
Structural Engineering and Mechanics, Vol. 67, No. 6 (2018) 659-669 

DOI: https://doi.org/10.12989/sem.2018.67.6.659                                                                 659 

Copyright © 2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction  
 

Dynamic analyses of cylindrical structure are one of the 

important engineering problems. The Functionally Graded 

Materials (FGMs) in cylindrical shell are used to optimize 

the displacements and stresses of structures. In this paper, the 

material properties of FGM are defined by nonlinear grading 

patterns. Chen et al. (2004a, b) a study on the vibration 

analysis of a functionally graded hollow cylinder presented. 

A frequency analysis was performed for Functionally Graded 

Material (FGM) circular cylindrical shells with various 

volume fraction laws by Arshad et al. (2007). Hosseini and 

Abolbashari (2010) and Hosseini et al. (2007) carried out 

dynamic analysis of functionally graded thick hollow 

cylinders. The gradient properties of functionally graded 

materials (FGMs) were taken as a volume fraction power-law 

distribution by Changcheng and Yinghui (2010). 

Khosravifard et al. (2011) focused on nonlinear transient heat 

conduction analysis of functionally graded materials. 

Stochastic wave propagation in functionally graded materials 

was studied by Hosseini and Shahabian (2011a, b). Rahimi et 

al. (2011) investigated the vibrational behavior of  
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functionally graded cylindrical shells with intermediate ring 

supports. Buckling of functionally graded cylindrical shells 

under combined loads was perused by Huang et al. (2011). 

Ghannad et al. (2012) studied elastic analysis of pressurized 

thick truncated conical shells made of functionally graded 

materials. Axisymmetrical bending of single and multi-span 

functionally graded hollow cylinders was studied by Bian 

and Wang (2013). Xiang and Chen (2014) investigated 

meshless local collocation method for natural frequencies and 

mode shapes of laminated composite shells. Shen et al. 

(2014) proposed the beam-mode stability of periodic 

functionally graded material shells conveying fluid. Stress 

analysis in a 2D-FGM thick finite length hollow cylinder was 

performed by Najibi and Shojaeefard (2016). Vibration 

characteristics of FGM cylindrical shells resting on Pasternak 

elastic foundation were examined by Park and Kim (2016). 

Wu and Liu (2016) developed a state space meshless method 

for the 3D analysis of FGM axisymmetric circular plates. 

Free vibration analysis of rotating functionally graded 

cylindrical shells with orthogonal stiffeners was presented by 

Tu and Loi (2016). 

In recent decades, meshless methods were well-

developed and proposed as a new class of numerical 

methods. An extremely beneficial and efficient solving 

method in structures made of Functionally Graded Materials 

(FGMs) is Meshless Local Petrov-Galerkin (MLPG) method, 

because these materials have variable mechanical properties 

and this method doesn’t require to the mesh generation on the 

domain, therefore we can continuously model these materials 

with this method. Analysis of thick plates by using a higher-

order shear and normal deformable plate theory and MLPG 
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method with radial basis functions was proposed by Xiao et 

al. (2007). They analyzed infinitesimal deformations of a 

homogeneous and isotropic thick elastic plate. They 

employed Radial Basis Functions (RBF) for constructing trial 

solutions and two types of RBFs, multiquadrics (MQ) and 

Thin Plate Splines (TPS), were utilized and effects of their 

shape parameters on the quality of the computed solution 

were examined for deformations of thick plates under 

different boundary conditions. Zhao et al. (2008) carried out 

geometric nonlinear analysis of plates and cylindrical shells 

via a linearly conforming radial point interpolation method. 

In their paper, Sander’s nonlinear shell theory was utilized 

and the arc-length technique was used in conjunction with the 

modified Newton-Raphson method to solve the nonlinear 

equilibrium equations. The radial and polynomial basis 

functions were employed to construct the shape functions 

with Delta function property using a set of arbitrarily 

distributed nodes in local support domains. Akbari et al. 

(2010) studied analysis of thermoelastic waves in a two-

dimensional functionally graded materials domain by the 

Meshless Local Petrov-Galerkin (MLPG) method. To 

investigate the effect of material composition on the dynamic 

response of functionally graded materials, a metal/ceramic 

composite was considered for which the transient thermal 

field, dynamic displacement and stress fields were reported 

for different material distributions. The thermo-elastic wave 

propagation based on Green-Naghdi (GN) coupled thermo-

elasticity in a functionally graded thick hollow cylinder 

considering uncertainty in constitutive mechanical properties 

under thermal shock loading was investigated by Hosseini et 

al. (2011). The meshless local Petrov-Galerkin method 

accompanied with Monte-Carlo simulation was developed to 

solve the stochastic boundary value problem. Foroutan and 

Moradi (2011) surveyed dynamic analysis of functionally 

graded material cylinders under an impact load by a mesh-

free method. In this analysis, Moving Least Square (MLS) 

shape functions were used for the approximation of the 

displacement field in the weak form of motion equation and 

essential boundary conditions were imposed by the 

transformation method. The resulting set of time domain 

differential equations was solved using central difference 

approximation. Rezaei Mojdehi et al. (2011) perused 3D 

static and dynamic analysis of thick functionally graded 

plates by the Meshless Local Petrov-Galerkin (MLPG) 

method. In their work, using the kinematics of a three 

dimensional continuum, the local weak form of the 

equilibrium equations was derived. A weak formulation for 

the set of governing equations was transformed into local 

integral equations on local sub-domains using a Heaviside 

step function as test function. Analysis of the bending of 

circular piezoelectric plates with functionally graded material 

properties by a MLPG method was studied by Sladek et al. 

(2013). In their work, material properties were considered to 

be continuously varying along the plate thickness, also the 

axial symmetry of geometry and boundary conditions for a 

circular plate reduced the original three-dimensional (3-D) 

boundary value problem into a two-dimensional (2-D) 

problem. Dynamic analysis of functionally graded 

nanocomposite cylinders reinforced by carbon nanotube by a 

mesh-free method was proposed by Moradi et al. (2013). In 

their paper, the free vibration and stress wave propagation 

behavior of carbon nanotube reinforced composite (CNTRC) 

cylinders were investigated. In this simulation, an 

axisymmetric model was used. Material properties were 

estimated by a micro mechanical model. Moving Least 

Squares (MLSs) shape functions were used for 

approximation of displacement field in the weak form of 

motion equation and the transformation method was 

exploited for the imposition of essential boundary conditions. 

Hosseini (2014) was perused application of Meshless Local 

Petrov-Galerkin (MLPG) and Generalized Finite Difference 

(GFD) methods in coupled thermoelasticity analysis of thick 

hollow cylinder. Ghadiri Rad et al. (2015) devoted their 

research to the geometrically nonlinear analysis of a 

functionally graded (FG) thick hollow cylinder with Rayleigh 

damping by using the meshless local Petrov–Galerkin 

(MLPG) method. At the end, to prove the robustness of the 

proposed method, several numerical tests are performed and 

effects of relative parameters on the dynamic behavior of the 

cylinder for various kinds of FGMs are discussed in detail. 

Findings demonstrate the effectiveness of the presented 

MLPG method for large deformation problems because of 

vanishing of the mesh distortion. 

In this research, at first the equation governing the 

dynamic behavior of cylindrical shells made of functionally 

graded material derive in the polar coordinates using 

meshless local Petrov-Galerkin (MLPG) method. In order to 

discretize the derived equations in time domains, the 

Meshless Local Petrov-Galerkin (MLPG) method is 

combining with the Newmark time approximation scheme. 

The displacements can be approximated using shape function 

so that we choose radial functions as the basis in equation. 

The MLPG obtained results compare with analytical and 

Finite Element Method (FEM). At the end, the cylindrical 

shell under the harmonic and rectangular shock loading will 

be analyzed for the various values of volume fraction 

exponent and the results gained will be mentioned. 

 

 

2. MLPG implementation 
 

The governing dynamic equations of cylindrical shell 

with infinite length and asymmetric geometry and boundary 

conditions in polar coordinates can be written as follows 

𝜎𝑟𝑟,𝑟 +
1

𝑟
𝜎𝑟𝜃,𝜃 +

1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 𝜌(𝑟)𝑢𝑟,𝑡𝑡 (1) 

1

𝑟
𝜎𝜃𝜃,𝜃 + 𝜎𝑟𝜃,𝑟 +

2

𝑟
𝜎𝑟𝜃 = 𝜌(𝑟)𝑢𝜃,𝑡𝑡 (2) 

where,  "𝜎𝑟𝑟", "𝜎𝜃𝜃"  and  "𝜎𝑟𝜃"  denote radial, hoop and 

shear stresses, respectively. "𝜌(𝑟)" is the mass density. The 

terms "𝑢𝑟"  and "𝑢𝜃"   are  the radial and hoop 

displacements, respectively. 

The cylindrical shell made of FGM, and also FG material 

in this shell are graded through the r-direction. The material 

features of the FG cylindrical shell can be explained as 

𝐸(𝑟) = 𝐸𝑐 + (𝐸𝑚 − 𝐸𝑐) (
𝑟 − 𝑟𝑖𝑛

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
)

𝑙

 (3) 
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Fig. 1 The domain and the boundary of the cylindrical shell 

in the MLPG method 

 

 

𝜌(𝑟) = 𝜌𝑐 + (𝜌𝑚 − 𝜌𝑐) (
𝑟 − 𝑟𝑖𝑛

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
)

𝑙

 (4) 

where, subscript "𝑚" and "𝑐" stand for metal and ceramic 

material, "𝐸" and  "𝜌" are modulus of elasticity and mass 

density, respectively. "𝑙" is a non-negative volume fraction 

exponent. 

Constitutive equations for FG cylindrical are 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙  𝜀𝑘𝑙 (5) 

𝐷𝑖𝑗𝑘𝑙 = 𝜇 𝐷𝑖𝑗𝑘𝑙
0  (6) 

𝐷𝑖𝑗𝑘𝑙
0 =

2𝜈

(1 − 2𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 (7) 

𝑖, 𝑗, 𝑘, 𝑙 = 1,2 

𝜇 =
𝐸(𝑟)

2(1 + 𝜈)
 

(8) 

where, "𝜈" is Poisson’s ratio and "𝛿𝑖𝑗" is Kronecker delta. 

The strain-displacement relations are following  

𝜀𝑟𝑟 = 𝑢𝑟,𝑟 (9) 

𝜀𝜃𝜃 =
1

𝑟
(𝑢𝜃,𝜃 + 𝑢𝑟) (10) 

𝜀𝑟𝜃 =
1

𝑟
𝑢𝑟,𝜃 + 𝑢𝜃,𝑟 −

1

𝑟
𝑢𝜃 (11) 

where  "𝜀𝑟𝑟",  "𝜀𝜃𝜃" and "𝜀𝑟𝜃" are radial, hoop and shear 

strain, respectively. For the analysis of cylindrical shell with 

infinite length and asymmetric geometry and boundary 

conditions in polar coordinates, the following relation is used 

𝑑𝛺𝑠 = 𝑟 𝑑𝛺 (12) 

Based on the local weighted residual method, the weak-

form for Eqs. (1)-(2) over a local subdomains 𝛺𝑄 

(integration) instead of constructing the global weak-form 

for whole domain of dynamic problem can be stated as 

 

Fig. 2 The geometry and the boundary conditions of the 

cylinder 

 

 

∫ 𝑟𝑊𝐼 (𝜎𝑟𝑟,𝑟 +
(𝜎𝑟𝑟 − 𝜎𝜃𝜃)

𝑟
+

1

𝑟
𝜎𝑟𝜃,𝜃

𝛺𝑄

− 𝜌(𝑟)𝑢𝑟,𝑡𝑡)𝑑𝛺 = 0 

(13) 

∫ 𝑟𝑊𝐼 (
1

𝑟
𝜎𝜃𝜃,𝜃 + 𝜎𝑟𝜃,𝑟 +

2𝜎𝑟𝜃

𝑟
− 𝜌(𝑟)𝑢𝜃,𝑡𝑡)

𝛺𝑄

𝑑𝛺 = 0 (14) 

where "𝑊𝐼" is the weight function and we use the same 

weight function for all the equations involved. 

The divergence theory is employed for Eqs. (13)-(14) as 

follows, which "𝛺𝑄" and "𝛤𝑄" are quadrature domain and 

boundary of quadrature domain, respectively. 

∫(𝑟𝑊𝐼,𝑟𝜎𝑟𝑟 + 𝑊𝐼𝜎𝜃𝜃 + 𝑊𝐼,𝜃𝜎𝑟𝜃)

𝛺𝑄

𝑑𝛺 

− ∫ 𝑟𝑊𝐼 (𝑛𝑟𝜎𝑟𝑟 +
𝑛𝜃

𝑟
𝜎𝑟𝜃)

𝛤𝑄

𝑑𝛤0 

+ ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝑟,𝑡𝑡

𝛺𝑄

𝑑𝛺 = 0 

(15) 

∫(𝑊𝐼,𝜃𝜎𝜃𝜃 + 𝑟𝑊𝐼,𝑟𝜎𝑟𝜃 − 𝑊𝐼𝜎𝑟𝜃)

𝛺𝑄

𝑑𝛺 

− ∫ 𝑟𝑊𝐼 (
𝑛𝜃

𝑟
𝜎𝜃𝜃 + 𝑛𝑟𝜎𝑟𝜃)

𝛤𝑄

𝑑𝛤 

+ ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝜃,𝑡𝑡

𝛺𝑄

𝑑𝛺 = 0 

(16) 

where "𝑛𝑟" and "𝑛𝜃" are the unit outward normal vector on 

the boundary for "𝑟" and "𝜃" direction, respectively. 

The boundary of quadrature domain is divided to some 

parts as "𝛤𝑄 = 𝛤𝑄𝑖
∪ 𝛤𝑄𝑢

∪ 𝛤𝑄𝑡
" . The term "𝛤𝑄𝑖

"  is the 

internal boundary of the quadrature domain, "𝛤𝑄𝑢
" is the part 

of the essential boundary that intersects with the quadrature 
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domain and "𝛤𝑄𝑡
" is the part of the natural boundary that 

intersects with the quadrature domain (see Fig. 1). 

We can then change the expression of Eqs. (15)-(16) to 

∫(𝑟𝑊𝐼,𝑟𝜎𝑟𝑟 + 𝑊𝐼𝜎𝜃𝜃 + 𝑊𝐼,𝜃𝜎𝑟𝜃)

𝛺𝑄

𝑑𝛺

− ∫ 𝑟𝑊𝐼 (𝑛𝑟𝜎𝑟𝑟 +
𝑛𝜃

𝑟
𝜎𝑟𝜃)

𝛤𝑄𝑖

𝑑𝛤

− ∫ 𝑟𝑊𝐼 (𝑛𝑟𝜎𝑟𝑟 +
𝑛𝜃

𝑟
𝜎𝑟𝜃)

𝛤𝑄𝑢

𝑑𝛤

+ ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝑟,𝑡𝑡

𝛺𝑄

𝑑𝛺

= ∫ 𝑟𝑊𝐼𝑡𝑟
𝛤𝑄𝑡

𝑑𝛤 

(17) 

∫(𝑊𝐼,𝜃𝜎𝜃𝜃 + 𝑟𝑊𝐼,𝑟𝜎𝑟𝜃 − 𝑊𝐼𝜎𝑟𝜃)

𝛺𝑄

𝑑𝛺

− ∫ 𝑟𝑊𝐼 (
𝑛𝜃

𝑟
𝜎𝜃𝜃 + 𝑛𝑟𝜎𝑟𝜃)

𝛤𝑄𝑖

𝑑𝛤

− ∫ 𝑟𝑊𝐼 (
𝑛𝜃

𝑟
𝜎𝜃𝜃 + 𝑛𝑟𝜎𝑟𝜃)

𝛤𝑄𝑢

𝑑𝛤

+ ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝜃,𝑡𝑡

𝛺𝑄

𝑑𝛺

= ∫ 𝑟𝑊𝐼𝑡𝜃
𝛤𝑄𝑡

𝑑𝛤 

(18) 

where "𝑡𝑟"  and "𝑡𝜃"  are the radial and hoop tractions, 

respectively and they are defined as follows 

𝑡𝑟 = 𝑛𝑟𝜎𝑟𝑟 +
𝑛𝜃

𝑟
𝜎𝑟𝜃  (19) 

𝑡𝜃 = 𝑛𝑟𝜎𝑟𝜃 +
𝑛𝜃

𝑟
𝜎𝜃𝜃  (20) 

The matrix form of Eqs. (17)-(18) is given as 

∫ 𝑽̂𝑰𝝈

𝛺𝑄

𝑑𝛺 − ∫ 𝑟𝑾𝑰𝒏 𝝈

𝛤𝑄𝑖

𝑑𝛤 − ∫ 𝑟𝑾𝑰𝒏 𝝈

𝛤𝑄𝑢

𝑑𝛤

+ ∫ 𝑟𝑾𝑰𝜌𝒖,𝑡𝑡

𝛺𝑄

𝑑𝛺 = ∫ 𝑟𝑾𝑰𝒕̅

𝛤𝑄𝑡

 𝑑𝛤 

(21) 

where "𝑽̂𝑰", "𝝈", "𝑾𝑰", "𝒏" and "𝒕̅" are the derivative of 

weight function, the stress vector, matrix of weight functions, 

matrix of unit outward normal and traction vector, 

respectively, which are as follows 

𝑽̂𝑰 = [
𝑟𝑊𝐼,𝑟 𝑊𝐼 𝑊𝐼,𝜃

0 𝑊𝐼,𝜃 𝑟𝑊𝐼,𝑟 − 𝑊𝐼
] (22) 

𝝈𝑇 = {𝜎𝑟𝑟 𝜎𝜃𝜃 𝜎𝑟𝜃} (23) 

𝑾𝑰 = [
𝑊𝐼 0
0 𝑊𝐼

] (24) 

𝒏 = [
𝑛𝑟 0

𝑛𝜃

𝑟

0
𝑛𝜃

𝑟
𝑛𝑟

] (25) 

𝒕̅ = {
𝑡𝑟
𝑡𝜃

} (26) 

The displacements can be approximated using shape 

function. Shape function is defined for each point using the 

nodes in support domain "𝛺𝑠" of a point (see Fig. 1). In this 

paper, we use the Radial Point Interpolation Method (RPIM) 

shape function, the advantage of using this shape function is 

its simpleness and high precision. We choose radial functions 

as the basis in equation 

𝑢𝑟(𝑟, 𝜃, 𝑡) = 𝑢𝑟(𝑟̅, 𝑡) = 𝜑(𝑟̅) 𝑢̅𝑟(𝑡) (27) 

𝑢𝜃(𝑟, 𝜃, 𝑡) = 𝑢𝜃(𝑟̅, 𝑡) = 𝜑(𝑟̅) 𝑢̅𝜃(𝑡) (28) 

The matrix form of Eqs. (27)-(28) can be assessed as 

𝑢 = {
𝑢𝑟

𝑢𝜃
} = ∑ [

𝜑𝑗 0

0 𝜑𝑗
]

𝑘

𝑗=1

{
𝑢𝑟𝑗

𝑢𝜃𝑗
} = ∑𝜱𝒋

𝑘

𝑗=1

𝒖𝒋 (29) 

"𝑟̅" is distance between point "𝑥" and "𝑥𝐼", so we have 

𝑟̅ = √𝑟2 + 𝑟𝐼
2 − 2𝑟 𝑟𝐼 𝑐𝑜𝑠(𝜃 − 𝜃𝐼) (30) 

Furthermore, shape function "𝜑(𝑟̅)"  is defined as 

follows 

𝜑(𝑟̅) = 𝑅𝑇(𝑟 ̅) 𝑅𝑄
−1 (31) 

The vector "𝑅" and matrix "𝑅𝑄" can be written 

𝑅𝑇(𝑟̅) = {𝑅1(𝑟̅) 𝑅2(𝑟̅) … 𝑅𝑛(𝑟̅)} (32) 

𝑅𝑄 = [

𝑅1(𝑟̅1) 𝑅2(𝑟̅1) … 𝑅𝑛(𝑟̅1)

𝑅1(𝑟̅2) 𝑅2(𝑟̅2) … 𝑅𝑛(𝑟̅2)
⋮ ⋮ ⋱ ⋮

𝑅1(𝑟̅𝑛) 𝑅2(𝑟̅𝑛) … 𝑅𝑛(𝑟̅𝑛)

] (33) 

There are a number of forms of radial basis functions 

used by the mathematics community. In this paper we use the 

type of a classical form called multiquadric (MQ) basis. The 

MQ basis function is following  

𝑅𝑖(𝑟̅) = (𝑟̅2 + 𝐶2)𝑞 (34) 

where "𝐶" and "𝑞" are constant coefficient. 

Substitution of the Eqs. (5) and (29) into Eq. (21) gives 
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∫ 𝑽̂𝑰𝑫 ∑𝑩𝒋𝒖𝒋

𝑘

𝑗=1𝛺𝑄

𝑑𝛺 − ∫ 𝑟𝑾𝑰𝒏𝑫∑𝑩𝒋𝒖𝒋

𝑘

𝑗=1𝛤𝑄𝑖

𝑑𝛤

− ∫ 𝑟𝑾𝑰𝒏𝑫∑ 𝑩𝒋𝒖𝒋

𝑘

𝑗=1𝛤𝑄𝑢

𝑑𝛤

+ ∫ 𝑟𝑾𝑰𝜌(𝑟) ∑𝜱𝒋𝒖𝒋,𝑡𝑡

𝑘

𝑗=1𝛺𝑄

𝑑𝛺

= ∫ 𝑟𝑾𝑰𝒕̅

𝛤𝑄𝑡

𝑑𝛤 

(35) 

where "𝑘" is the number of nodes. Matrix "𝑫" and "𝑩" 
are defined as follows 

𝑫 =
𝐸(𝑟)

(1 + 𝜈)(1 − 2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1 − 2𝜈

2

] (36) 

𝑩𝒋 =

[
 
 
 
 

𝜑𝑗,𝑟 0

𝜑𝑗

𝑟

1

𝑟
𝜑𝑗,𝜃

1

𝑟
𝜑𝑗,𝜃 𝜑𝑗,𝑟 −

𝜑𝑗

𝑟 ]
 
 
 
 

 (37) 

There are some numerical techniques to solve the 

governing equations in time domain. In this article, the 

Newmark time approximation scheme is used for time 

domain analysis with the initial conditions that they are 

assumed to be zero. Consider the governing equation of 

non-dimensional time 𝑡̅ = 𝑡𝑝 of system takes the form 

[𝑀]{𝑢̈𝑡𝑝} + [𝐾]{𝑢𝑡𝑝} = {𝐹𝑡𝑝} (38) 

𝐹0 and 𝑢0,  are the initial conditions so the following 

equation can be obtained 

[𝑀]{𝑢̈0} = {𝐹0} − [𝐾]{𝑢0} (39) 

The matrices [𝐾𝑚]  and the vector  {𝐹𝑚

𝑡𝑝}  are 

specified as follows 

[𝐾𝑚] = [𝐾] +
1

𝜆1Δ𝑡2
[𝑀] (40) 

{𝐹𝑚

𝑡𝑝} = {𝐹𝑡𝑝} +
1

𝜆1Δ𝑡2
[𝑀]({𝑢𝑡𝑝−1} + Δ𝑡{𝑢̇𝑡𝑝−1}

+ (0.5 − 𝜆1)Δ𝑡2{𝑢̈𝑡𝑝−1}) 
(41) 

Using following equations the matrices of [𝑢𝑡𝑝], [𝑢̇𝑡𝑝], 
and [𝑢̈𝑡𝑝] can be calculated 

{𝑢𝑡𝑝} = [𝐾𝑚]−1 {𝑓𝑚
𝑡𝑝} (42) 

{𝑢̈𝑡𝑝} =
1

𝜆1Δ𝑡2
({𝑢𝑡𝑝} − {𝑢𝑡𝑝−1} − Δ𝑡{𝑢̇𝑡𝑝−1}

− Δ𝑡2(0.5 − 𝜆1){𝑢̈
𝑡𝑝−1}) 

(43) 

{𝑢̇𝑡𝑝} = {𝑢̇𝑡𝑝−1} + Δ𝑡[(1 − 𝜆2){𝑢̈
𝑡𝑝−1} + 𝜆2{𝑢̈

𝑡𝑝}] (44) 

Using aforementioned equations, the matrices of {𝑢𝑡𝑝}, 
{𝑢̇𝑡𝑝}, and {𝑢̈𝑡𝑝} can be gained for an arbitrary time. The 

best convergence rate can be attained in this method by 

choosing  

𝜆1 = 1 4⁄  and 𝜆2 = 1 2⁄  (45) 

 

 

3. Verification 
 

In numerical methods, assurance of the accuracy of the 

results obtained is very important. For the comparison 

purpose, the current results of the dynamic behavior of a FG 

cylindrical shell are compared with those obtained using the 

analytical and FEM methods in the following examples. 

 

3.1 Verification with analytical solution 
 

In this section, a cylindrical shell with infinite length is 

analyzed using MLPG method and the results are compared 

with analytical solution. The following boundary conditions 

were assumed for the verified problem. 

𝜎𝑟(𝑟𝑖 , 𝜃, 𝑡) = 𝑃(𝑡) 𝜎𝑟(𝑟𝑜 , 𝜃, 𝑡) = 0 

(46) 

𝜎𝜃(𝑟𝑖 , 𝜃, 𝑡0) = 0 𝜎𝜃(𝑟𝑜 , 𝜃, 𝑡0) = 0 

𝜏𝑟𝜃(𝑟𝑖 , 𝜃, 𝑡) = 0 𝜏𝑟𝜃(𝑟𝑜 , 𝜃, 𝑡) = 0 

𝑢𝑟(𝑟, 𝜃𝑚𝑖𝑛 , 𝑡0) = 0 𝑢𝑟(𝑟, 𝜃𝑚𝑎𝑥 , 𝑡0) = 0 

𝑢𝜃(𝑟, 𝜃𝑚𝑖𝑛 , 𝑡) = 0 𝑢𝜃(𝑟, 𝜃𝑚𝑎𝑥 , 𝑡) = 0 

𝑃(𝑡) = 𝑃0(1 − 𝑒−𝑐0𝑡) (47) 

where 𝑃0 = 20 𝑀𝑃𝑎 and 𝑐0 = 102  
1

𝑠𝑒𝑐
 are assumed. The 

Eq. (47) for the long time approaches to 𝑃0 slowly, so the 

dynamic analysis can be similar to the static analysis, 

furthermore it can be used for analytical solution of loading 

radial stress, hoop stress and radial displacement (Ugural and 

Fenster 2003) obtained as follows 

𝜎𝑟𝑟 =
𝑟𝑖𝑛

2 𝑟𝑜𝑢𝑡
2 (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2

1

𝑟2
+

𝑟𝑖𝑛
2 𝑃𝑖𝑛 − 𝑟𝑜𝑢𝑡

2 𝑃𝑜𝑢𝑡

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2  (48) 

𝜎𝜃𝜃 = −
𝑟𝑖𝑛

2 𝑟𝑜𝑢𝑡
2 (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2

1

𝑟2
+

𝑟𝑖𝑛
2 𝑃𝑖𝑛 − 𝑟𝑜𝑢𝑡

2 𝑃𝑜𝑢𝑡

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2  (49) 

𝑢𝑟𝑟 =
1 + 𝜈

𝐸
[
𝑟𝑖𝑛

2 𝑟𝑜𝑢𝑡
2 (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2

1

𝑟

+ (1 − 2𝜈)
𝑟𝑖𝑛

2 𝑃𝑖𝑛 − 𝑟𝑜𝑢𝑡
2 𝑃𝑜𝑢𝑡

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2 𝑟] 
(50) 

So, a cylinder with infinite length is presumed, in which 

𝑟𝑖 = 0.25 𝑚, 𝑟𝑜 = 0.5 𝑚 and 𝜃 = 𝜋
2⁄  𝑟𝑎𝑑, are supposed 

as the inner, outer radius, and angle of cylinder, respectively. 

The geometry of this cylinder is demonstrated in Fig. 2. 
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Fig. 3 The obtained results through the MLPG method in 

comparison with those acquired using analytical method for 

radial displacement 

 

 

Fig. 4 The obtained results through the MLPG method in 

comparison with those acquired using analytical method for 

radial stress 

 

 

Fig. 5 The obtained results through the MLPG method in 

comparison with those acquired using analytical method for 

hoop stress 

 

Table 1 The obtained results through the MLPG method in 

comparison with those acquired using analytical method for 

middle point of thickness of the cylinder 

 

Analytical 

method  

(Ugural and 

Fenste 2003) 

MLPG method percentage error 

Radial 

displacement 
(𝑚) 

1.0111 × 10−4 1.0112 × 10−4 9.89 × 10−3 

Radial stress 
(𝑃𝑎) 

−5.185 × 106 −5.139 × 106 0.8872 

Hoop stress 
(𝑃𝑎) 

1.852 × 107 1.842 × 107 0.5399 

 

 

The comparison of the results procured using the 

meshless method with those gained through the analytical 

solution is shown in Figs. 3-5. As can be seen in these 

figures, the results of the meshless method have passable 

accordance to the results of the analytical solution. 

Table 2 The mechanical properties of the FG cylindrical 

shell 

Material 

location 
Elastic modulus Poisson's ratio Mass density 

Outer radius 70 𝐺𝑃𝑎 0.3 2707 𝑘𝑔 𝑚3⁄  

inner radius 380 𝐺𝑃𝑎 0.3 3800 𝑘𝑔 𝑚3⁄  

 

 
Fig. 6 The converging trend of the radial displacement with 

different time steps 

 

 

Fig. 7 The obtained results through the MLPG method in 

comparison with those acquired using the FEM for the radial 

displacement 

 

 

In Table 1, percentage errors for local Petrov-Galerkin 

method and the analytical solution in middle point of 

thickness of the cylinder (𝑟 = 0.375 𝑚)  are indicated. 

Table 1 depicts the relation accomplished with local Petrov–

Galerkin method has very high accuracy, thus this method 

can be exploited as a practical approach for dynamic 

analysis of cylindrical shell. 

 

3.2 Verification with FEM 
 

In this section, in order to verify the accuracy of local 

Petrov-Galerkin method and also for demonstrating the 

ability of the present method in the analysis of structures 

made of functionally graded material, a cylindrical shell is 

simulated under the shock loading. The obtained results of 

this method are compared with the finite element method 

(FEM) (Shakeri et al. 2006). 

For verification, a cylinder with the inner radius 𝑟𝑖𝑛 =
0.25 𝑚  and the outer radius 𝑟𝑜𝑢𝑡 = 0.5 𝑚  made of 

functionally graded material with the mechanical properties 

presented in Table 2 is considered. 

The cylinder is under shock loading as follows 

𝑃(𝑡) = {
𝑃0𝑡              𝑡 ≤ 0.005 𝑠𝑒𝑐
 0               𝑡 > 0.005 𝑠𝑒𝑐

 (51) 

where 𝑃0 = 4 𝐺𝑃𝑎 𝑠𝑒𝑐⁄ . In this problem for choosing the 

appropriate time step, many analyses carry out. These results 

can be seen in Fig. 6. From this figure is concluded the best  
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Fig. 8 The obtained results through the MLPG method in 

comparison with those acquired using the FEM for the radial 

stress 

 

 

Fig. 9 The obtained results through the MLPG method in 

comparison with those acquired using the FEM for the hoop 

stress 

 

Table 3 The obtained results through the MLPG method in 

comparison with those acquired using the finite element 

method for middle point of thickness of the cylinder at time 

step 520 

 
FEM (Shakeri et 

al. 2006) 
MLPG method 

Percentage 

difference 

Radial 
displacement 

(𝑚) 

−9.465 × 10−5 −9.466 × 10−5 0.011 

Radial stress 
(𝑃𝑎) 

−9.885 × 106 −9.779 × 106 1.072 

Hoop stress (𝑃𝑎) −2.441 × 107 −2.421 × 107 0.819 

 

 

time step is ∆𝑡 = 10−5 𝑠𝑒𝑐.The obtained results with MLPG 

method show a passable accordance in comparison with 

other results (Figs. 7-9). The acquired results illustrate until 

time step 5000 the cylindrical shell is under loading and then 

the load is missed suddenly, therefore the cylindrical shell 

starts the free vibration. The obtained percentage difference 

for radial displacement, radial stress and hoop stress are 

represented in Table 3. As can be seen from Table 3, the 

MLPG method has high accuracy for dynamic analysis of the 

cylindrical shell. 

 

 

4. Numerical results and discussion 
 

At this level, we analyzed the cylinder dynamically with 

different volume fraction exponents using the MLPG method 

under harmonic and rectangular shock loading, in order to 

evaluating capability of this method for dynamic analysis of 

the FG cylindrical shell.  

 

4.1 Harmonic shock loading 

 

Fig. 10 The geometry and the boundary conditions under 

shock loading 

 

 

To assess the sufficiency of the MLPG method, a non-

symmetric FG cylinder with the inner radius 𝑟𝑖 = 0.25 𝑚, 

the outer radius 𝑟𝑜 = 0.5 𝑚, minimum and maximum angle 

of cylinder 𝜃𝑚𝑖𝑛 = 𝜋
4⁄  𝑟𝑎𝑑  and 𝜃𝑚𝑎𝑥 = 3𝜋

4⁄  𝑟𝑎𝑑  with 

the mechanical properties exhibited in Table 2 is assumed 

(see Fig. 10). The boundary conditions and the loading are as 

follows 

𝜎𝑟(𝑟𝑖 , 𝜃, 𝑡) = 𝑃(𝑡) 𝜎𝑟(𝑟𝑜 , 𝜃, 𝑡) = 0 

(52) 

𝜎𝜃(𝑟𝑖 , 𝜃, 𝑡0) = 0 𝜎𝜃(𝑟𝑜 , 𝜃, 𝑡0) = 0 

𝜏𝑟𝜃(𝑟𝑖 , 𝜃, 𝑡) = 0 𝜏𝑟𝜃(𝑟𝑜 , 𝜃, 𝑡) = 0 

𝑢𝑟(𝑟, 𝜃𝑚𝑖𝑛 , 𝑡) = 0 𝑢𝑟(𝑟, 𝜃𝑚𝑎𝑥 , 𝑡) = 0 

𝑢𝜃(𝑟, 𝜃𝑚𝑖𝑛 , 𝑡) = 0 𝑢𝜃(𝑟, 𝜃𝑚𝑎𝑥 , 𝑡) = 0 

𝑃(𝑡) = {
𝑃0 sin(𝑐0𝑡)  𝑡 ≤ 0.005 sec   

𝜋

4
≤𝜃 ≤

13𝜋

36

0         𝑡 > 0.005 sec      𝜃 >
13𝜋

36

 (53) 

where 𝑐0 = 15 × 103  
1

𝑠𝑒𝑐
 and 𝑃0 = 10 𝑀𝑃𝑎. 

In Figs. 11-15 are depicted radial and hoop displacements 

and radial, hoop and shear stresses at  𝑟 = 0.375 𝑚  and 

𝜃 =
𝜋

2
 𝑟𝑎𝑑 for various values of volume fraction exponent. 

It is concluded that the radial and hoop displacements 

maximum amplitude decrease and the structure frequency is 

raised (Figs. 11-12) by increasing the value of volume 

fraction exponent, also the similar behaviors can be seen for 

hoop stress (see Fig. 13). Fig. 14 shows by increasing the 

value of volume fraction exponent, the maximum amplitude 

of radial stress does not have much difference. The clear 

trend cannot be seen for the shear stress with the various 

values of volume fraction exponent, thereupon the maximum 

value of shear stress happens for 𝑙 = 0.75 (see Fig. 15). 

One of the most advantages of the presented meshless 

method is its application for analysis of two dimensions 

wave propagation in polar coordinate. The 2D wave 

propagation of radial and hoop stresses in 2D domain are 

illustrated in Figs. 16-17. These figures depict the  
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Fig. 11 The time history of the radial displacement for 𝑙 =
0.5 , 𝑙 = 0.75  and 𝑙 = 1  under the harmonic shock 

loading 

 

 

Fig. 12 The time history of the hoop displacement for 𝑙 =
0.5 , 𝑙 = 0.75  and 𝑙 = 1  under the harmonic shock 

loading 

 

 

Fig. 13 The time history of the hoop stress for 𝑙 = 0.5, 𝑙 =
0.75 and 𝑙 = 1 under the harmonic shock loading 

 

 

Fig. 14 The time history of the radial stress for 𝑙 = 0.5, 

𝑙 = 0.75 and 𝑙 = 1 under the harmonic shock loading 

 

 
Fig. 15 The time history of the shear stress for 𝑙 = 0.5, 𝑙 =
0.75 and 𝑙 = 1 under the harmonic shock loading 

 

 

(a) 
52 10t −=   sec 

 

(b) 
55 10t −=   sec 

 

(c) 
510 10t −=   sec 

Fig. 16 Two dimensional radial stress wave propagation at 

various times under the harmonic shock loading 
 

 

propagation of radial and hoop stresses wave at different 

time. From these figures can be seen how wave move in 

structure in different time. 
 

4.2 Rectangular shock loading 
 

The same geometry and boundary conditions with 

problem 4.1 are assumed for a non-symmetric FG cylinder 

under rectangular shock loading. Table 2 shows the material 

properties for the FG cylinder. The loading is supposed as 

follows 

𝑃(𝑡) = {
𝑃0    𝑡 ≤ 0.005 sec      

𝜋

4
≤𝜃 ≤

13𝜋

36

0     𝑡 > 0.005sec         𝜃 >
13𝜋

36

 (54) 

where 𝑃0 = 15 𝑀𝑃𝑎 is considered. Figs. 18-22 illustrate the 

radial and hoop displacements and radial, hoop and shear 

stresses. The maximum amplitude of the radial and hoop 

displacements (Figs. 18-19) by increasing the value of 

volume fraction exponent have decreased, such that, the 

radial displacement increases after exerting the impact 

loading within the confines of free vibration for 𝑙 = 0.5 

,suddenly (Fig. 18). After applying the impact loading in the  
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(a) 
52 10t −=   sec 

 

(b) 
55 10t −=   sec 

 

(c) 
510 10t −=   sec 

Fig. 17 Two dimensional hoop stress wave propagation at 

various times under the harmonic shock loading 

 

 

Fig. 18 The time history of the radial displacement for 𝑙 =
0.5 , 𝑙 = 0.75  and 𝑙 = 1  under the rectangular shock 

loading 

 
 

range of free vibration for 𝑙 = 0.5 and 𝑙 = 0.75, the peak 

hoop displacement escalates and this trend for 𝑙 = 1  is 

inverse. It can be realized from Fig. 20 that the maximum 

radial stress occurs for 𝑙 = 0.75. In Fig. 21 is seen the 

maximum hoop stress rises by increasing the value of volume 

fraction exponent. Within the confines of free vibration in 

comparison with forced vibration, the value of hoop stress 

has a significant growth. The maximum of shear stress occurs 

in the range of free vibration for  𝑙 = 0.75 (see Fig. 22). 

The 2D wave propagation of radial and hoop stresses  

 

Fig. 19 The time history of the hoop displacement for 𝑙 =
0.5 , 𝑙 = 0.75  and 𝑙 = 1  under the rectangular shock 

loading 

 

 
Fig. 20 The time history of the radial stress for 𝑙 = 0.5, 

𝑙 = 0.75 and 𝑙 = 1 under the rectangular shock loading 

 

 

Fig. 21 The time history of the hoop stress for 𝑙 = 0.5, 𝑙 =
0.75 and 𝑙 = 1 under the rectangular shock loading 

 

 

Fig. 22 The time history of the shear stress for 𝑙 = 0.5, 𝑙 =
0.75 and 𝑙 = 1 under the rectangular shock loading 

 

 

under rectangular shock loading in 2D domain are showed in 

Figs. 23-24 is displayed. These figures depict the propagation 

of radial and hoop stresses wave at different time. From these 

figures can see how wave move in structure in different time. 

 

 

5. Conclusions 
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(a) 
52 10t −=   sec 

 

(b) 
55 10t −=   sec 

 

(c) 
510 10t −=   sec 

Fig. 23 Two dimensional radial stress wave propagation at 

various times under the rectangular shock loading 
 

 

In the current study, meshless local Petrov-Galerkin 

(MLPG) method is developed for dynamic analysis of the 

non-symmetric FG cylindrical shell and assessment of stress 

wave propagation. Nonlinear volume fractions have been 

used in the direction of radius to simulate the mechanical 

properties of FGM. Newmark finite difference (NFD) 

method is combined with the meshless local Petrov-Galerkin 

(MLPG) method to obtain the dynamic behaviors. The inner 

surface of 2D-FG cylindrical panel is excited by suddenly 

unloading as mechanical shock loading. The major 

conclusions resulting from the above analysis can be 

summarized as follows: 

• The effects of various grading patterns of mechanical 

properties on dynamic behaviors are studied in details for 

2D-FG cylindrical shell using the presented hybrid 

meshless technique. 

• The obtained results with MLPG method indicate a 

passable accordance in comparison to the acquired results 

of analytical method and FEM. In fact, this issue expresses 

the high precision and ability of the MLPG method for 

dynamic analysis of the non-symmetric FG cylindrical 

shell.  

• The convergence of the present method for two 

dimensional dynamic analysis of 2D-FG cylindrical shell  

 

(a) 
52 10t −=   sec 

 

(b) 
55 10t −=   sec 

 

(c) 
510 10t −=   sec 

Fig. 24 Two dimensional hoop stress wave propagation at 

various times under the rectangular shock loading 

 

 

have been tested. 

• The stress wave propagations are obtained in 2D 

domain as some contours at various time instants.  

• By using the presented method, it is possible to track 

the different stress wave fronts in two dimensional domains 

for various volume fraction exponents. 

• The present analysis furnishes a ground for natural 

frequency analysis of FGMs with two dimensional grading 

patterns. 
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