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1. Introduction  
 

Intertwining with the passive behavior of the mechanical 

and civil structures towards smart structures and systems is 

a desirable feature that intrigues various researchers from 

separate fields of material science, civil/mechanical 

engineering, and instrumentation development. However, 

multi-domain nature of such case studies requires a suitable 

framework for the modeling of the system, physical 

analysis of the problem, and post-processing of the 

generated (input/output) data. For the physical analysis of 

the mechanical structures and the structural control as two 

case studies with predefined geometry and model 

properties, the finite element method (FEM) is an 

operational modeling technique. Leaving out the system 

identification techniques for now, the superiority of FEM as 

a modeling approach is due to the fact that the 

analytical/semi-analytical solutions for coupled systems are 

mostly limited to simple geometries. In order to put the FE 

model in a computationally affordable form with a limited 

number of dynamical states, a post-processing step is 

defined including a model reduction in terms of modal 

coordinates. This in turns makes the design/analyses  
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tractable especially if the optimization or control of the 

structure is desirable.  

In this paper, a new Software-in-the-Loop scheme (SiL) 

is constructed to address two families of problems: 1) the 

post-processing analyses of the solutions obtained from the 

FE package which may be used as a batch optimization tool 

or may be used for nonlinear modeling and uncertainty 

quantification. 2) To investigate the effects of the feedback 

loop in the time-domain analysis with application in control 

theory and online parameter optimization. The SiL 

presented in this paper is not limited to any particular 

physical domain and can be used for dynamics and 

vibration, structural health monitoring, fluid mechanics, 

thermoelastic analysis, and electro-/magneto-domains. As 

long as the problem under study can be defined in a step 

module (see (Puri 2011, Nestorović et al. 2012)) of the 

commercial FE package of ABAQUS, it can be categorized 

as one of the applications of this paper. The italic terms here 

and after refer to the standard commands, e.g., step, in 

ABAQUS GUI. As another advantage of this scheme in 

comparison to those available in the literature ((Ray and 

others 2000, Karagülle et al. 2004, Xu and Koko 2004, 

Rahman and Alam 2012, Gao et al. 2013, Bertagne and 

Hartl 2014, Orszulik and Gabbert 2016)), MATLAB 

toolboxes for robust control, global optimizations, neural 

networks, and fuzzy systems are accessible in the SiL which 

significantly increases the applicability of the method to 

general engineering problems. In this regards, the proposed 

technique is a candidate for non-parametric modeling of 

continuous nonlinear multi-domain structures with complex 
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geometries where the real system is not accessible for 

measurements (Kerschen et al. 2006, Noël and Kerschen 

2017). Moreover, the proposed SiL can be used for the 

modeling of common benchmark problems in structural 

dynamics as a test platform for new control and 

optimization methods before moving to real-time 

measurements (Landau et al. 2013). Concerning the 

computation time, time-variability of the analysis, and the 

validation and verification of the proposed approach, 

detailed investigations are carried out.  

Because the SiL approach is computationally 

demanding, it is not recommended for problems with 

simple geometries. Accordingly, analytical solutions or the 

methods that include system/parameter identification, 

model reduction in combination with offline design are 

recommended to be employed instead. However, for multi-

physics problems without analytical models, systems with 

complicated geometries, benchmark problems where the 

real-time setup is out of access, and industrial problems 

where FE solutions are trusted, the presented method is an 

alternative to the field tests which are costly. ABAQUS is 

nominated over other packages as the dynamic simulator of 

the SiL configuration due to its capabilities in compiling 

FORTRAN subroutines. However, the proposed scheme can 

be applied to other commercial packages such as 

NASTRAN as long as the software provides a pool for 

including external commands. 

The smart structural design based on the general FE 

approach is previously studied in the literature. For 

instance, Lim et al. (1999) used 3D finite elements for 

modeling a multi-input-multi-output (MIMO) smart plate 

with discrete piezo-patches and designed an optimal 

controller on the reduced-order model by solving the 

algebraic Riccati equation (ARE). The performance of the 

designed controller for the vibration suppression of the 

clamped plate is presented for both the steady state and the 

transient cases. Ray et al. in a similar problem to the sub-

problem (b) of this paper, used a FORTRAN subroutine to 

implement sensitivity enhancing control (SEC) for damaged 

smart beam (Ray et al. 2000). Karagülle et al. used ANSYS 

to integrate a PID control action into the solution of FE 

(Karagülle and others, 2004). Similar results are reported by 

(Xu and Koko 2004). Following the same trend, Rahman 

and Alam compared their experimental active vibration 

control (AVC) of a cantilever beam based on PID controller 

with ABAQUS using 1D Finite element formulation 

(Rahman and Alam 2012). Recently, Gao et al. used 

ABAQUS UAMP subroutine to include an active controller 

in the model of an aircraft’s vertical fin under dramatic 

buffet loads. They included a finite element model of macro 

fiber composite (MFC) actuators in ABAQUS implicit. The 

results are matched with those obtained from the 

experimental implementation of the controller on the 

prototype of the fin (Gao et al. 2013). The main limitations 

of implementing the control algorithm in SiL using standard 

ABAQUS scripting is the challenges that are introduced for 

matrix computations such as solving ARE for the optimal 

controller synthesis. The platform for ABAQUS coding is 

an application programming interface (API) that is realized 

per Python object-oriented language, and Python is not a 

well-established language for control algorithms (Bertagne 

and Hartl 2014). This problem is also addressed in this 

paper as a solution to sub-problem (b). More recently, 

Orszulik and Gabbert presented an attractive interface for 

establishing a connection between the Simulink and 

ABAQUS for active vibration control of a cantilever beam 

(Orszulik and Gabbert 2016, Gabbert et al. 2017).  

The investigation of the passive structural vibration 

suppression is also carried out in the literature similar to 

sub-problem (a). Vel  and Baillargeon utilized translational 

mass damper (TMD) in their physical system modeled in 

ABAQUS to evaluate the performance of a passive system 

(Vel and Baillargeon 2004). Most recently, Shakeri and 

Younesian (2016) used multi-TMD (MTMD) in ABAQUS 

as well as in their analytical solution to examine the steady-

state and transient acoustic radiation characteristics of the 

clamped-free annular plate. It should be indicated that the 

proposed methods in this paper are by no means limited to 

the structural optimization and structural vibration control, 

however, the applications of different SiL schemes in the 

literature are mostly concentrated on AVC (Omidi et al. 

2015, Oveisi and Nestorović 2016, Oveisi et al. 2016). 

Henceforth, the authors are mostly attentive in developing a 

new mechanism for uncertainty quantification in 

mechanical structures with complex geometries that can be 

used as an alternative to conventional methods (Soize 

2005). Uncertainty quantification regarding the unmodeled 

dynamics of high order nature is classically dealt with as a 

lumped stable bounded time-varying functions. In terms of 

controller synthesis (classical robust methods), such a view 

leads to conservative results. However, analytical modeling 

of simpler geometries under large vibration amplitudes 

hands the structure of uncertainty e.g., quadratic or cubic 

terms (Omidi and Mahmoodi 2015, Stojanović 2015, Oveisi 

and Nestorović 2017). Next, by use of the parametric 

identification methods on the data obtained from the 

approaches that provide time-dependent responses of the 

nonlinear system (such as the SiL proposed in this paper) 

make an efficient tool for nonlinear system identification. 

This grey-box parameter identification approach as the 

center of intensive research in the identification community 

(see for instance (Paduart et al. 2010, Noël and Schoukens 

2017)) can be viewed as an alternative to some of the 

nonlinear system identification techniques based on discrete 

modeling of continuous mechanical structures reported in 

(Noël and Kerschen 2017). Such a nonlinear nominal model 

can be later used for model-based controller synthesis in 

contrast to robust control methods which operate based on 

worst-case analysis. One should note that at the current 

stage in the literature, the lumped structural uncertainty 

quantification is obtained based on statistical analyses of an 

enormous number of experimental setups which is mostly 

limited because of the costs and difficulties regarding 

providing multiple identical systems (Adhikari et al. 2009). 

Finally, the structure of the paper is as follows: First, 

two numerical problems are briefly introduced and 

immediately after, the methodology of coupling ABAQUS 

and MATLAB is broken into two variants in accordance 

with these two numerical problems: 1) the coupling in 

which time-independent simulations are intended s. t. the 
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post-processing through MATLAB only starts when the 

ABAQUS jobs are completed. For this purpose, Python 

scripting in ABAQUS is used to alter the model variables 

on the grounds of the decision made in a MATLAB m-file. 

In other words, if the resubmission of the jobs is required on 

a revised model, the input file of ABAQUS is altered by the 

MATLAB text editor. This method is already employed in 

the literature and is reported here for the sake of 

completeness (Kim et al. 1995, Ramesh Kumar and 

Narayanan 2008). 2) The coupling of MATLAB/ABAQUS 

for designing systems within some time-dependent loops. 

For this purpose, the first coupling scheme is completely 

revised by employing the user-defined FORTRAN 

subroutines.  To make the algorithm ready-to-use, the 

details of developing the required script are included, and 

the possible issues are carefully addressed. Finally, the 

multi-physics piezo-laminated structures in the 

aforementioned sub-problems are explained in more details.  

Before moving to the methodology section in order to make 

the paper more readable, a brief description of the two 

numerical problems in association with two coupling 

schemes are presented as follows:  

a. A constrained optimization problem without time- and 

frequency-dependence: The actuator and sensor placement 

optimization problem is investigated for a piezolaminated 

cylindrical panel shown in Fig. 1(a). The structure is 

partitioned ten times in both of longitudinal and tangential 

directions of the cylindrical coordinate and as a result 

divided into one hundred sections. Each partition represents 

a candidate for the actuator/sensor placement as shown in 

this figure. The reason for selecting the optimal sensor and 

actuator positioning problem as the realization of the 

ABAQUS/MATLAB offline coupling scheme is due its 

relevance to sub-problem (b). Accordingly, the result of 

actuator/sensor placement reflect that the process of smart 

structure design including piezo-material selection, 

input/output (IO) optimization, and closed-loop tests can all 

fall into the application of this paper. The technical details 

of the performance requirements are deferred to section 3.  

b. As an illustration of the second ABAQUS/MATLAB 

coupling scheme proposed in this paper, where a time-

dependent loop is required, sub-problem (b) is defined. To 

this end, a regulation problem is investigated for AVC. In 

order to realize the feedback control as shown in Fig. 1(b), 

methodology in section 2.2 is proposed. To keep the 

numerical example tractable an output feedback linear 

quadratic Gaussian (LQG) controller is synthesized on the 

nominal model of the system. The details of obtaining the 

reduced-order model are explained in sections 3.1.1 and 

3.1.2. 

 

 

2. Methodology 
 

2.1 Offline post-processing coupling scheme 
 

The process of optimal actuator/sensor positioning is 

defined in terms of the first coupling scheme. In this regard, 

the coupled ABAQUS/MATLAB automatically changes the 

actuator/sensor locations on the model in order to evaluate 

an objective function. In a more general view, when the  

(a
) 

 

(b
) 

 

 Fig. 1(a) Geometry of the simulation example. (b) The 

schematic definition of the sub-problem (b) 

 

 

Fig. 2 Workflow of the program for sub-problem (a) 

 

 

ABAQUS-user submits a command in the graphic user 

interface (GUI) of CAE, Python script is generated/updated 

and then, passed through the interpreter and sent to the 

kernel. 

A record of such actions in the form of a replay file 

“.rpy” is kept by ABAQUS. Additionally, a list of 

commands that are executed in GUI of ABAQUS/CAE is 

available in the journal file “.jnl” in the working directory. 

This journal file is the primary platform for scripting in 

Python and solving the sub-problem (a) in this paper. For 

offline post-processing, Python plays the role of a 

messenger to realize the alternations in ABAQUS model 

such as moving the actuator/sensor parts. In other words, 

the offline loop can be constructed by using MATLAB to 

change the numerical values of ABAQUS model in the 

“.py” file followed by resubmitting the list of ABAQUS 

jobs. Finally, the offline post-processing is carried out by 

inspecting the “.odb” file of the results produced by 

ABAQUS. If the design criteria are satisfied for the 

objective function, the loop is terminated. Otherwise, 

MATLAB continues to manipulate the “.py” file containing 

the model parameters and resubmits the job from the 

command line till the termination condition is met. The 

interconnection between MATLAB and ABAQUS in this 

form is presented in Fig. 2. 

 

2.2 Coupling scheme with time-dependent loop 
 

In the second coupling scheme, a SiL is outlined that 
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uses Python and FORTRAN as two messengers between the 

ABAQUS Kernel and MATLAB engine. For this purpose, 

the Python script is used to define the model 

geometry/material and model interactions e.g., boundary 

conditions, while the time-dependent external loads are 

realized by FORTRAN UAMP subroutine. Sensor elements 

(later referred to as SENUi) are defined on measurable 

physical variables e.g., electric potential in piezo-sensor of 

Fig. 1b in sub-problem (b) with the predefined frequency of 

data extraction from a particular nodal set in history output 

(seti) by using the command: *Output, history, 
sensor, name=SENUi, frequency  *Node 

Output, nset=seti. All the terminologies here and 

after in Courier New font represent the commands used in 

Python and their syntax. Moreover, the time-varying 

amplitude of the user-defined load is generated by the 

command: *Amplitude, name, 

definition=USER, variables. At this set of 

monitored points (seti) the solution-dependent data are 

extracted from the active elements. For instance, in the sub-

problem (b), (seti) represents the nodal group on the top 

surface of piezo-actuator having the same applied electric 

potential. 
UAMP subroutine determines the value of an amplitude 

in a time-dependent manner. This dependence is defined in 
terms of a function that takes the sensor values and current 
time increment for controlling the amplitude of a stimulus 
in load module of ABAQUS/CAE (see Fig. 1(b)). Since all 
information passed to the subroutine are updated at each 
time increment, ABAQUS is set to stall and waits for an 
update on previous value. In this stage, user-defined 
solution-dependent state variables (sensor values) are 
needed to be sent to MATLAB engine. This action requires 
a C compiler which takes the value, calls the MATLAB 
engine to open, executes a function (in an m-file), brings 
back the updated amplitude, closes the MATLAB engine, 
and finally waits for a recall. “Engine applications” are 
standalone C programs that permit the user to call 
MATLAB from another environment and then use it as the 
computation machine. These standalone programs in the 
proposed SiL framework are called within UAMP 
subroutine. The C compiler is therefore responsible for the 
Engine applications while the FORTRAN compiler handles 
UAMP. Moreover, the input array in MATLAB block of 
Fig. 1(b) is passed from engine application to UAMP 
subroutine and vice versa. For this purpose, ENGOPEN 
r o u t ine  ca l l s  MAT LAB  co mp uta t io na l  eng ine , 
MXCREATEDOUBLEMATRIX  creates an array,  and 
MXCREATEDOUBLESCALAR creates a scalar double. All the 
routines in Consolas font here and after represent the 
c o m m a n d s  i n  t h e  F O R T R A N  s u b r o u t i n e . 
MXDESTROYARRAY is used to deallocate the memory 
occupied by the specified array, MXGETPR sets the pointer to 
the first component of the real data, MXCOPYREAL8TOPTR 
copies real values from the FORTRAN array into the 
MATLAB matrix. Furthermore, ENGPUTVARIABLE is 
employed to write an array to the MATLAB engine and 
a ss i g n  a  va r i ab le  na me  fo r  tha t  a r r a y,  wh i l e 
ENGEVALSTRING evaluates the expression contained in 
string for the engine session started by ENGOPEN, 
ENGGETVARIABLE reads the array from the engine session. 
Finally, MXCOPYPTRTOREAL8 is used to copy real values  

 

Fig. 3 ABAQUS kernel and MATLAB engine simulation 

workflow 
 
 

from the MATLAB array into the FORTRAN array, and 
ENGCLOSE routine terminates the current MATLAB 
session. This interconnection is presented in the flowchart 
of Fig. 3. In order to provide the technical details for the 
interested reader while maintaining the readability of the 
paper, the coupling script is separated from the problem 
definition/simulations and moved to the Appendix 1. 

 

 

3. Problem definition 
 

3.1 Sub-problem (a): Offline optimization 
 

In the first sub-problem, the cylindrical panel shown in 

Fig. 1a is used as the geometry of the structure. The main 

reason for selecting such a geometry is that: 1) Defining 

additional circular cylindrical coordinate system for the 

material orientation in orthotropic or anisotropic cases is 

required which makes the problem more general. 2) Non-

conventional assembly and interaction constraints are 

required in sequential structure optimization. In this regard, 

each placement configuration includes the assembly of the 

piezo-sensor/-actuator patches with the host structure within 

a set of predefined partitions shown in Fig. 1(a). 3) As 

pointed out later in the paper, the closed-loop investigations 

reflect more realistic issues which express the importance of 

the proposed coupling scheme in representing the real-time 

tests. While the piezo-patches are moved over these 

partitions on the host panel, the optimality of the smart 

structure is evaluated in terms of an objective function. At 

each simulation iteration, the next placement candidate (a 

partition of the structure geometry) is automatically selected 

by manipulating the parameters of the input file of 

ABAQUS from MATLAB. This procedure is controlled by 

selecting that specific partition to have two tie constraints 

for the actuator and sensor patches. The numerical 

implementation is carried out by finding a point inside a 

loop that defines the coordinates of the mid-point of the 

partition in cylindrical coordinate. Then, the calculated 

coordinates of the mid-point are stored in “.py” file (see 

Fig. 2). It is obvious that additional spatial constraints are 

needed to be automatically defined in the assembly module 

by using the translate instance command based on 

coinciding the corners of the partition of the host layer with 
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the corners of the patches1. 

 

3.1.1 Mesh convergence and state space modeling 
It is assumed that the host structure has the mid-plain 

radius of 0.5 m, the thickness of 0.03 m, the length of 

1 m, and arc angle of 60°. Additionally, the piezo-patches 

are assumed to have the thickness of 5 mm. The host 

structure is made of single layer orthotropic steel with 

density of 𝜌 = 7800 kg/m3, while the actuator and sensor 

are fabricated from PZT4 and 𝐵𝑎2𝑁𝑎𝑁𝑏5𝑂15, respectively. 

Elasticity matrix of the host, actuator, and sensor as well as 

the piezoelectric and dielectric matrices of the patches are 

presented in Appendix 2. It is also assumed that the host 

structure is perfectly bonded with the patches using the tie 

constraint by setting the lower surface of the piezo-actuator 

as the master surface and the upper surface of the sensor as 

the slave surface in relation to the bonding surface of the 

host. With a tie constraint, although the meshes on the 

master and slave surfaces may be dissimilar, the two tied 

regions are fused together. The master surface (actuator to 

the host and host to the sensor) is the surface that may 

penetrate into the slave and as a result the mesh on slave 

media is finer. For modeling the host structure and piezo-

actuator/sensor, linear Hexahedral 8-node brick and 8-nodal 

piezoelectric brick elements are used, respectively. In 

addition, to minimize the computational burden without 

losing accuracy for sub-problem (a), mesh convergence 

analyses (MCAs) are carried out for two sets of mesh 

configurations: i) analyses for controlling the dimensionless 

approximate global size (AGS) of the elements ii) analyses 

for the seed size (local mesh refinement) in the radial, 

tangential, and longitudinal directions of the panel. Two 

series of investigations were performed: 1) Those with the 

finer mesh for the whole structure. 2) Analyses with some 

mesh modification at the location of the piezo-

actuator/sensor. Accordingly, ten models for the 

piezolaminated structure are generated as shown in Table 1. 

In this table, ℳ𝑖 , 𝑖 = 1,… ,7 represent modifications in 

model in order to refine mesh on the paired master/slave 

surfaces of the tie constraints. These modifications can be 

understood by comparing Model III and Model VII in Table 

1. A list of several modifications that are compared in 

MCAs of this paper are presented in Table 2. The 

subsequent standard mesh convergence procedure shows 

Model VII as the correct model. 

 

 

Table 1 Mesh configuration in host structure, piezo-

actuator, and piezo-sensor media 

 

                                           
1Reader may contact the corresponding author to obtain all 

the Python files which may be adapted for other case 

studies. 

Table 2 Mesh modification configuration (A: Actuator, H: 

Host, S: Sensor) 

  ℳ1 ℳ2 ℳ3 ℳ4 ℳ5 ℳ6 ℳ7 

 AGS host 0.04 0.04 0.04 0.03 0.02 0.01 0.04 

A
ct

u
at

o
r # elements 

in 𝜃 
6 5 8 8 8 8 10 

# elements 

in 𝑧 
6 5 8 8 8 8 10 

H
o

st
 # elements 

in 𝜃 
12 10 16 16 16 16 20 

# elements 

in 𝑧 
12 10 16 16 16 16 20 

S
en

so
r # elements 

in 𝜃 
24 20 32 32 32 32 40 

# elements 

in 𝑧 
24 20 32 32 32 32 40 

 

 

Following (Gawronski 2004) and by appropriate 

selection of the modal coordinates (Nestorovic et al. 2015), 

the reduced order dynamical equation of motion for each 

actuator/sensor pair can be written as Eqs. (1a), (1b). Eqs. 

(1a) and (1b) represent the ordinary differential equation of 

motion in state space form 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 

𝑦 = 𝐶𝑥 + 𝐷𝑢. 
(1a) 

where, 

𝐴 = [
0 Ω

−Ω −2𝑍Ω
], 𝐵 = [𝐵𝑚1

𝐵𝑚2]
𝑇, 𝐶 =

[𝐶𝑚1
𝐶𝑚2], 𝐷 = 0. 

(1b) 

with Ω2 = 𝑀𝑚
−1𝐾𝑚 , 𝑍 = diag(𝜉𝑖), 𝑖 = 1,… , 𝑛  in which 

𝑀𝑚, 𝐾𝑚, 𝜉𝑖, and 𝑛 are the modal mass, stiffness matrices, 

damping ratio associated with mode number 𝑖, and the total 

number of mode-shapes considered in the modeling 

process, respectively. Additionally, 𝑥 ∈ ℛ2𝑛, 𝑢 ∈ ℛ𝑛𝑢 , and 

𝑦 ∈ ℛ𝑛𝑦  are the state, input, and output vectors, 

respectively while 𝐴 ∈ ℛ2𝑛×2𝑛 , 𝐵 ∈ ℛ2𝑛×𝑛𝑢 , and 𝐶 ∈
ℛ𝑛𝑦×2𝑛 are the state, control input, and output matrices, 

correspondingly. 𝐵𝑚1,2
 and 𝐶𝑚1,2

 are the modal coupling 

matrices of the piezo-actuator/-sensor, respectively. Finally, 

ℛ symbolizes the set of all real numbers.  

Technically, the state space model in Eq. (1a) is created 

by using the modal electrical potential coupling matrices 

which are calculated in ABAQUS/CAE and extracted by 

Python script using session.writeFieldReport 

command (Puri 2011). The automatic process of 

constructing Eq. (1a) for all actuator/sensor configurations 

is carried out by reading this Python file in MATLAB for 

each placement scenario. Then, MATLAB program assigns 

new locations to the patches as the new decision variables. 

The m-file automatically and sequentially submits the 

analysis by: mo='noGUI'; system(['abaqus cae 

',mo,'=MainFileAnalysis.py']);. In which 

MainFileAnalysis includes all definitions from the 

Python file for geometry, assembly, interactions, mesh, and 

job modules. The termination command should be activated 

accordingly.  
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This sub-problem is a candidate of all other case studies 

as long as the offline optimization process is intended in the 

solution method. Therefore, applicable and reliable 

resolutions for optimal structural design which is a 

demanding task in early development phases of a new 

product can be carried out in a similar manner as sub-

problem (a). This makes it possible to test the feasibility 

and effectiveness in advance, before a prototype is 

available. 
 

3.1.2 Actuator/senor placement objective 
The optimal placement of the actuator/sensor on the 

structure both in collocated and non-collocated 

configurations falls into the offline iterative post-processing 

scheme of Fig. 2. Optimal placement for plate and panel 

structures was investigated previously in (Han and Lee 

1999, Bruant et al. 2010, Nestorovic et al. 2015, 

Hasheminejad and Oveisi 2016) based on genetic algorithm 

(GA). Kumar and Narayanan (Ramesh Kumar and 

Narayanan 2007) have applied their LQR controller based 

criteria to find optimal location of piezoelectric 

actuators/sensors in vibration control of plates using GA. In 

the paper by Peng et al. (2005), the maximization of the 

controllability Gramian in combination with GA was used 

as the criterion for optimal placement of a clamped plate. A 

similar approach with modal controllability and 

observability Gramians and GA was also employed by Sadri 

et al. (1999, 2002). In this paper, the objective function is 

defined in terms of 𝐻2/𝐻∞ norm of input to output gains 

(Nestorović and Trajkov 2013). Accordingly, the 

approximate 𝐻2-norm of the transfer function from each 

actuator to the sensor for mode number (𝑖) is calculated as 

Eq. (2) (Gawronski 2004). 

‖𝐺𝑖‖2 =
‖𝐵𝑚𝑖‖2‖𝐶𝑚𝑖‖2

2√𝜉𝑖𝜔𝑖

≅ 𝜎𝑖√2∆𝜔𝑖 , (2) 

where 𝜎𝑖  are the Hankel singular values and ∆𝜔𝑖  are 

referred to as the half power frequencies. Additionally, the 

elements of 𝐵  and 𝐶  in Eq. (2) represent the values 

associated with the physical variables, e.g., electric 

potential at actuator and sensor nodes for each mode shape, 

respectively (see (Nestorović and Trajkov 2013)). Using the 

additive property of  𝐻2 in mode number (𝑖) for a set of 

actuator (𝑗) and sensor (𝑘) elements, Eq. (3) can be written. 

‖𝐺𝑖𝑗‖2
=

‖𝐵𝑚𝑖𝑗‖2
‖𝐶𝑚𝑖‖2

2√𝜉𝑖𝜔𝑖
, ‖𝐺𝑖𝑘‖2 =

‖𝐵𝑚𝑖‖2‖𝐶𝑚𝑖𝑘‖2

2√𝜉𝑖𝜔𝑖
, 

‖𝐺𝑖‖2
2 = ∑‖𝐺𝑖𝑗‖2

2

𝑛𝑎

𝑗=1

, ‖𝐺𝑖‖2
2 = ∑‖𝐺𝑖𝑘‖2

2

𝑛𝑠

𝑗=1

. 
(3) 

where 𝑛𝑎  and 𝑛𝑠  are number of actuators and sensors, 

respectively. All of the results in multiple modes should be 

then normalized by ‖𝐺‖2 = √∑ ‖𝐺𝑖‖2
2𝑛

𝑗=1  and the 

normalized results are gathered in a matrix (𝑁2). 

𝜂𝑖(2)
𝑘𝑟 =

‖𝐺𝑖𝑘𝑟‖
2

‖𝐺‖2
, 𝑘𝑟 = 1,… , 𝑛𝑟 , 𝑟 = 𝑎, 𝑠, 

𝑁2 =

[
 
 
 
 
𝜂1(2)

1 𝜂1(2)
2 ⋯ 𝜂1(2)

𝑛𝑟

𝜂2(2)
1 𝜂2(2)

2 ⋯ 𝜂2(2)
𝑛𝑟

⋮ ⋮ ⋱ ⋮
𝜂𝑛(2)

1 𝜂𝑛(2)
2 ⋯ 𝜂𝑛(2)

𝑛𝑟
]
 
 
 
 

. 
(4) 

Based on Eqs. (2)-(4) similar concept can be defined by 

𝐻∞  norm ‖𝐺𝑖‖∞ =
‖𝐵𝑚𝑖‖2‖𝐶𝑚𝑖‖2

2𝜉𝑖𝜔𝑖
. Then, by describing 

𝜂𝑖(∞)
𝑘𝑟  and 𝑁∞ similar to Eq. (4), the optimization function 

for multi-modal 𝐻2  case is calculated as 𝜂𝑎,𝑠(2)
𝑘𝑟 =

√∑ (𝜂
𝑖(2)
𝑘𝑟 )

2
𝑛
𝑖=1  and for 𝐻∞  case as 𝜂𝑎,𝑠(∞)

𝑘𝑟 =

max
𝑖

𝜂𝑖(∞)
𝑘𝑟 , 𝑖 = 1, … , 𝑛 . The objective function based on 

these 𝐻2/𝐻∞  norm-valued scalars is defined similar to 

(Nestorović and Trajkov 2013). The authors are aware of 

the other objective functions existing in the literature such 

as including a measure of unmodeled dynamics for spillover 

effect, simultaneous optimization of actuator/sensor 

placement and control system, etc. but the main thrust of 

this paper is to present the possibility of using an 

independent SiL framework which can realize various 

objectives as well. This goal is evaluated here by using a 

reasonably simple objective function for testing offline 

efficiency of the configuration in section 2.1. 

 

3.1.3 Sub-problem (a): Simulation results 
For the simulation example shown in Fig. 1(b), 

neglecting the symmetricity of the structure, in the case of 

single-input single-output (SISO), 10000 possible 

configurations (collocated & non-collocated) are available 

in the discrete solution space. The fulfillment of optimality 

criteria is thus not restricted to a narrow set of predefined 

solution space and it relies on verifying a symmetrical 

portion of all candidates. For the sake of brevity in the 

single mode analyses, the optimization results in Fig. 4 are 

presented for two mode-shapes only: i) mode-shapes 

number two and four for actuator location. ii)  mode-

shapes number three and five for sensor location. Placement 

indices for various configurations are separately depicted 

based on Eqs. (2)-(4) for actuator/sensor elements. Each 

sub-plot in actuator placement is presented together with the 

modal strain contour plot associated with that mode. 

Locations with higher placement indices for both sensor and 

actuator specify the priority of them in the selection process 

of the final configuration. As it can be seen the best actuator 

locations are in agreement with the maximum strain values. 

On the other hand, for sensor placement, the modal Mises 

stress indicates the best location which is justified by the 

material behavior of piezo/PVDF elements. The forms of 

the placement curves for other mode-shapes are 

qualitatively similar as their modal parameters and for the 

sake of briefness are omitted in Fig. 4. 

Next, based on 𝜂𝑎,𝑠(2)
𝑘𝑟  and 𝜂𝑎,𝑠(∞)

𝑘𝑟  the feasibility of the 

proposed method in finding the optimal configuration in the 

case of multiple simultaneous eigenmodes consideration is 

presented in Fig. 5. For the sake of briefness, the multiple 

modes results are reported for two cases: i) Considering 

four simultaneous fundamental natural frequencies. ii) 

Considering nine fundamental natural frequencies. As it can 

be observed in Fig. 5, the results for 𝐻2 and 𝐻∞ objective 

functions are not identical. The reason for having such a 

difference is the form of placement indices 𝜂𝑎,𝑠(2)
𝑘𝑟  and 

𝜂𝑎,𝑠(∞)
𝑘𝑟 , respectively.  
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Fig. 4 Objective function for single mode placement 
 

 

For the first case a weighted summation of the objective 

functions for each mode is affecting the placement index 

and for latter, only the maximum input-output (IO) gain for 

that location determines the multi-modal objective. In 

physical sense, the 𝐻2  placement strategy provides an 

energy efficient configuration which results in models with 

correspondingly controllable and observable retained 

modes. However, the 𝐻∞  index sets the constraint for 

maximum amplitude of the transfer function and as a result 

the highest control authority can be achieved. 

Remark 1. The numerical example in this subsection 

covers a broad spectrum in structural optimization which 

may not primarily be limited to the electrical potential in 

active elements of smart structures but systems with some 

integrated universal transducers, whose effect may be 

reflected by forces, moments, magnetic field, temperature, 

etc. 

For the parallel actuator/sensor placement, the results of 

the evaluation of the objective matrices based on Eq. (3), 

are presented only for the 𝐻∞-norm scheme in Fig. 6. By 

overlaying the contour plots of the modal strain and the 

Misses stress as the physical controlling variables of the 

placement index, it can be observed that unlike beam and 

plate structures, the optimal actuator and sensor may appear 

in non-identical places. This emphasizes the importance of 

using multiple-modal objectives, since the transient 

behavior of the system in general depends on a large 

number of the eigenmodes. Additionally, unlike lower mode 

numbers where the changes of the placement index are 

gradual, in higher mode-shapes, drastic changes may 

appear. 

Finally, the results of the 𝐻2- and 𝐻∞-norm schemes 

are compared for multiple-modal consideration case in Fig. 

7. Accordingly, two sets of analyses are carried out for 

actuator/sensor pairs with collocated and non-collocated 

configurations. In order to emphasize the effect of 

placement in the parallel modal consideration, the analyses 

are performed for several modal combinations and two of 

them are presented: i) Including mode-shapes one through 

five, ii) Including mode-shapes one through ten. 

 

Fig. 5 Multi-modal optimization results for 𝐻2&𝐻∞ 

 

 

The observations are as follows: 1) 𝐻2- norm scheme 

tends to keep the optimal location in the same trend as the 

number of included mode-shapes are increasing. This 

behavior can be observed by comparing two subplots for 

non-collocated configurations based on the inclusion of five 

and ten eigenmodes of system. 

Such a tendency is due to the fact that 𝐻2-based 

algorithm has a memory that takes into account the effect of 

all of the eigenmodes. One advantage of the 𝐻2 method is 

then the globality of the optimal solution. However, since 

for real applications, not all of the frequencies are equally 

involved in final response of the system, this method is 

conservative. To overcome this drawback, a separate 

frequency-domain analysis for host structure should be 

carried out, preferably in real-time application under 

realistic working conditions, to calculate the frequency 

response function (FRF) of the system and indicate the 

effective mode-shapes. Then, a weighted 𝐻2-norm-based 

method will be more effective. 2) In contrast, the 𝐻∞- norm 

scheme takes into consideration a measure of maximum 

placement indices. As a result, by including new dynamics 

of higher order nature into the calculations, the optimization 

outcome may diverge significantly. This can be observed by  
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Fig. 6 𝐻∞ objective function in single mode simultaneous 

actuator and sensor placement 

 

 

Fig. 7 Collocated/non-collocated configurations 

 

 

comparing the accumulative optimization indices for the 

actuator/sensor numbers around 50 (see Fig. 1(a)) in two 

cases of five and ten mode-shapes. Such an approach will 

result in an inaccurate assessment of the problem for the 

cases that the frequency range of the application may alter 

from time to time. This emphasizes the importance of 

combined 𝐻2/𝐻∞-methods. 

3) For the collocated formation, the results of 𝐻2- and 

𝐻∞-based optimization functions are qualitatively similar. 

As a result, in the applications where the transducer 

includes a pair of actuator/sensor, the results of the 

optimization are expected to coincide mostly for both  

  
Configuration 1 Configuration 2 

Fig. 8 Symmetrical configurations for optimal (2) and non-

optimal (1) actuator/sensor placement 

 

Table 3 The four best actuator/sensor placement numbers 

based on different criteria 

 Separate placement collocated placement 

 actuator Sensor  

Mode 

number 
𝐻2 𝐻∞ 𝐻2 𝐻∞ 𝐻2 𝐻∞ 

1 45, 46, 55, 56 45, 46, 55, 56 15, 16, 85, 86 15, 16, 85, 86 45, 46, 55, 56 45, 46, 55, 56 

2 35, 36, 65, 66 35, 36, 65, 66 5, 6, 95, 96 5, 6, 95, 96 35, 36, 65, 66 35, 36, 65, 66 

3 43, 48, 53, 58 43, 48, 53, 58 3, 8, 93, 98 3, 8, 93, 98 43, 48, 53, 58 43, 48, 53, 58 

4 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 

5 43, 48, 53, 58 43, 48, 53, 58, 3, 8, 93, 98 3, 8, 93, 98 43, 48, 53, 58 43, 48, 53, 58 

1-2 35, 36, 65, 66 35, 36, 65, 66 5, 6, 95, 96 5, 6, 95, 96 35, 36, 65, 66 35, 36, 65, 66 

1-5 33, 38, 63, 68 33, 38, 63, 68 4, 7, 94, 97 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 

1-8 32, 39, 62, 69 22, 29, 72, 79 32, 39, 62, 69 22, 29, 72, 79 34, 37, 64, 67 42, 49, 52, 59 

1-10 25, 26, 75, 76 25, 26, 75, 76 25, 26, 75, 76 45, 46, 55, 56 34, 37, 64, 67 42, 49, 52, 59 

 

 

procedures. However, if the application operates in a 

broadband frequency, the result of the 𝐻2-based method is 

less informative without appropriate weighting.  

This can be observed by comparing the placement 

indices of the collocated form including ten eigenmodes for 

𝐻2- and 𝐻∞-objectives. For the sake of brevity, the rest of 

the results are presented in Table 3 for four best symmetric 

locations of actuator/sensor placement. For sub-problem 

(b), two configurations are selected as shown in Fig. 8: 1) 

The non-optimal configuration with collocated 

actuators/sensors at locations 11, 20, 81, and 90 of Fig. 1(b). 

2) The optimal location based on multi-modal (1-10) 

placement result of 𝐻2-scheme: 34, 37, 64, and 67 of Fig. 

1(b). 

Next, the simulation sub-problem (b) is outlined in 

details to illustrate the applicability of the methodology in 

section 2.2 and Appendix 1 for time-dependent online 

analysis namely, the closed-loop system design. 

 

3.2 Sub-problem (b): SiL in closed-loop investigates 
 

In this section, the application of the real-time SiL 

described in section 2.2 is shown for AVC of two piezo-

laminated panels in Fig. 8. Sensor values as predefined 

time-varying physical measures in the output history of the 

system response are collected in nodal level and as shown 

in Fig. 3 are sent to be processed inside “Engine 

application” (Refer to Appendix 1). The control law 

(feedback signal) is generated by using arbitrary 

linear/nonlinear controller synthesized in MATLAB. As 

long as the structure of the controller can be formulated in 

an m-file in the form of a system of ordinary differential  
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Fig. 9 The frequency response function in nominal range 

compared to wide-band obtained from ABAQUS 

 

 

equations (ODE), the proposed coupling scheme can handle 

the implementation of the controller inside a loop with 

ABAQUS/CAE. For the simulation example in sub-

problem (b), the designed controller is parameterized in a 

function that takes a vector of inputs (see Fig. 1(b)) 

including the previous output of the plant, sensor values, 

current time step, time increment, and amplitude generated 

from MATLAB in the previous step. This vector is imported 

as the input data for the fixed-step ODE solver. As a result, 

it is essential to create a set that records the amplitude of the 

plant inside FORTRAN and provides the data at each 

increment for MATLAB. To keep the problem tractable, an 

optimal controller is designed based on the reduced order 

nominal model from sub-problem (a) for the two final 

configurations. The details of the output feedback linear 

quadratic Gaussian regulator as a classical method is briefly 

presented in Appendix 3. 

 

3.2.3 System identification and closed-loop analyses 
A reduced-order plant is required for the LQG controller 

design in Appendix 1. For this purpose, first the system 

response in frequency-domain as a nonparametric model is 

obtained by Steady-state dynamics, Direct step in the 

frequency range of [1350 8000] Hz.  

The frequency response function (FRF) of the system 

from the control input and disturbance input to the 

measurement signals are presented in Fig. 9. Then, the state 

space matrices including the disturbance matrix is 

parameterized via frequency-domain subspace system 

identification method following (Favoreel et al. 2000, Wills 

et al. 2009). 

The frequency range is limited to a narrow band 

compared to the steady-state analysis in ABAQUS for two 

main reasons: 1) to express the efficiency of the SiL 

configuration in detecting the spillover effect when the 

nominal model is selected to be narrow band. In other 

words, compared to conventional methods of implementing 

the designed control system on the reduced order model 

which is in contrast with the nature of real -time  

 

Fig. 10 Comparison of the open loop and closed-loop 

systems in time domain: (a) non-optimal configuration. (b) 

optimal configuration 

 

 

implementations, it is observed that for disturbance signals 

with broadband frequency content the control system is 

unable to suppress the vibrations or even cause instability 

due to the spillover effect. Additionally, due to the 

unconventional geometry of the problem compared to the 

results in the literature of FE-based control (mostly 

clamped-free beam), the higher order modes can 

significantly affect the dynamic response. 2) To show that 

as long as the disturbance signal is activated in the nominal 

frequency range, the designed controller is able to attenuate 

vibration amplitude. 

Before moving to the closed-loop performance 

evaluation, it should be pointed out that since the transient 

simulations are performed in dynamic implicit scheme, the 

time integration damping generated by ABAQUS is 

automatically introduced due to Hilber-Hughes-Taylor as an 

extension of Newmark’s 𝛽-method time integration. The 

parameters corresponding to the transient fidelity are 

selected to be 𝛼 = −0.05, 𝛽 = 0.275625, and 𝛾 = 0.55 

such that the numerical energy dissipation is kept minimal. 

This operator has an advantage that it is unconditionally 

stable for a linear system (Puri 2011). Next, the vibration 

suppression performance is investigated in the frequency 

range of the reduced-order system. Accordingly, the panel is 

excited by a uniformly distributed time-varying pressure 

that acts over partitions 44, 45, 54, and 55 simultaneously 

with a chirp profile: magnitude of 106  and frequency 

swept between [1350 2500] Hz within 1 sec. The open loop 

and closed-loop system responses are compared at an 

observation nodal point in the center of the host layer’s top 

surface in Figs. 10(a) and 10(b) for configurations 1 and 2, 

respectively. For the results in Fig. 10(a) (case 1) and Fig. 

10b, it is assumed that 𝒲d = 103  and 𝒲n = 1  while 

𝑄∗ = 106 and 𝑅∗ = 1 (see Appendix 3). 

It is obvious that due to the placement of active 

elements,  applying the same weighting for two 

configurations lead to widely different results; one of which 

is instable. The optimal configuration 2 in Fig. 8 suppresses 

the vibration in the nominal frequency range while the non-

optimal configuration leads to instability (Case 1 of Fig. 

10(a)). Additionally, the spatial vibration suppression of the 

system can be observed for any specific time-step e.g., the 

snapshot of the open loop and closed-loop systems in Fig. 

11 for 𝑡 = 0.3785 sec (see Fig. 10(b)) which is an 

advantage of the SiL method. In order to investigate the 

main reason for instability of the system in configuration 2,  
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Fig. 11 Comparison of spatial displacement of open loop 

and closed-loop systems in contour plot of isosurfaces in 

deformed panel at 0.3785 sec snapshot 

 

 

Fig. 12 Applied control input on the piezo-actuators bonded 

on top surface of the host panel 

 

 

fast Fourier transformation (FFT) is applied on the control 

signal as shown in Fig. 12(a), Case 1. It is observed that due 

to the spillover effect, the system dynamic at 5414 Hz is 

excited by the controller. 

However, as shown in Fig. 9 (configuration 1, Case 1), 

the dynamics of the plant with higher frequency than 4450 

Hz are neglected. To address this issue the process of 

identification and control synthesis are re-performed by 

increasing the nominal frequency range up to 5850 Hz as 

Case 2 in Configuration 1 (see Fig. 9: dashed green line). 

Vibration attenuation quality assessment in Fig. 10(a) Case 

2 reveals that the control system is unable to suppress the 

vibration. Additionally, the control effort in AVC that results 

in suppressing the vibration amplitude in Figs. 10(a) (Case 

2) and 10(b) are presented in Figs. 12(a) (Case 2) and 12(b), 

respectively. 

Two main observations are as follows: 1) Although the 

results of the control implementation on the nominal 

reduced-order plant are suppressed, it is seen that the 

closed-loop system is stable and suppresses the vibration. 

Therefore, the importance of the SiL framework proposed 

in this paper is emphasized in providing a realistic 

evaluation of the controller performance when implemented 

on an approximation of the full-order system. This feature is 

especially emphasized for the cases that real-time 

experimental implementations are costly, hazardous, or in 

the phase of structural design and prototyping where there 

is no access to the real plant.  

2) Comparing Figs. 12(a) (Case 2) and 12(b) for optimal 

and non-optimal configurations shows that although the 

amplitude of control law is higher in non-optimal scenario 

and Case 2 covers a broader frequency range, it is unable to 

match the same vibration suppression performance as in the 

optimal case. Using the SiL technique may reveal 

reasonable resolutions for that matter: 2a) The delay in the 

system: Sub-figures in Figs. 12(a) (Case 2) and 12(b) show 

that for non-optimal configuration, there exists ≈ 2 × 10−6  

 

Fig. 13 The deformation contour plot in 𝑟-directions at 

5414 Hz 
 

 

sec time-delay from disturbance to the sensor which is 

neglected in control synthesis. Accordingly, for real 

applications such as flexible manipulators used in Space 

Robotic Arms with large geometries and non-collocated 

actuator/sensor placement such time-delays in 

actuator/sensor elements as mentioned in (Bossi et al. 2011) 

may lead to performance degradation. 2b) Although the 

actuator/sensor size optimization is neglected in this study, 

by looking at the contour plot of isosurfaces in the 

deformed panel in 𝑟-directions at 5414 Hz in Fig. 13, for 

non-optimal configuration, the inability of closed-loop 

system in suppressing the vibration amplitude is evident. 

The results in Fig. 11 are presented only for 

configuration 2 for the sake of brevity. One remark is that if 

the simulations need a large number of increments (≥
300000), then the obtained results may be affected by 

round-off errors. A possible solution is executing the 

ABAQUS Job module with double precision entries. 

The geometry of the simulation problems in this paper is 

more complicated than in previous studies such as beams 

with a couple of natural frequencies below 100 Hz. Such a 

geometry is intentionally selected to show the efficiency of 

the SiL scheme in detecting the realistic behavior of the 

closed-loop system in complicated structures. The 

experimental analyses carried out in (Oveisi and Nestorović 

2016, Oveisi and Nestorovic 2016) show an agreement in 

the behavior of AVC performance evaluation observed in 

the proposed SiL configuration.  

Analyzing the vibration suppression for higher 

frequencies is out of the scope of this paper which requires 

large system memory, higher processing power, and CPU 

time due to the higher required mesh density and lower 

time-increment (Bossi et al. 2011). The SiL framework can 

be used as a tool for extracting the time-domain response of 

geometrically nonlinear mechanical structures (open loop 

and closed-loop) for complex geometries where analytical 

solutions are nonexistent and experiments are costly. New 

uncertainty quantification methods can be established based 

on the combination of recent developments in covariance 

matrix adaptation evolution strategy (CMA-ES) (Claeys et 

al. 2014, Noël and Kerschen 2017) and the modeling 

framework proposed in this paper. Also, Additional 

FORTRAN subroutines may be combined with UAMP e.g. 

user-defined finite elements can be incorporated within 

ABAQUS e.g., authors used UEL subroutine to implement 

Mindlin-type nine-node shell element for the piezoelectric 

domain (Nestorović et al. 2012).  
 

 

4. Conclusions 
 

In this paper, a stable interconnection between 

652



 

Finite element-based software-in-the-loop for offline post-processing and real-time simulations 

 

ABAQUS and MATLAB is developed and tested for both 

offline post-processing and online simulation of time-

varying amplitudes. A detailed ready-to-use scheme is 

prepared in a step-by-step manner that makes the software-

in-the-loop framework flexible in terms of adding/changing 

additional FORTRAN subroutines. Possible issues in 

establishing this connection are remarked. In order to 

investigate some of the key features of such 

interconnection, two design problems are defined for a 

mechanical structure with relatively complex geometry. 

Comprehensive analyses are carried out in terms of 

observing the behavior of the framework. 
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Appendix 1 
 

In order to arrange a ready-to-use interface for the 

reader, the revised form of standard UAMP is broken into 

some script blocks. This increases the readability of the 

script in comparison to a batch entrance. Let’s name the 

revised UAMP subroutine “general block” which starts with 

general block part 1 in Fig. A1.  

 
general block part 1 
        Subroutine uamp( 
C          passed in variables 
     *   ampName, time, ampValueOld, dt, nProps, props, nSvars, svars, 
     *     lFlagsInfo, nSensor, sensorValues, sensorNames,  
     *     jSensorLookUpTable,  
C          to be defined (if needed) 
     *     ampValueNew,  
     *     lFlagsDefine, 
     *     AmpDerivative, AmpSecDerivative, AmpIncIntegral, 
     *     AmpIncDoubleIntegral) 
           include 'aba_param.inc' 

Fig. A1. The general FORTRAN subroutine’s first block: 

subroutine declaration and UAMP’s variable definition 

For brevity, the standard UAMP is not explained in this 

paper, and the interested reader may refer to ABAQUS user 

subroutine reference manual. Next, in contrast to standard 

UAMP, an interface should be defined including the 

signatures of some functions and additional subroutines. 

The interface in FORTRAN is declared with the 

interface keyword after general block part 1, and then 

ends before defining the class of sensorValues in the 

program block of Fig. A2 by end interface keyword. 

This block in the rest of the appendix is referred to as 

“interface block”. 

 
interface block part 1 
interface 

function ENGOPEN (command) bind(C,name="ENGOPEN") 
   integer(INT_PTR_KIND()) :: ENGOPEN 
   character, dimension(*), intent(in) :: command 
end function ENGOPEN 

end interface 

Fig. A2. The first part of the interface block as the 

language-binding-spec attribute 

 

At this point, MATLAB engine should be called inside 

the main subroutine, and since FORTRAN compiler is used 

for ABAQUS/CAE kernel, any function/subroutine inside 

the interface block should be bound with the language-

binding-spec attribute, using the keyword bind. Such an 

entity in FORTRAN processor is treated as its conforming 

object in the companion C compiler. Note that the engine 

applications in visual studio (VS) environment are straight-

forward to be compiled. However, the harvested features of 

VS in ABAQUS require the interface block which serves as 

the recognition platform between the case-sensitive 

commands of FORTRAN and C. As an example, ENGOPEN 

routine is presented as the first entity to interface block in 

Fig. A2.  

Such a function needs the declaration of the class of its 

input and output variables. To increase the readability, the 

rest of interface block is presented at the end of Appendix 1. 

After ending the interface block, the variables together with 

their classes are defined in a similar manner to MATLAB 

function definition syntax and then followed by general 

block part 2 which is partially shown in Fig. A3.  

 

general block part 2 
! Time vector parameters 
double precision timestep1, timestep2   
C     time indices 
        parameter (iStepTime        = 1, 
     *           iTotalTime       = 2, 
     *           nTime            = 2) 
timestep1 = time(iStepTime) 
timestep2 = timestep1 + dt  
Fig. A3. General block for time indices and various 

information flags 

 

The general block part 2 may contain the time indices, 

definition/activation of various information flags, the 

definition of sensor values at the end of the previous 

increment (sensorValues), and description of the array of 

the solution-dependent state variables (svars). These 

variables should be written in FORTRAN language intrinsic 

data types. Then, iGetSensorID('SENUi', 
jSensorLookUpTable) would deliver the user-defined 

solution-dependent state variables which should be passed 

through MATLAB engine.  

Note that independent of the numerical example of sub-

problem (b) in Fig. 1a, the current steps are general for 

other applications mentioned in the introduction section as 

long as they can be formulated in terms of a time-dependent 

step module of ABAQUS with a series of external loads or 

time-varying boundary conditions. At this point, MATLAB 

engine is opened, a double array of the desired size is 

defined (forvar) for the variables that are going to be 

processed in MATLAB engine (matlabsession), a time 

vector is created in MATLAB, and the vector is copied from 

FORTRAN array to MATLAB array using MXGETPR. This 

completes the general block part 3 as illustrated in Fig. A4.  

 
general block part 3 
integer*8 matlabsession 
matlabsession = ENGOPEN('matlab') 
! Check point 1: 
T = MXCREATEDOUBLEMATRIX(Mi, Ni, 0) 
Call MXCOPYREAL8TOPTR(forvar, MXGETPR(T), Ni) 
status = ENGPUTVARIABLE(ep, 'TT', T) 
if (status .ne. 0) then  
   write(6,*) 'ENGPUTVARIABLE failed: Check point 1' 
   stop 
endif 
Fig. A4. The general program for opening the engine and 

evaluating the MATLAB function for the vector defined in 

UAMP subroutine  

Next, a MATLAB function (m-file) which controls the 

execution of the online post-processing algorithm is called. 

This function (matlabfunc) is a gateway to the MATLAB 

toolboxes such as signal processing, control design, fuzzy 

systems, etc. The m-file initiates the commands at the 

beginning of each time increment while the ABAQUS/CAE 

kernel is in a wait state. User-defined functions can be 

called only if the current directory includes a copy of the 

function, however, since the MATLAB engine still needs to 

be called from ABAQUS, the only possibility is to add the 

directory containing the m-file to permanent MATLAB 

directory using “pathtool”. Since the function called in the 

global MATLAB directory cannot save the variables, it is 

recommended to create a dummy vector in UAMP and 

assign the generated results from MATLAB iteratively to its 

elements. This action has three advantages: 1) the 

simulations can be terminated using some if-conditions on 

ampValueNew (see Fig. A1) in the case of violation of a 
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physical constraint or performance index. In application of 

AVC of sub-problem (b), this criterion can be the maximum 

control effort generated from the controller exceeding the 

piezo-patch depolarization voltage or maximum 

displacement of a shaker baffle. 2) During the simulation, 

the visualization module can be executed over the resulted 

“.odb” file for observing the generated amplitudes in 

UAMP. 3) An additional advantage is the possibility to have 

access to these variables in Tecplot Software.  

At this point, the MATLAB function is called from 

FORTRAN subroutine, the resulted array in MATLAB is 

read by the messenger of FORTRAN interface, and the 

obtained array is copied from MATLAB array to 

FORTRAN array as in general block part 4 in Fig. A5.  
general block part 4 
! Check point 2: 
if (ENGEVALSTRING(matlabsession, 'out1 = matlabfunc(TT);') .ne. 0) then 
   write(6,*) 'ENGEVALSTRING failed: check point 2' 
   stop 
endif 
out2 = ENGGETVARIABLE(matlabsession, 'out1') 
call MXCOPYPTRTOREAL8(MXGETPRS(out2), out3, No) 

Fig. A5. The general program for bringing back the 

MATLAB function’s output using the FORTRAN 

messenger  

It is evident that variables out1, out2, and out3 are 

classified in general block part 2 (suppressed for the sake 

of brevity). Finally, the amplitude is updated in FORTRAN 

subroutine based on the values of out3, and the array is 

deallocated as: call MXDESTROYARRAY(T) for the new 

increment.  

Additional notes: 

• Since the routines in the interface block are mixed-

case, the declarations in Fig. A6 are needed before interface. 

 
Pre-interface block 
!DEC$ OBJCOMMENT LIB:"libeng.lib" 
!DEC$ OBJCOMMENT LIB:"libmx.lib"  
!DEC$ OBJCOMMENT LIB:"libmat.lib" 

Fig. A6. Intel-style pre-processing directives 
 

where the OBJCOMMENT LIB directive postulates a library 

in an object heading. In this case, the “linker” looks for the 

character constant .lib by the OBJCOMMENT directive in 

the command line of the script. The reason behind this 

obligatory declaration is that FORTRAN is not case-

sensitive. However C is, and the routines in MATLAB 

libraries are mixed-case. As a result, Intel-style pre-

processing directives are required. The three libraries 

mentioned above are available by installing the MATLAB 

software. 

• If C code correctly links with the external libraries but 

“unresolved external symbol reference” error appears, 

assembler output should be checked. For Microsoft 

Windows operating systems (OS), some changes should be 

applied: low case, up case, and mixed case. A list of such 

changes is available for the linker in the header file “fintrf.h” 

provided by Mathworks which contains the declaration of 

the pointer type needed by the MATLAB/FORTRAN 

interface. Since this header file is not readable for 

ABAQUS compiler, those changes should be found and 

applied manually from the assembler output. One should 

note that only Windows linker has this feature. For instance, 

in this paper, mxCopyReal8ToPtr is replaced with 

MXCOPYREAL8TOPTR730 along with some other 

modifications. These changes are different from one OS to 

another. This is a common approach when one needs to 

write an assembly program to interface with a C application 

using decorated function names. Then, in order to figure out 

the problematic name mangling, an empty shell subroutine 

in C is recommended to be written. The produced assembly 

output, gives the correct form to be referred to in subroutine 

that should be applied manually. 

As it can be seen in the interface block part 2, 

additional subroutines are MXDESTROYARRAY, 

MXCOPYREAL8TOPTR, and MXCOPYPTRTOREAL8, which all 

require DECORATE attribute on a mixed-language 

application. Additionally, unlike the functions, no return 

values should be assigned to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

656



 

Finite element-based software-in-the-loop for offline post-processing and real-time simulations 

 

Appendix 2 
 

The material properties of the composite structure are 

provided for the host structure 

𝐶ℎ =

[
 
 
 
 
 
28.3 12.1 12.1 0 0 0
12.1 28.3 12.1 0 0 0
12.1 12.1 28.3 0 0 0
0 0 0 8.1 0 0
0 0 0 0 8.1 0
0 0 0 0 0 8.1]

 
 
 
 
 

 [GPa], 

and the piezo-actuator/sensor (density: 𝜌𝑎 = 5300
kg

m3
, 𝜌𝑠 =

7500
kg

m3
) 

𝐶𝑎 =

[
 
 
 
 
 
23.9 10.4 5.2 0 0 0
10.4 24.7 5.2 0 0 0
5.2 5.2 13.5 0 0 0
0 0 0 6.5 0 0
0 0 0 0 6.6 0
0 0 0 0 0 7.6]

 
 
 
 
 

 × 10[GPa] 

𝐶𝑠 =

[
 
 
 
 
 
13.9 7.8 7.43 0 0 0
7.8 13.9 7.43 0 0 0
7.43 7.43 11.5 0 0 0
0 0 0 2.56 0 0
0 0 0 0 2.56 0
0 0 0 0 0 3.06]

 
 
 
 
 

 × 10[GPa] 

𝐸𝑎 =

[
 
 
 
 
 

4.3 0 0
−0.4 0 0
−0.3 0 0

0 0 0
0 0 2.8
0 3.4 0 ]

 
 
 
 
 

 [C/m2] 𝐸𝑠 =

[
 
 
 
 
 
15.1 0 0
−5.2 0 0
−5.2 0 0

0 0 0
0 0 12.7
0 12.7 0 ]

 
 
 
 
 

 [C/m2] 

𝜖𝑎 = [
1.96 0 0
0 2.01 0
0 0 0.28

] [nF/m] 𝜖𝑠 = [
6.5 0 0
0 6.5 0
0 0 5.6

] [nF/m] 

where 𝐸𝑎 , 𝐸𝑠 , 𝜖𝑎 , and 𝜖𝑠  represent the piezoelectricity 

matrices (stress coefficients) and the dielectric matrices for 

actuator and sensor, respectively. 

 
interface block part. 2 
        function MXCREATEDOUBLEMATRIX (a1,b1,c1)  
     *           bind(C,name="MXCREATEDOUBLEMATRIX") 
        integer*8 :: a1,b1,c1 
        integer*8 :: MXCREATEDOUBLEMATRIX  
        intent(in) :: a1,b1,c1 
        end function MXCREATEDOUBLEMATRIX 
         
        function MXCREATEDOUBLESCALAR (a2)  
     *           bind(C,name="MXCREATEDOUBLESCALAR") 
        real*8 :: a2 
        integer*8 :: MXCREATEDOUBLESCALAR  
        intent(in) :: a2 
        end function MXCREATEDOUBLESCALAR   
         
        Subroutine MXDESTROYARRAY (a3) 
!DEC$ ATTRIBUTES DECORATE, ALIAS:"MXDESTROYARRAY" :: MXDESTROYARRAY 
        integer*8, dimension(*) :: a3  
        end Subroutine MXDESTROYARRAY   
 
        function MXGETPR(a4) result(ptr) bind(C, name='MXGETPR') 
        import 
        implicit none 
        integer*8, dimension(*), intent(in) :: a4 
        integer*8 :: ptr 
        end function MXGETPR 
         
        Subroutine MXCOPYREAL8TOPTR (a5,b5,c5) 
!DEC$ ATTRIBUTES DECORATE, ALIAS:"MXCOPYREAL8TOPTR" :: MXCOPYREAL8TOPTR 
        real*8 a5(*) 
        integer*8 b5        
        integer*8 c5 
        end Subroutine MXCOPYREAL8TOPTR 
         
        function ENGPUTVARIABLE (a6,b6,c6)  
     *           bind(C,name="ENGPUTVARIABLE") 
        integer*8, intent(in) :: a6 
        character, dimension(*), intent(in) :: b6 
        integer*8, dimension(*), intent(in) :: c6 
        end function ENGPUTVARIABLE 

         
        function ENGEVALSTRING (a7,b7)  
     *           bind(C,name="ENGEVALSTRING") 
        integer(INT_PTR_KIND()) :: ENGEVALSTRING 
        integer*8, intent(in) :: a7 
        character, dimension(*), intent(in) :: b7 
        end function ENGEVALSTRING 
         
        function ENGGETVARIABLE (a8,b8)  
     *           bind(C,name="ENGGETVARIABLE") 
        integer*8 :: ENGGETVARIABLE 
        integer*8, intent(in) :: a8 
        character, dimension(*), intent(in) :: b8 
        end function ENGGETVARIABLE 
         
        Subroutine MXCOPYPTRTOREAL8 (a9,b9,c9) 
!DEC$ ATTRIBUTES DECORATE, ALIAS:"MXCOPYPTRTOREAL8" :: MXCOPYPTRTOREAL8 
        integer*8 a9 
        real*8 b9        
        integer*8 c9 
        end Subroutine MXCOPYPTRTOREAL8 
         
        function engClose (a10) bind(C,name="engClose") 
        integer(INT_PTR_KIND()) :: engClose 
        integer*8, intent(in) :: a10 
        end function engClose  

Fig. A7. The second part of the interface block after Fig. A2 
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Appendix 3 
 

In optimal control design for the output regulation 

problem, the feedback law is synthesized by minimizing a 

time-dependent function that includes the measure of 

system output (sensor measurement) and control effort to 

achieve an optimal tradeoff between reduction in the plant 

response and injected control energy. Following the 

conventional linear quadratic output regulator (LQRY) 

technique in (Gawronski, 2004) for the system in Eq. (1) 

and given initial condition 𝑥(0), the control input signal 

(𝑢) is constructed by optimizing the objective function in 

Eq. (C1) such that within a specific time window [0 𝜏] 
(in steady state 𝜏 → ∞), the system outputs converge to 

origin. 

𝐽LQRY = ∫ [𝑦(𝑡)𝑇𝑄 𝑦(𝑡) + 𝑢(𝑡)𝑇𝑅 𝑢(𝑡)] d𝑡
𝜏

0

, 
(

(C1) 

where 𝑄 = 𝑄𝑇 > 0,  and 𝑅 = 𝑅𝑇 > 0,  are user-defined 

time-independent weighting matrices selected by control 

engineer. Following Lewis and Syrmos (Lewis, 1996), the 

LQRY can be converted to linear quadratic regulation 

problem (LQR) by translating the weighting matrices as Eq. 

(C2) 

 

[
𝑄 0
0 𝑅

] = [𝐶
𝑇 0

0 𝐼
] [

𝑄∗ 0
0 𝑅∗] [

𝐶 0
0 𝐼

]. 
(

(C2) 

In order to add to the generality of the problem, the 

strictly proper system is assumed to be under the effect of 

unknown input disturbance and output measurement noise 

as formulated in Eq. (C3) instead of (1) 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝛯𝑤, 

𝑦 = 𝐶𝑥 + 𝑛, 
(C3) 

in which, 𝛯, 𝑛, and 𝑤 represent the real-values unknown-

input matrix with appropriate dimensions, output 

measurement noise, and unknown but 𝐿2 -bounded  

mismatch disturbance signal. Additionally, 𝑛 and 𝑤 are 

assumed to be the result of some uncorrelated zero-mean 

Gaussian stochastic processes with constant power spectral 

density matrices (𝒲n  and 𝒲d , respectively). Since, in 

practical problems generally the states of the system are 

unavailable for measurement, an observer based on Kalman 

filter is combined with the deterministic LQR to formulate 

the control synthesis in linear quadratic Gaussian (LQG) 

framework. As a result, the control input is proposed in 

terms of observed states (𝑥̂) as 𝑢 = −𝑇𝑥𝑥̂(𝑡) under the 

assumption that the pair (𝐴, 𝐶) is observable where 𝑇𝑥 =

 𝑅∗−1𝐵𝑇X with X = X𝑇 ≥ 0 being the unique positive-semi 

definite solution of the ARE of 𝐴𝑇X + X𝐴 − X𝐵𝑅∗−1𝐵𝑇X +
𝑄∗ = 0 (Macijejowski 1989). Moreover, the dynamics of 

the state observer in the presence of measurement noise is 

assigned as 𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿[𝑦 − 𝐶 𝑥̂],  such that 

𝐸{[𝑥 − 𝑥̂]𝑇[𝑥 − 𝑥̂]}  is minimized. 𝐸{. }  represents the 

expectation operator, while 𝐿 =  Y𝐶𝑇𝒲n
−1  with Y =

YT ≥0. The steady state solution of the latter optimization 

problem is proven to be obtained by solving ARE: Y𝐴𝑇 +
𝐴Y − Y𝐶𝑇𝒲n

−1𝐶Y + 𝒲d = 0 . It is obvious that the 

behavior of the closed-loop system obtained based on LQG 

configuration can be determined by analyzing the closed-

loop poles based on Separation theorem (Skogestad and 

Postlethwaite 2007). 
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