, respectively. This 

implies that neglecting the stiffness degradation of 

superstructures can result in underestimation of inelastic 

strength demands in soil-structure systems, leading to an 

unexpected high level of ductility demand in the structures 

located on soft soil. 

• Based on nonlinear regression analyses, a simplified 

equation was proposed for estimating ductility-dependent 

response modification factors for stiffness degrading SDOF 

soil-structure systems. The proposed equation is a function 

of fundamental period of fixed-base systems (Tfix), ductility 

level (μ), hysteretic behavior of superstructure, as well as 

the SSI key parameters including dimensionless frequency 

a0, and slenderness (aspect) ratio of structure h/r. The 

efficiency and reliability of the proposed equation was 

demonstrated by using RMSE, R-square and Ia indices. 

• A sensitivity analysis was performed to investigate the 

adequacy of the proposed equation to estimate the inelastic 

strength demands of stiffness degrading SDOF soil-

structure systems subjected to a set of synthetic spectrum 

compatible earthquakes. A very good agreement was 

observed between the target and average of actual ductility 

demands (less than 15% error), demonstrating the adequacy 

of the proposed expression for practical applications in 

earthquake engineering design.   
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