
Structural Engineering and Mechanics, Vol. 67, No. 6 (2018) 643-658

DOI: https://doi.org/10.12989/sem.2018.67.6.643 643

Copyright © 2018 Techno-Press, Ltd.
http://www.techno-press.com/journals/sem&subpage=7 ISSN: 1225-4568 (Print), 1598-6217 (Online)

1. Introduction

Intertwining with the passive behavior of the mechanical

and civil structures towards smart structures and systems is

a desirable feature that intrigues various researchers from

separate fields of material science, civil/mechanical

engineering, and instrumentation development. However,

multi-domain nature of such case studies requires a suitable

framework for the modeling of the system, physical

analysis of the problem, and post-processing of the

generated (input/output) data. For the physical analysis of

the mechanical structures and the structural control as two

case studies with predefined geometry and model

properties, the finite element method (FEM) is an

operational modeling technique. Leaving out the system

identification techniques for now, the superiority of FEM as

a modeling approach is due to the fact that the

analytical/semi-analytical solutions for coupled systems are

mostly limited to simple geometries. In order to put the FE

model in a computationally affordable form with a limited

number of dynamical states, a post-processing step is

defined including a model reduction in terms of modal

coordinates. This in turns makes the design/analyses

Corresponding author, Ph.D.

E-mail: atta.oveisi@rub.de
aResearch Associate
bProfessor

tractable especially if the optimization or control of the

structure is desirable.

In this paper, a new Software-in-the-Loop scheme (SiL)

is constructed to address two families of problems: 1) the

post-processing analyses of the solutions obtained from the

FE package which may be used as a batch optimization tool

or may be used for nonlinear modeling and uncertainty

quantification. 2) To investigate the effects of the feedback

loop in the time-domain analysis with application in control

theory and online parameter optimization. The SiL

presented in this paper is not limited to any particular

physical domain and can be used for dynamics and

vibration, structural health monitoring, fluid mechanics,

thermoelastic analysis, and electro-/magneto-domains. As

long as the problem under study can be defined in a step

module (see (Puri 2011, Nestorović et al. 2012)) of the

commercial FE package of ABAQUS, it can be categorized

as one of the applications of this paper. The italic terms here

and after refer to the standard commands, e.g., step, in

ABAQUS GUI. As another advantage of this scheme in

comparison to those available in the literature ((Ray and

others 2000, Karagülle et al. 2004, Xu and Koko 2004,

Rahman and Alam 2012, Gao et al. 2013, Bertagne and

Hartl 2014, Orszulik and Gabbert 2016)), MATLAB

toolboxes for robust control, global optimizations, neural

networks, and fuzzy systems are accessible in the SiL which

significantly increases the applicability of the method to

general engineering problems. In this regards, the proposed

technique is a candidate for non-parametric modeling of

continuous nonlinear multi-domain structures with complex

Finite element-based software-in-the-loop for offline post-processing
and real-time simulations

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universität Bochum,
Universitätsstr. 150, 44801 Bochum, Germany

(Received December 24, 2017, Revised July 6, 2018, Accepted July 7, 2018)

Abstract. In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop

together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop

framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to

several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical

simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new

product’s costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting

the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL

interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in

FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between

ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the

available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the

connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined

for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

Keywords: software-in-the-loop; finite element; optimal placement; structural optimization; vibration control

mailto:atta.oveisi@rub.de

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

geometries where the real system is not accessible for

measurements (Kerschen et al. 2006, Noël and Kerschen

2017). Moreover, the proposed SiL can be used for the

modeling of common benchmark problems in structural

dynamics as a test platform for new control and

optimization methods before moving to real-time

measurements (Landau et al. 2013). Concerning the

computation time, time-variability of the analysis, and the

validation and verification of the proposed approach,

detailed investigations are carried out.

Because the SiL approach is computationally

demanding, it is not recommended for problems with

simple geometries. Accordingly, analytical solutions or the

methods that include system/parameter identification,

model reduction in combination with offline design are

recommended to be employed instead. However, for multi-

physics problems without analytical models, systems with

complicated geometries, benchmark problems where the

real-time setup is out of access, and industrial problems

where FE solutions are trusted, the presented method is an

alternative to the field tests which are costly. ABAQUS is

nominated over other packages as the dynamic simulator of

the SiL configuration due to its capabilities in compiling

FORTRAN subroutines. However, the proposed scheme can

be applied to other commercial packages such as

NASTRAN as long as the software provides a pool for

including external commands.

The smart structural design based on the general FE

approach is previously studied in the literature. For

instance, Lim et al. (1999) used 3D finite elements for

modeling a multi-input-multi-output (MIMO) smart plate

with discrete piezo-patches and designed an optimal

controller on the reduced-order model by solving the

algebraic Riccati equation (ARE). The performance of the

designed controller for the vibration suppression of the

clamped plate is presented for both the steady state and the

transient cases. Ray et al. in a similar problem to the sub-

problem (b) of this paper, used a FORTRAN subroutine to

implement sensitivity enhancing control (SEC) for damaged

smart beam (Ray et al. 2000). Karagülle et al. used ANSYS

to integrate a PID control action into the solution of FE

(Karagülle and others, 2004). Similar results are reported by

(Xu and Koko 2004). Following the same trend, Rahman

and Alam compared their experimental active vibration

control (AVC) of a cantilever beam based on PID controller

with ABAQUS using 1D Finite element formulation

(Rahman and Alam 2012). Recently, Gao et al. used

ABAQUS UAMP subroutine to include an active controller

in the model of an aircraft’s vertical fin under dramatic

buffet loads. They included a finite element model of macro

fiber composite (MFC) actuators in ABAQUS implicit. The

results are matched with those obtained from the

experimental implementation of the controller on the

prototype of the fin (Gao et al. 2013). The main limitations

of implementing the control algorithm in SiL using standard

ABAQUS scripting is the challenges that are introduced for

matrix computations such as solving ARE for the optimal

controller synthesis. The platform for ABAQUS coding is

an application programming interface (API) that is realized

per Python object-oriented language, and Python is not a

well-established language for control algorithms (Bertagne

and Hartl 2014). This problem is also addressed in this

paper as a solution to sub-problem (b). More recently,

Orszulik and Gabbert presented an attractive interface for

establishing a connection between the Simulink and

ABAQUS for active vibration control of a cantilever beam

(Orszulik and Gabbert 2016, Gabbert et al. 2017).

The investigation of the passive structural vibration

suppression is also carried out in the literature similar to

sub-problem (a). Vel and Baillargeon utilized translational

mass damper (TMD) in their physical system modeled in

ABAQUS to evaluate the performance of a passive system

(Vel and Baillargeon 2004). Most recently, Shakeri and

Younesian (2016) used multi-TMD (MTMD) in ABAQUS

as well as in their analytical solution to examine the steady-

state and transient acoustic radiation characteristics of the

clamped-free annular plate. It should be indicated that the

proposed methods in this paper are by no means limited to

the structural optimization and structural vibration control,

however, the applications of different SiL schemes in the

literature are mostly concentrated on AVC (Omidi et al.

2015, Oveisi and Nestorović 2016, Oveisi et al. 2016).

Henceforth, the authors are mostly attentive in developing a

new mechanism for uncertainty quantification in

mechanical structures with complex geometries that can be

used as an alternative to conventional methods (Soize

2005). Uncertainty quantification regarding the unmodeled

dynamics of high order nature is classically dealt with as a

lumped stable bounded time-varying functions. In terms of

controller synthesis (classical robust methods), such a view

leads to conservative results. However, analytical modeling

of simpler geometries under large vibration amplitudes

hands the structure of uncertainty e.g., quadratic or cubic

terms (Omidi and Mahmoodi 2015, Stojanović 2015, Oveisi

and Nestorović 2017). Next, by use of the parametric

identification methods on the data obtained from the

approaches that provide time-dependent responses of the

nonlinear system (such as the SiL proposed in this paper)

make an efficient tool for nonlinear system identification.

This grey-box parameter identification approach as the

center of intensive research in the identification community

(see for instance (Paduart et al. 2010, Noël and Schoukens

2017)) can be viewed as an alternative to some of the

nonlinear system identification techniques based on discrete

modeling of continuous mechanical structures reported in

(Noël and Kerschen 2017). Such a nonlinear nominal model

can be later used for model-based controller synthesis in

contrast to robust control methods which operate based on

worst-case analysis. One should note that at the current

stage in the literature, the lumped structural uncertainty

quantification is obtained based on statistical analyses of an

enormous number of experimental setups which is mostly

limited because of the costs and difficulties regarding

providing multiple identical systems (Adhikari et al. 2009).

Finally, the structure of the paper is as follows: First,

two numerical problems are briefly introduced and

immediately after, the methodology of coupling ABAQUS

and MATLAB is broken into two variants in accordance

with these two numerical problems: 1) the coupling in

which time-independent simulations are intended s. t. the

644

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

post-processing through MATLAB only starts when the

ABAQUS jobs are completed. For this purpose, Python

scripting in ABAQUS is used to alter the model variables

on the grounds of the decision made in a MATLAB m-file.

In other words, if the resubmission of the jobs is required on

a revised model, the input file of ABAQUS is altered by the

MATLAB text editor. This method is already employed in

the literature and is reported here for the sake of

completeness (Kim et al. 1995, Ramesh Kumar and

Narayanan 2008). 2) The coupling of MATLAB/ABAQUS

for designing systems within some time-dependent loops.

For this purpose, the first coupling scheme is completely

revised by employing the user-defined FORTRAN

subroutines. To make the algorithm ready-to-use, the

details of developing the required script are included, and

the possible issues are carefully addressed. Finally, the

multi-physics piezo-laminated structures in the

aforementioned sub-problems are explained in more details.

Before moving to the methodology section in order to make

the paper more readable, a brief description of the two

numerical problems in association with two coupling

schemes are presented as follows:

a. A constrained optimization problem without time- and

frequency-dependence: The actuator and sensor placement

optimization problem is investigated for a piezolaminated

cylindrical panel shown in Fig. 1(a). The structure is

partitioned ten times in both of longitudinal and tangential

directions of the cylindrical coordinate and as a result

divided into one hundred sections. Each partition represents

a candidate for the actuator/sensor placement as shown in

this figure. The reason for selecting the optimal sensor and

actuator positioning problem as the realization of the

ABAQUS/MATLAB offline coupling scheme is due its

relevance to sub-problem (b). Accordingly, the result of

actuator/sensor placement reflect that the process of smart

structure design including piezo-material selection,

input/output (IO) optimization, and closed-loop tests can all

fall into the application of this paper. The technical details

of the performance requirements are deferred to section 3.

b. As an illustration of the second ABAQUS/MATLAB

coupling scheme proposed in this paper, where a time-

dependent loop is required, sub-problem (b) is defined. To

this end, a regulation problem is investigated for AVC. In

order to realize the feedback control as shown in Fig. 1(b),

methodology in section 2.2 is proposed. To keep the

numerical example tractable an output feedback linear

quadratic Gaussian (LQG) controller is synthesized on the

nominal model of the system. The details of obtaining the

reduced-order model are explained in sections 3.1.1 and

3.1.2.

2. Methodology

2.1 Offline post-processing coupling scheme

The process of optimal actuator/sensor positioning is

defined in terms of the first coupling scheme. In this regard,

the coupled ABAQUS/MATLAB automatically changes the

actuator/sensor locations on the model in order to evaluate

an objective function. In a more general view, when the

(a
)

(b
)

 Fig. 1(a) Geometry of the simulation example. (b) The

schematic definition of the sub-problem (b)

Fig. 2 Workflow of the program for sub-problem (a)

ABAQUS-user submits a command in the graphic user

interface (GUI) of CAE, Python script is generated/updated

and then, passed through the interpreter and sent to the

kernel.

A record of such actions in the form of a replay file

“.rpy” is kept by ABAQUS. Additionally, a list of

commands that are executed in GUI of ABAQUS/CAE is

available in the journal file “.jnl” in the working directory.

This journal file is the primary platform for scripting in

Python and solving the sub-problem (a) in this paper. For

offline post-processing, Python plays the role of a

messenger to realize the alternations in ABAQUS model

such as moving the actuator/sensor parts. In other words,

the offline loop can be constructed by using MATLAB to

change the numerical values of ABAQUS model in the

“.py” file followed by resubmitting the list of ABAQUS

jobs. Finally, the offline post-processing is carried out by

inspecting the “.odb” file of the results produced by

ABAQUS. If the design criteria are satisfied for the

objective function, the loop is terminated. Otherwise,

MATLAB continues to manipulate the “.py” file containing

the model parameters and resubmits the job from the

command line till the termination condition is met. The

interconnection between MATLAB and ABAQUS in this

form is presented in Fig. 2.

2.2 Coupling scheme with time-dependent loop

In the second coupling scheme, a SiL is outlined that

645

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

uses Python and FORTRAN as two messengers between the

ABAQUS Kernel and MATLAB engine. For this purpose,

the Python script is used to define the model

geometry/material and model interactions e.g., boundary

conditions, while the time-dependent external loads are

realized by FORTRAN UAMP subroutine. Sensor elements

(later referred to as SENUi) are defined on measurable

physical variables e.g., electric potential in piezo-sensor of

Fig. 1b in sub-problem (b) with the predefined frequency of

data extraction from a particular nodal set in history output

(seti) by using the command: *Output, history,
sensor, name=SENUi, frequency *Node

Output, nset=seti. All the terminologies here and

after in Courier New font represent the commands used in

Python and their syntax. Moreover, the time-varying

amplitude of the user-defined load is generated by the

command: *Amplitude, name,

definition=USER, variables. At this set of

monitored points (seti) the solution-dependent data are

extracted from the active elements. For instance, in the sub-

problem (b), (seti) represents the nodal group on the top

surface of piezo-actuator having the same applied electric

potential.
UAMP subroutine determines the value of an amplitude

in a time-dependent manner. This dependence is defined in
terms of a function that takes the sensor values and current
time increment for controlling the amplitude of a stimulus
in load module of ABAQUS/CAE (see Fig. 1(b)). Since all
information passed to the subroutine are updated at each
time increment, ABAQUS is set to stall and waits for an
update on previous value. In this stage, user-defined
solution-dependent state variables (sensor values) are
needed to be sent to MATLAB engine. This action requires
a C compiler which takes the value, calls the MATLAB
engine to open, executes a function (in an m-file), brings
back the updated amplitude, closes the MATLAB engine,
and finally waits for a recall. “Engine applications” are
standalone C programs that permit the user to call
MATLAB from another environment and then use it as the
computation machine. These standalone programs in the
proposed SiL framework are called within UAMP
subroutine. The C compiler is therefore responsible for the
Engine applications while the FORTRAN compiler handles
UAMP. Moreover, the input array in MATLAB block of
Fig. 1(b) is passed from engine application to UAMP
subroutine and vice versa. For this purpose, ENGOPEN
r o u t ine ca l l s MAT LAB co mp uta t io na l eng ine ,
MXCREATEDOUBLEMATRIX creates an array, and
MXCREATEDOUBLESCALAR creates a scalar double. All the
routines in Consolas font here and after represent the
c o m m a n d s i n t h e F O R T R A N s u b r o u t i n e .
MXDESTROYARRAY is used to deallocate the memory
occupied by the specified array, MXGETPR sets the pointer to
the first component of the real data, MXCOPYREAL8TOPTR
copies real values from the FORTRAN array into the
MATLAB matrix. Furthermore, ENGPUTVARIABLE is
employed to write an array to the MATLAB engine and
a ss i g n a va r i ab le na me fo r tha t a r r a y, wh i l e
ENGEVALSTRING evaluates the expression contained in
string for the engine session started by ENGOPEN,
ENGGETVARIABLE reads the array from the engine session.
Finally, MXCOPYPTRTOREAL8 is used to copy real values

Fig. 3 ABAQUS kernel and MATLAB engine simulation

workflow

from the MATLAB array into the FORTRAN array, and
ENGCLOSE routine terminates the current MATLAB
session. This interconnection is presented in the flowchart
of Fig. 3. In order to provide the technical details for the
interested reader while maintaining the readability of the
paper, the coupling script is separated from the problem
definition/simulations and moved to the Appendix 1.

3. Problem definition

3.1 Sub-problem (a): Offline optimization

In the first sub-problem, the cylindrical panel shown in

Fig. 1a is used as the geometry of the structure. The main

reason for selecting such a geometry is that: 1) Defining

additional circular cylindrical coordinate system for the

material orientation in orthotropic or anisotropic cases is

required which makes the problem more general. 2) Non-

conventional assembly and interaction constraints are

required in sequential structure optimization. In this regard,

each placement configuration includes the assembly of the

piezo-sensor/-actuator patches with the host structure within

a set of predefined partitions shown in Fig. 1(a). 3) As

pointed out later in the paper, the closed-loop investigations

reflect more realistic issues which express the importance of

the proposed coupling scheme in representing the real-time

tests. While the piezo-patches are moved over these

partitions on the host panel, the optimality of the smart

structure is evaluated in terms of an objective function. At

each simulation iteration, the next placement candidate (a

partition of the structure geometry) is automatically selected

by manipulating the parameters of the input file of

ABAQUS from MATLAB. This procedure is controlled by

selecting that specific partition to have two tie constraints

for the actuator and sensor patches. The numerical

implementation is carried out by finding a point inside a

loop that defines the coordinates of the mid-point of the

partition in cylindrical coordinate. Then, the calculated

coordinates of the mid-point are stored in “.py” file (see

Fig. 2). It is obvious that additional spatial constraints are

needed to be automatically defined in the assembly module

by using the translate instance command based on

coinciding the corners of the partition of the host layer with

646

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

the corners of the patches1.

3.1.1 Mesh convergence and state space modeling
It is assumed that the host structure has the mid-plain

radius of 0.5 m, the thickness of 0.03 m, the length of

1 m, and arc angle of 60°. Additionally, the piezo-patches

are assumed to have the thickness of 5 mm. The host

structure is made of single layer orthotropic steel with

density of 𝜌 = 7800 kg/m3, while the actuator and sensor

are fabricated from PZT4 and 𝐵𝑎2𝑁𝑎𝑁𝑏5𝑂15, respectively.

Elasticity matrix of the host, actuator, and sensor as well as

the piezoelectric and dielectric matrices of the patches are

presented in Appendix 2. It is also assumed that the host

structure is perfectly bonded with the patches using the tie

constraint by setting the lower surface of the piezo-actuator

as the master surface and the upper surface of the sensor as

the slave surface in relation to the bonding surface of the

host. With a tie constraint, although the meshes on the

master and slave surfaces may be dissimilar, the two tied

regions are fused together. The master surface (actuator to

the host and host to the sensor) is the surface that may

penetrate into the slave and as a result the mesh on slave

media is finer. For modeling the host structure and piezo-

actuator/sensor, linear Hexahedral 8-node brick and 8-nodal

piezoelectric brick elements are used, respectively. In

addition, to minimize the computational burden without

losing accuracy for sub-problem (a), mesh convergence

analyses (MCAs) are carried out for two sets of mesh

configurations: i) analyses for controlling the dimensionless

approximate global size (AGS) of the elements ii) analyses

for the seed size (local mesh refinement) in the radial,

tangential, and longitudinal directions of the panel. Two

series of investigations were performed: 1) Those with the

finer mesh for the whole structure. 2) Analyses with some

mesh modification at the location of the piezo-

actuator/sensor. Accordingly, ten models for the

piezolaminated structure are generated as shown in Table 1.

In this table, ℳ𝑖 , 𝑖 = 1,… ,7 represent modifications in

model in order to refine mesh on the paired master/slave

surfaces of the tie constraints. These modifications can be

understood by comparing Model III and Model VII in Table

1. A list of several modifications that are compared in

MCAs of this paper are presented in Table 2. The

subsequent standard mesh convergence procedure shows

Model VII as the correct model.

Table 1 Mesh configuration in host structure, piezo-

actuator, and piezo-sensor media

1Reader may contact the corresponding author to obtain all

the Python files which may be adapted for other case

studies.

Table 2 Mesh modification configuration (A: Actuator, H:

Host, S: Sensor)

 ℳ1 ℳ2 ℳ3 ℳ4 ℳ5 ℳ6 ℳ7

 AGS host 0.04 0.04 0.04 0.03 0.02 0.01 0.04

A
ct

u
at

o
r # elements

in 𝜃
6 5 8 8 8 8 10

elements

in 𝑧
6 5 8 8 8 8 10

H
o

st
 # elements

in 𝜃
12 10 16 16 16 16 20

elements

in 𝑧
12 10 16 16 16 16 20

S
en

so
r # elements

in 𝜃
24 20 32 32 32 32 40

elements

in 𝑧
24 20 32 32 32 32 40

Following (Gawronski 2004) and by appropriate

selection of the modal coordinates (Nestorovic et al. 2015),

the reduced order dynamical equation of motion for each

actuator/sensor pair can be written as Eqs. (1a), (1b). Eqs.

(1a) and (1b) represent the ordinary differential equation of

motion in state space form

𝑥̇ = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥 + 𝐷𝑢.
(1a)

where,

𝐴 = [
0 Ω

−Ω −2𝑍Ω
], 𝐵 = [𝐵𝑚1

𝐵𝑚2]
𝑇, 𝐶 =

[𝐶𝑚1
𝐶𝑚2], 𝐷 = 0.

(1b)

with Ω2 = 𝑀𝑚
−1𝐾𝑚 , 𝑍 = diag(𝜉𝑖), 𝑖 = 1,… , 𝑛 in which

𝑀𝑚, 𝐾𝑚, 𝜉𝑖, and 𝑛 are the modal mass, stiffness matrices,

damping ratio associated with mode number 𝑖, and the total

number of mode-shapes considered in the modeling

process, respectively. Additionally, 𝑥 ∈ ℛ2𝑛, 𝑢 ∈ ℛ𝑛𝑢 , and

𝑦 ∈ ℛ𝑛𝑦 are the state, input, and output vectors,

respectively while 𝐴 ∈ ℛ2𝑛×2𝑛 , 𝐵 ∈ ℛ2𝑛×𝑛𝑢 , and 𝐶 ∈
ℛ𝑛𝑦×2𝑛 are the state, control input, and output matrices,

correspondingly. 𝐵𝑚1,2
 and 𝐶𝑚1,2

 are the modal coupling

matrices of the piezo-actuator/-sensor, respectively. Finally,

ℛ symbolizes the set of all real numbers.

Technically, the state space model in Eq. (1a) is created

by using the modal electrical potential coupling matrices

which are calculated in ABAQUS/CAE and extracted by

Python script using session.writeFieldReport

command (Puri 2011). The automatic process of

constructing Eq. (1a) for all actuator/sensor configurations

is carried out by reading this Python file in MATLAB for

each placement scenario. Then, MATLAB program assigns

new locations to the patches as the new decision variables.

The m-file automatically and sequentially submits the

analysis by: mo='noGUI'; system(['abaqus cae

',mo,'=MainFileAnalysis.py']);. In which

MainFileAnalysis includes all definitions from the

Python file for geometry, assembly, interactions, mesh, and

job modules. The termination command should be activated

accordingly.

647

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

This sub-problem is a candidate of all other case studies

as long as the offline optimization process is intended in the

solution method. Therefore, applicable and reliable

resolutions for optimal structural design which is a

demanding task in early development phases of a new

product can be carried out in a similar manner as sub-

problem (a). This makes it possible to test the feasibility

and effectiveness in advance, before a prototype is

available.

3.1.2 Actuator/senor placement objective
The optimal placement of the actuator/sensor on the

structure both in collocated and non-collocated

configurations falls into the offline iterative post-processing

scheme of Fig. 2. Optimal placement for plate and panel

structures was investigated previously in (Han and Lee

1999, Bruant et al. 2010, Nestorovic et al. 2015,

Hasheminejad and Oveisi 2016) based on genetic algorithm

(GA). Kumar and Narayanan (Ramesh Kumar and

Narayanan 2007) have applied their LQR controller based

criteria to find optimal location of piezoelectric

actuators/sensors in vibration control of plates using GA. In

the paper by Peng et al. (2005), the maximization of the

controllability Gramian in combination with GA was used

as the criterion for optimal placement of a clamped plate. A

similar approach with modal controllability and

observability Gramians and GA was also employed by Sadri

et al. (1999, 2002). In this paper, the objective function is

defined in terms of 𝐻2/𝐻∞ norm of input to output gains

(Nestorović and Trajkov 2013). Accordingly, the

approximate 𝐻2-norm of the transfer function from each

actuator to the sensor for mode number (𝑖) is calculated as

Eq. (2) (Gawronski 2004).

‖𝐺𝑖‖2 =
‖𝐵𝑚𝑖‖2‖𝐶𝑚𝑖‖2

2√𝜉𝑖𝜔𝑖

≅ 𝜎𝑖√2∆𝜔𝑖 , (2)

where 𝜎𝑖 are the Hankel singular values and ∆𝜔𝑖 are

referred to as the half power frequencies. Additionally, the

elements of 𝐵 and 𝐶 in Eq. (2) represent the values

associated with the physical variables, e.g., electric

potential at actuator and sensor nodes for each mode shape,

respectively (see (Nestorović and Trajkov 2013)). Using the

additive property of 𝐻2 in mode number (𝑖) for a set of

actuator (𝑗) and sensor (𝑘) elements, Eq. (3) can be written.

‖𝐺𝑖𝑗‖2
=

‖𝐵𝑚𝑖𝑗‖2
‖𝐶𝑚𝑖‖2

2√𝜉𝑖𝜔𝑖
, ‖𝐺𝑖𝑘‖2 =

‖𝐵𝑚𝑖‖2‖𝐶𝑚𝑖𝑘‖2

2√𝜉𝑖𝜔𝑖
,

‖𝐺𝑖‖2
2 = ∑‖𝐺𝑖𝑗‖2

2

𝑛𝑎

𝑗=1

, ‖𝐺𝑖‖2
2 = ∑‖𝐺𝑖𝑘‖2

2

𝑛𝑠

𝑗=1

.
(3)

where 𝑛𝑎 and 𝑛𝑠 are number of actuators and sensors,

respectively. All of the results in multiple modes should be

then normalized by ‖𝐺‖2 = √∑ ‖𝐺𝑖‖2
2𝑛

𝑗=1 and the

normalized results are gathered in a matrix (𝑁2).

𝜂𝑖(2)
𝑘𝑟 =

‖𝐺𝑖𝑘𝑟‖
2

‖𝐺‖2
, 𝑘𝑟 = 1,… , 𝑛𝑟 , 𝑟 = 𝑎, 𝑠,

𝑁2 =

[

𝜂1(2)

1 𝜂1(2)
2 ⋯ 𝜂1(2)

𝑛𝑟

𝜂2(2)
1 𝜂2(2)

2 ⋯ 𝜂2(2)
𝑛𝑟

⋮ ⋮ ⋱ ⋮
𝜂𝑛(2)

1 𝜂𝑛(2)
2 ⋯ 𝜂𝑛(2)

𝑛𝑟
]

.
(4)

Based on Eqs. (2)-(4) similar concept can be defined by

𝐻∞ norm ‖𝐺𝑖‖∞ =
‖𝐵𝑚𝑖‖2‖𝐶𝑚𝑖‖2

2𝜉𝑖𝜔𝑖
. Then, by describing

𝜂𝑖(∞)
𝑘𝑟 and 𝑁∞ similar to Eq. (4), the optimization function

for multi-modal 𝐻2 case is calculated as 𝜂𝑎,𝑠(2)
𝑘𝑟 =

√∑ (𝜂
𝑖(2)
𝑘𝑟)

2
𝑛
𝑖=1 and for 𝐻∞ case as 𝜂𝑎,𝑠(∞)

𝑘𝑟 =

max
𝑖

𝜂𝑖(∞)
𝑘𝑟 , 𝑖 = 1, … , 𝑛 . The objective function based on

these 𝐻2/𝐻∞ norm-valued scalars is defined similar to

(Nestorović and Trajkov 2013). The authors are aware of

the other objective functions existing in the literature such

as including a measure of unmodeled dynamics for spillover

effect, simultaneous optimization of actuator/sensor

placement and control system, etc. but the main thrust of

this paper is to present the possibility of using an

independent SiL framework which can realize various

objectives as well. This goal is evaluated here by using a

reasonably simple objective function for testing offline

efficiency of the configuration in section 2.1.

3.1.3 Sub-problem (a): Simulation results
For the simulation example shown in Fig. 1(b),

neglecting the symmetricity of the structure, in the case of

single-input single-output (SISO), 10000 possible

configurations (collocated & non-collocated) are available

in the discrete solution space. The fulfillment of optimality

criteria is thus not restricted to a narrow set of predefined

solution space and it relies on verifying a symmetrical

portion of all candidates. For the sake of brevity in the

single mode analyses, the optimization results in Fig. 4 are

presented for two mode-shapes only: i) mode-shapes

number two and four for actuator location. ii) mode-

shapes number three and five for sensor location. Placement

indices for various configurations are separately depicted

based on Eqs. (2)-(4) for actuator/sensor elements. Each

sub-plot in actuator placement is presented together with the

modal strain contour plot associated with that mode.

Locations with higher placement indices for both sensor and

actuator specify the priority of them in the selection process

of the final configuration. As it can be seen the best actuator

locations are in agreement with the maximum strain values.

On the other hand, for sensor placement, the modal Mises

stress indicates the best location which is justified by the

material behavior of piezo/PVDF elements. The forms of

the placement curves for other mode-shapes are

qualitatively similar as their modal parameters and for the

sake of briefness are omitted in Fig. 4.

Next, based on 𝜂𝑎,𝑠(2)
𝑘𝑟 and 𝜂𝑎,𝑠(∞)

𝑘𝑟 the feasibility of the

proposed method in finding the optimal configuration in the

case of multiple simultaneous eigenmodes consideration is

presented in Fig. 5. For the sake of briefness, the multiple

modes results are reported for two cases: i) Considering

four simultaneous fundamental natural frequencies. ii)

Considering nine fundamental natural frequencies. As it can

be observed in Fig. 5, the results for 𝐻2 and 𝐻∞ objective

functions are not identical. The reason for having such a

difference is the form of placement indices 𝜂𝑎,𝑠(2)
𝑘𝑟 and

𝜂𝑎,𝑠(∞)
𝑘𝑟 , respectively.

648

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

Fig. 4 Objective function for single mode placement

For the first case a weighted summation of the objective

functions for each mode is affecting the placement index

and for latter, only the maximum input-output (IO) gain for

that location determines the multi-modal objective. In

physical sense, the 𝐻2 placement strategy provides an

energy efficient configuration which results in models with

correspondingly controllable and observable retained

modes. However, the 𝐻∞ index sets the constraint for

maximum amplitude of the transfer function and as a result

the highest control authority can be achieved.

Remark 1. The numerical example in this subsection

covers a broad spectrum in structural optimization which

may not primarily be limited to the electrical potential in

active elements of smart structures but systems with some

integrated universal transducers, whose effect may be

reflected by forces, moments, magnetic field, temperature,

etc.

For the parallel actuator/sensor placement, the results of

the evaluation of the objective matrices based on Eq. (3),

are presented only for the 𝐻∞-norm scheme in Fig. 6. By

overlaying the contour plots of the modal strain and the

Misses stress as the physical controlling variables of the

placement index, it can be observed that unlike beam and

plate structures, the optimal actuator and sensor may appear

in non-identical places. This emphasizes the importance of

using multiple-modal objectives, since the transient

behavior of the system in general depends on a large

number of the eigenmodes. Additionally, unlike lower mode

numbers where the changes of the placement index are

gradual, in higher mode-shapes, drastic changes may

appear.

Finally, the results of the 𝐻2- and 𝐻∞-norm schemes

are compared for multiple-modal consideration case in Fig.

7. Accordingly, two sets of analyses are carried out for

actuator/sensor pairs with collocated and non-collocated

configurations. In order to emphasize the effect of

placement in the parallel modal consideration, the analyses

are performed for several modal combinations and two of

them are presented: i) Including mode-shapes one through

five, ii) Including mode-shapes one through ten.

Fig. 5 Multi-modal optimization results for 𝐻2&𝐻∞

The observations are as follows: 1) 𝐻2- norm scheme

tends to keep the optimal location in the same trend as the

number of included mode-shapes are increasing. This

behavior can be observed by comparing two subplots for

non-collocated configurations based on the inclusion of five

and ten eigenmodes of system.

Such a tendency is due to the fact that 𝐻2-based

algorithm has a memory that takes into account the effect of

all of the eigenmodes. One advantage of the 𝐻2 method is

then the globality of the optimal solution. However, since

for real applications, not all of the frequencies are equally

involved in final response of the system, this method is

conservative. To overcome this drawback, a separate

frequency-domain analysis for host structure should be

carried out, preferably in real-time application under

realistic working conditions, to calculate the frequency

response function (FRF) of the system and indicate the

effective mode-shapes. Then, a weighted 𝐻2-norm-based

method will be more effective. 2) In contrast, the 𝐻∞- norm

scheme takes into consideration a measure of maximum

placement indices. As a result, by including new dynamics

of higher order nature into the calculations, the optimization

outcome may diverge significantly. This can be observed by

649

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

Fig. 6 𝐻∞ objective function in single mode simultaneous

actuator and sensor placement

Fig. 7 Collocated/non-collocated configurations

comparing the accumulative optimization indices for the

actuator/sensor numbers around 50 (see Fig. 1(a)) in two

cases of five and ten mode-shapes. Such an approach will

result in an inaccurate assessment of the problem for the

cases that the frequency range of the application may alter

from time to time. This emphasizes the importance of

combined 𝐻2/𝐻∞-methods.

3) For the collocated formation, the results of 𝐻2- and

𝐻∞-based optimization functions are qualitatively similar.

As a result, in the applications where the transducer

includes a pair of actuator/sensor, the results of the

optimization are expected to coincide mostly for both

Configuration 1 Configuration 2

Fig. 8 Symmetrical configurations for optimal (2) and non-

optimal (1) actuator/sensor placement

Table 3 The four best actuator/sensor placement numbers

based on different criteria

 Separate placement collocated placement

 actuator Sensor

Mode

number
𝐻2 𝐻∞ 𝐻2 𝐻∞ 𝐻2 𝐻∞

1 45, 46, 55, 56 45, 46, 55, 56 15, 16, 85, 86 15, 16, 85, 86 45, 46, 55, 56 45, 46, 55, 56

2 35, 36, 65, 66 35, 36, 65, 66 5, 6, 95, 96 5, 6, 95, 96 35, 36, 65, 66 35, 36, 65, 66

3 43, 48, 53, 58 43, 48, 53, 58 3, 8, 93, 98 3, 8, 93, 98 43, 48, 53, 58 43, 48, 53, 58

4 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68

5 43, 48, 53, 58 43, 48, 53, 58, 3, 8, 93, 98 3, 8, 93, 98 43, 48, 53, 58 43, 48, 53, 58

1-2 35, 36, 65, 66 35, 36, 65, 66 5, 6, 95, 96 5, 6, 95, 96 35, 36, 65, 66 35, 36, 65, 66

1-5 33, 38, 63, 68 33, 38, 63, 68 4, 7, 94, 97 33, 38, 63, 68 33, 38, 63, 68 33, 38, 63, 68

1-8 32, 39, 62, 69 22, 29, 72, 79 32, 39, 62, 69 22, 29, 72, 79 34, 37, 64, 67 42, 49, 52, 59

1-10 25, 26, 75, 76 25, 26, 75, 76 25, 26, 75, 76 45, 46, 55, 56 34, 37, 64, 67 42, 49, 52, 59

procedures. However, if the application operates in a

broadband frequency, the result of the 𝐻2-based method is

less informative without appropriate weighting.

This can be observed by comparing the placement

indices of the collocated form including ten eigenmodes for

𝐻2- and 𝐻∞-objectives. For the sake of brevity, the rest of

the results are presented in Table 3 for four best symmetric

locations of actuator/sensor placement. For sub-problem

(b), two configurations are selected as shown in Fig. 8: 1)

The non-optimal configuration with collocated

actuators/sensors at locations 11, 20, 81, and 90 of Fig. 1(b).

2) The optimal location based on multi-modal (1-10)

placement result of 𝐻2-scheme: 34, 37, 64, and 67 of Fig.

1(b).

Next, the simulation sub-problem (b) is outlined in

details to illustrate the applicability of the methodology in

section 2.2 and Appendix 1 for time-dependent online

analysis namely, the closed-loop system design.

3.2 Sub-problem (b): SiL in closed-loop investigates

In this section, the application of the real-time SiL

described in section 2.2 is shown for AVC of two piezo-

laminated panels in Fig. 8. Sensor values as predefined

time-varying physical measures in the output history of the

system response are collected in nodal level and as shown

in Fig. 3 are sent to be processed inside “Engine

application” (Refer to Appendix 1). The control law

(feedback signal) is generated by using arbitrary

linear/nonlinear controller synthesized in MATLAB. As

long as the structure of the controller can be formulated in

an m-file in the form of a system of ordinary differential

650

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

Fig. 9 The frequency response function in nominal range

compared to wide-band obtained from ABAQUS

equations (ODE), the proposed coupling scheme can handle

the implementation of the controller inside a loop with

ABAQUS/CAE. For the simulation example in sub-

problem (b), the designed controller is parameterized in a

function that takes a vector of inputs (see Fig. 1(b))

including the previous output of the plant, sensor values,

current time step, time increment, and amplitude generated

from MATLAB in the previous step. This vector is imported

as the input data for the fixed-step ODE solver. As a result,

it is essential to create a set that records the amplitude of the

plant inside FORTRAN and provides the data at each

increment for MATLAB. To keep the problem tractable, an

optimal controller is designed based on the reduced order

nominal model from sub-problem (a) for the two final

configurations. The details of the output feedback linear

quadratic Gaussian regulator as a classical method is briefly

presented in Appendix 3.

3.2.3 System identification and closed-loop analyses
A reduced-order plant is required for the LQG controller

design in Appendix 1. For this purpose, first the system

response in frequency-domain as a nonparametric model is

obtained by Steady-state dynamics, Direct step in the

frequency range of [1350 8000] Hz.

The frequency response function (FRF) of the system

from the control input and disturbance input to the

measurement signals are presented in Fig. 9. Then, the state

space matrices including the disturbance matrix is

parameterized via frequency-domain subspace system

identification method following (Favoreel et al. 2000, Wills

et al. 2009).

The frequency range is limited to a narrow band

compared to the steady-state analysis in ABAQUS for two

main reasons: 1) to express the efficiency of the SiL

configuration in detecting the spillover effect when the

nominal model is selected to be narrow band. In other

words, compared to conventional methods of implementing

the designed control system on the reduced order model

which is in contrast with the nature of real -time

Fig. 10 Comparison of the open loop and closed-loop

systems in time domain: (a) non-optimal configuration. (b)

optimal configuration

implementations, it is observed that for disturbance signals

with broadband frequency content the control system is

unable to suppress the vibrations or even cause instability

due to the spillover effect. Additionally, due to the

unconventional geometry of the problem compared to the

results in the literature of FE-based control (mostly

clamped-free beam), the higher order modes can

significantly affect the dynamic response. 2) To show that

as long as the disturbance signal is activated in the nominal

frequency range, the designed controller is able to attenuate

vibration amplitude.

Before moving to the closed-loop performance

evaluation, it should be pointed out that since the transient

simulations are performed in dynamic implicit scheme, the

time integration damping generated by ABAQUS is

automatically introduced due to Hilber-Hughes-Taylor as an

extension of Newmark’s 𝛽-method time integration. The

parameters corresponding to the transient fidelity are

selected to be 𝛼 = −0.05, 𝛽 = 0.275625, and 𝛾 = 0.55

such that the numerical energy dissipation is kept minimal.

This operator has an advantage that it is unconditionally

stable for a linear system (Puri 2011). Next, the vibration

suppression performance is investigated in the frequency

range of the reduced-order system. Accordingly, the panel is

excited by a uniformly distributed time-varying pressure

that acts over partitions 44, 45, 54, and 55 simultaneously

with a chirp profile: magnitude of 106 and frequency

swept between [1350 2500] Hz within 1 sec. The open loop

and closed-loop system responses are compared at an

observation nodal point in the center of the host layer’s top

surface in Figs. 10(a) and 10(b) for configurations 1 and 2,

respectively. For the results in Fig. 10(a) (case 1) and Fig.

10b, it is assumed that 𝒲d = 103 and 𝒲n = 1 while

𝑄∗ = 106 and 𝑅∗ = 1 (see Appendix 3).

It is obvious that due to the placement of active

elements, applying the same weighting for two

configurations lead to widely different results; one of which

is instable. The optimal configuration 2 in Fig. 8 suppresses

the vibration in the nominal frequency range while the non-

optimal configuration leads to instability (Case 1 of Fig.

10(a)). Additionally, the spatial vibration suppression of the

system can be observed for any specific time-step e.g., the

snapshot of the open loop and closed-loop systems in Fig.

11 for 𝑡 = 0.3785 sec (see Fig. 10(b)) which is an

advantage of the SiL method. In order to investigate the

main reason for instability of the system in configuration 2,

651

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

Fig. 11 Comparison of spatial displacement of open loop

and closed-loop systems in contour plot of isosurfaces in

deformed panel at 0.3785 sec snapshot

Fig. 12 Applied control input on the piezo-actuators bonded

on top surface of the host panel

fast Fourier transformation (FFT) is applied on the control

signal as shown in Fig. 12(a), Case 1. It is observed that due

to the spillover effect, the system dynamic at 5414 Hz is

excited by the controller.

However, as shown in Fig. 9 (configuration 1, Case 1),

the dynamics of the plant with higher frequency than 4450

Hz are neglected. To address this issue the process of

identification and control synthesis are re-performed by

increasing the nominal frequency range up to 5850 Hz as

Case 2 in Configuration 1 (see Fig. 9: dashed green line).

Vibration attenuation quality assessment in Fig. 10(a) Case

2 reveals that the control system is unable to suppress the

vibration. Additionally, the control effort in AVC that results

in suppressing the vibration amplitude in Figs. 10(a) (Case

2) and 10(b) are presented in Figs. 12(a) (Case 2) and 12(b),

respectively.

Two main observations are as follows: 1) Although the

results of the control implementation on the nominal

reduced-order plant are suppressed, it is seen that the

closed-loop system is stable and suppresses the vibration.

Therefore, the importance of the SiL framework proposed

in this paper is emphasized in providing a realistic

evaluation of the controller performance when implemented

on an approximation of the full-order system. This feature is

especially emphasized for the cases that real-time

experimental implementations are costly, hazardous, or in

the phase of structural design and prototyping where there

is no access to the real plant.

2) Comparing Figs. 12(a) (Case 2) and 12(b) for optimal

and non-optimal configurations shows that although the

amplitude of control law is higher in non-optimal scenario

and Case 2 covers a broader frequency range, it is unable to

match the same vibration suppression performance as in the

optimal case. Using the SiL technique may reveal

reasonable resolutions for that matter: 2a) The delay in the

system: Sub-figures in Figs. 12(a) (Case 2) and 12(b) show

that for non-optimal configuration, there exists ≈ 2 × 10−6

Fig. 13 The deformation contour plot in 𝑟-directions at

5414 Hz

sec time-delay from disturbance to the sensor which is

neglected in control synthesis. Accordingly, for real

applications such as flexible manipulators used in Space

Robotic Arms with large geometries and non-collocated

actuator/sensor placement such time-delays in

actuator/sensor elements as mentioned in (Bossi et al. 2011)

may lead to performance degradation. 2b) Although the

actuator/sensor size optimization is neglected in this study,

by looking at the contour plot of isosurfaces in the

deformed panel in 𝑟-directions at 5414 Hz in Fig. 13, for

non-optimal configuration, the inability of closed-loop

system in suppressing the vibration amplitude is evident.

The results in Fig. 11 are presented only for

configuration 2 for the sake of brevity. One remark is that if

the simulations need a large number of increments (≥
300000), then the obtained results may be affected by

round-off errors. A possible solution is executing the

ABAQUS Job module with double precision entries.

The geometry of the simulation problems in this paper is

more complicated than in previous studies such as beams

with a couple of natural frequencies below 100 Hz. Such a

geometry is intentionally selected to show the efficiency of

the SiL scheme in detecting the realistic behavior of the

closed-loop system in complicated structures. The

experimental analyses carried out in (Oveisi and Nestorović

2016, Oveisi and Nestorovic 2016) show an agreement in

the behavior of AVC performance evaluation observed in

the proposed SiL configuration.

Analyzing the vibration suppression for higher

frequencies is out of the scope of this paper which requires

large system memory, higher processing power, and CPU

time due to the higher required mesh density and lower

time-increment (Bossi et al. 2011). The SiL framework can

be used as a tool for extracting the time-domain response of

geometrically nonlinear mechanical structures (open loop

and closed-loop) for complex geometries where analytical

solutions are nonexistent and experiments are costly. New

uncertainty quantification methods can be established based

on the combination of recent developments in covariance

matrix adaptation evolution strategy (CMA-ES) (Claeys et

al. 2014, Noël and Kerschen 2017) and the modeling

framework proposed in this paper. Also, Additional

FORTRAN subroutines may be combined with UAMP e.g.

user-defined finite elements can be incorporated within

ABAQUS e.g., authors used UEL subroutine to implement

Mindlin-type nine-node shell element for the piezoelectric

domain (Nestorović et al. 2012).

4. Conclusions

In this paper, a stable interconnection between

652

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

ABAQUS and MATLAB is developed and tested for both

offline post-processing and online simulation of time-

varying amplitudes. A detailed ready-to-use scheme is

prepared in a step-by-step manner that makes the software-

in-the-loop framework flexible in terms of adding/changing

additional FORTRAN subroutines. Possible issues in

establishing this connection are remarked. In order to

investigate some of the key features of such

interconnection, two design problems are defined for a

mechanical structure with relatively complex geometry.

Comprehensive analyses are carried out in terms of

observing the behavior of the framework.

Acknowledgments

The authors would like to thank Jim Dempsey CEO,

CTO at QuickThread Programming and Steve Lionel, the

senior technical staff at Intel Corporation for their

productive comments on developing the proposed SiL

technique.

References

Adhikari, S., Friswell, M.I., Lonkar, K. and Sarkar, A. (2009),

“Experimental case studies for uncertainty quantification in

structural dynamics”, Probab. Eng. Mech., 24(4), 473-492.

Bertagne, C. and Hartl, D. (2014), “Feedback control applied to

finite element models of morphing structures”, ASME 2014

Conf. Smart Mater. Adapt. Struct. Intell. Syst. SMASIS 2014, 1,

1-10.

Bossi, L., Rottenbacher, C., Mimmi, G. and Magni, L. (2011),

“Multivariable predictive control for vibrating structures: An

application”, Contr. Eng. Pract., 19(10), 1087-1098.

Bruant, I., Gallimard, L. and Nikoukar, S. (2010), “Optimal

piezoelectric actuator and sensor location for active vibration

control, using genetic algorithm”, J. Sound Vibr., 329(10), 1615-

1635.

Claeys, M., Sinou, J.J., Lambelin, J.P. and Alcoverro, B. (2014),

“Multi-harmonic measurements and numerical simulations of

nonlinear vibrations of a beam with non-ideal boundary

conditions”, Commun. Nonlin. Sci. Numer. Simul., 19(12),

4196-4212.

Favoreel, W., De Moor, B. and Van Overschee, P. (2000),

“Subspace state space system identification for industrial

processes”, J. Proc. Contr., 10(2), 149-155.

Gabbert, U., Duvigneau, F. and Ringwelski, S. (2017), “Noise

control of vehicle drive systems”, Facta Univ. Ser. Mech. Eng.,

15(2), 183.

Gao, L., Lu, Q.Q., Fei, F., Liu, L.W., Liu, Y.J. and Leng, J.S.

(2013), “Active vibration control based on piezoelectric smart

composite”, Smart Mater. Struct., 22(12).

Gawronski, W.K. (2004), Dynamics and Control of Structures: A

Modal Approach.

Hasheminejad, S.M.M. and Oveisi, A. (2016), “Active vibration

control of an arbitrary thick smart cylindrical panel with

optimally placed piezoelectric sensor/actuator pairs”, Int. J.

Mech. Mater. Des., 12(1), 1-16.

Jae-Hung, H. and In, L. (1999), “Optimal placement of

piezoelectric sensors and actuators for vibration control of a

composite plate using genetic algorithms”, Smart Maer. Struct.,

8(2), 257.

Karagülle, H., Malgaca, L. and Öktem, H.F. (2004), “Analysis of

active vibration control in smart structures by ANSYS”, Smart

Mater. Struct., 13(4), 661-667.

Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006),

“Past, present and future of nonlinear system identification in

structural dynamics”, Mech. Syst. Sign. Proc., 20(3), 505-592.

Kim, J., Varadan, V.V. and Varadan, V.K. (1995), “Finite element-

optimization methods for the active control of radiated sound

from a plate structure”, Smart Mater. Struct., 4(4), 318-326.

Landau, I.D., Castellanos Silva, A., Airimitoaie, T.B., Buche, G.

and Noe, M. (2013), “Benchmark on adaptive regulation-

rejection of unknown/time-varying multiple narrow band

disturbances”, Eur. J. Contr., 19(4), 237-252.

Lewis, F.L. (1996), Optimal Control.

Lim, Y.H., Gopinathan, S.V., Varadan, V.V. and Varadan, V.K.

(1999), “Finite element simulation of smart structures using an

optimal output feedback controller for vibration and noise

control”, Smart Mater. Struct., 8(3), 324-337.

Macijejowski, J.M. (1989), Multivariable Feedback Design.

Nestorović, T., Marinković, D., Chandrashekar, G., Marinković, Z.

and Trajkov, M. (2012), “Implementation of a user defined

piezoelectric shell element for analysis of active structures”,

Fin. Elem. Anal. Des., 52, 11-22.

Nestorović, T. and Trajkov, M. (2013), “Optimal actuator and

sensor placement based on balanced reduced models”, Mech.

Syst. Sign. Proc., 36(2), 271-289.

Nestorovic, T., Trajkov, M. and Garmabi, S. (2015), “Optimal

placement of piezoelectric actuators and sensors on a smart

beam and a smart plate using multi-objective genetic

algorithm”, Smart Struct. Syst., 15(4), 1041-1062.

Noël, J.P. and Kerschen, G. (2017), “Nonlinear system

identification in structural dynamics: 10 more years of

progress”, Mech. Syst. Sign. Proc., 83, 2-35.

Noël, J.P. and Schoukens, J. (2017), “Grey-box state-space

identification of nonlinear mechanical vibrations”, Int. J. Contr.,

1-22.

Omidi, E. and Mahmoodi, S.N. (2015), “Sensitivity analysis of the

nonlinear integral positive position feedback and integral

resonant controllers on vibration suppression of nonlinear

oscillatory systems”, Commun. Nonlin. Sci. Numer. Simul.,

22(1), 149-166.

Omidi, E., Mahmoodi, S.N. and Shepard, W.S. (2015), “Vibration

reduction in aerospace structures via an optimized modified

positive velocity feedback control”, Aerosp. Sci. Technol., 45,

408-415.

Orszulik, R.R. and Gabbert, U. (2016), “An interface between

Abaqus and Simulink for high-fidelity simulations of smart

structures”, IEEE/ASME Trans. Mechatron., 21(2), 879-887.

Oveisi, A. and Nestorovic, T. (2016), “Robust nonfragile observer-

based H2/H∞ controller”, J. Vibr. Contr., 1077546316651548.

Oveisi, A. and Nestorović, T. (2016), “Robust observer-based

adaptive fuzzy sliding mode controller”, Mech. Syst. Sign.

Proc., 76-77, 58-71.

Oveisi, A. and Nestorović, T. (2017), “Transient response of an

active nonlinear sandwich piezolaminated plate”, Commun.

Nonlin. Sci. Numer. Simul., 45, 158-175.

Oveisi, A., Nestorović, T. and Nguyen, N.L. (2016), “Semi-

analytical modeling and vibration control of a geometrically

nonlinear plate”, Int. J. Struct. Stab. Dyn., 1771003.

Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J.

and Pintelon, R. (2010), “Identification of nonlinear systems

using polynomial nonlinear state space models”, Automat.,

46(4), 647-656.

Peng, F. (2005), “Actuator placement optimization and adaptive

vibration control of plate smart structures”, J. Intell. Mater. Syst.

Struct., 16(3), 263-271.

Puri, G.M. (2011), Python Scripts for Abaqus: Learn by Example,

1st Edition, Charleston, South Carolina, U.S.A.

653

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

Rahman, N. and Alam, M.N. (2012), “Active vibration control of a

piezoelectric beam using PID controller: Experimental study”,

Lat. Am. J. Sol. Struct., 9, 657-673.

Ramesh Kumar, K. and Narayanan, S. (2007), “The optimal

location of piezoelectric actuators and sensors for vibration

control of plates”, Smart Mater. Struct., 16(6), 2680-2691.

Ramesh Kumar, K. and Narayanan, S. (2008), “Active vibration

control of beams with optimal placement of piezoelectric

sensor/actuator pairs”, Smart Mater. Struct., 17(5), 055008.

Ray, L.R., Koh, B.H. and Tian, L. (2000), “Damage detection and

vibration control in smart plates: Towards multifunctional smart

structures”, J. Intell. Mater. Syst. Struct., 11(9), 725-739.

Sadri, A.M., Wright, J.R. and Wynne, R.J. (1999), “Modelling and

optimal placement of piezoelectric actuators in isotropic plates

using genetic algorithms”, Smart Mater. Struct., 8(4), 490-498.

Sadri, A.M., Wright, J.R. and Wynne, R.J. (2002), “LQG control

design for panel flutter suppression using piezoelectric

actuators”, Smart Mater. Struct., 11(6), 834-839.

Shakeri, R. and Younesian, D. (2016), “Broad-band noise

mitigation in vibrating annular plates by dynamic absorbers”,

Int. J. Struct. Stab. Dyn., 16(6), 1550014.

Skogestad, S. and Postlethwaite, I. (2007), Multivariable

Feedback Control: Analysis and Design, Lavoisier.fr.

Soize, C. (2005), “Random matrix theory for modeling

uncertainties in computational mechanics”, Comput. Meth. Appl.

Mech. Eng., 194(12-16), 1333-1366.

Stojanović, V. (2015), “Geometrically nonlinear vibrations of

beams supported by a nonlinear elastic foundation with variable

discontinuity”, Commun. Nonlin. Sci. Numer. Simul., 28(1-3),

66-80.

Vel, S.S. and Baillargeon, B.P. (2004), “Active vibration

suppression of smart structures using piezoelectric shear

actuators”, Proceedings of the 15th International Conference on

Adaptive Structures and Technologies.

Wills, A., Ninness, B.M. and Gibson, S. (2009), “Maximum

Likelihood Estimation of state space models from frequency

domain data”, IEEE Trans. Automat. Contr., 54(1), 19-33.

Xu, S.X. and Koko, T.S. (2004), “Finite element analysis and

design of actively controlled piezoelectric smart structures”,

Fin. Elem. Anal. Des., 40(3), 241-262.

PL

654

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

Appendix 1

In order to arrange a ready-to-use interface for the

reader, the revised form of standard UAMP is broken into

some script blocks. This increases the readability of the

script in comparison to a batch entrance. Let’s name the

revised UAMP subroutine “general block” which starts with

general block part 1 in Fig. A1.

general block part 1
 Subroutine uamp(
C passed in variables
 * ampName, time, ampValueOld, dt, nProps, props, nSvars, svars,
 * lFlagsInfo, nSensor, sensorValues, sensorNames,
 * jSensorLookUpTable,
C to be defined (if needed)
 * ampValueNew,
 * lFlagsDefine,
 * AmpDerivative, AmpSecDerivative, AmpIncIntegral,
 * AmpIncDoubleIntegral)
 include 'aba_param.inc'

Fig. A1. The general FORTRAN subroutine’s first block:

subroutine declaration and UAMP’s variable definition

For brevity, the standard UAMP is not explained in this

paper, and the interested reader may refer to ABAQUS user

subroutine reference manual. Next, in contrast to standard

UAMP, an interface should be defined including the

signatures of some functions and additional subroutines.

The interface in FORTRAN is declared with the

interface keyword after general block part 1, and then

ends before defining the class of sensorValues in the

program block of Fig. A2 by end interface keyword.

This block in the rest of the appendix is referred to as

“interface block”.

interface block part 1
interface

function ENGOPEN (command) bind(C,name="ENGOPEN")
 integer(INT_PTR_KIND()) :: ENGOPEN
 character, dimension(*), intent(in) :: command
end function ENGOPEN

end interface

Fig. A2. The first part of the interface block as the

language-binding-spec attribute

At this point, MATLAB engine should be called inside

the main subroutine, and since FORTRAN compiler is used

for ABAQUS/CAE kernel, any function/subroutine inside

the interface block should be bound with the language-

binding-spec attribute, using the keyword bind. Such an

entity in FORTRAN processor is treated as its conforming

object in the companion C compiler. Note that the engine

applications in visual studio (VS) environment are straight-

forward to be compiled. However, the harvested features of

VS in ABAQUS require the interface block which serves as

the recognition platform between the case-sensitive

commands of FORTRAN and C. As an example, ENGOPEN

routine is presented as the first entity to interface block in

Fig. A2.

Such a function needs the declaration of the class of its

input and output variables. To increase the readability, the

rest of interface block is presented at the end of Appendix 1.

After ending the interface block, the variables together with

their classes are defined in a similar manner to MATLAB

function definition syntax and then followed by general

block part 2 which is partially shown in Fig. A3.

general block part 2
! Time vector parameters
double precision timestep1, timestep2
C time indices
 parameter (iStepTime = 1,
 * iTotalTime = 2,
 * nTime = 2)
timestep1 = time(iStepTime)
timestep2 = timestep1 + dt
Fig. A3. General block for time indices and various

information flags

The general block part 2 may contain the time indices,

definition/activation of various information flags, the

definition of sensor values at the end of the previous

increment (sensorValues), and description of the array of

the solution-dependent state variables (svars). These

variables should be written in FORTRAN language intrinsic

data types. Then, iGetSensorID('SENUi',
jSensorLookUpTable) would deliver the user-defined

solution-dependent state variables which should be passed

through MATLAB engine.

Note that independent of the numerical example of sub-

problem (b) in Fig. 1a, the current steps are general for

other applications mentioned in the introduction section as

long as they can be formulated in terms of a time-dependent

step module of ABAQUS with a series of external loads or

time-varying boundary conditions. At this point, MATLAB

engine is opened, a double array of the desired size is

defined (forvar) for the variables that are going to be

processed in MATLAB engine (matlabsession), a time

vector is created in MATLAB, and the vector is copied from

FORTRAN array to MATLAB array using MXGETPR. This

completes the general block part 3 as illustrated in Fig. A4.

general block part 3
integer*8 matlabsession
matlabsession = ENGOPEN('matlab')
! Check point 1:
T = MXCREATEDOUBLEMATRIX(Mi, Ni, 0)
Call MXCOPYREAL8TOPTR(forvar, MXGETPR(T), Ni)
status = ENGPUTVARIABLE(ep, 'TT', T)
if (status .ne. 0) then
 write(6,*) 'ENGPUTVARIABLE failed: Check point 1'
 stop
endif
Fig. A4. The general program for opening the engine and

evaluating the MATLAB function for the vector defined in

UAMP subroutine

Next, a MATLAB function (m-file) which controls the

execution of the online post-processing algorithm is called.

This function (matlabfunc) is a gateway to the MATLAB

toolboxes such as signal processing, control design, fuzzy

systems, etc. The m-file initiates the commands at the

beginning of each time increment while the ABAQUS/CAE

kernel is in a wait state. User-defined functions can be

called only if the current directory includes a copy of the

function, however, since the MATLAB engine still needs to

be called from ABAQUS, the only possibility is to add the

directory containing the m-file to permanent MATLAB

directory using “pathtool”. Since the function called in the

global MATLAB directory cannot save the variables, it is

recommended to create a dummy vector in UAMP and

assign the generated results from MATLAB iteratively to its

elements. This action has three advantages: 1) the

simulations can be terminated using some if-conditions on

ampValueNew (see Fig. A1) in the case of violation of a

655

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

physical constraint or performance index. In application of

AVC of sub-problem (b), this criterion can be the maximum

control effort generated from the controller exceeding the

piezo-patch depolarization voltage or maximum

displacement of a shaker baffle. 2) During the simulation,

the visualization module can be executed over the resulted

“.odb” file for observing the generated amplitudes in

UAMP. 3) An additional advantage is the possibility to have

access to these variables in Tecplot Software.

At this point, the MATLAB function is called from

FORTRAN subroutine, the resulted array in MATLAB is

read by the messenger of FORTRAN interface, and the

obtained array is copied from MATLAB array to

FORTRAN array as in general block part 4 in Fig. A5.
general block part 4
! Check point 2:
if (ENGEVALSTRING(matlabsession, 'out1 = matlabfunc(TT);') .ne. 0) then
 write(6,*) 'ENGEVALSTRING failed: check point 2'
 stop
endif
out2 = ENGGETVARIABLE(matlabsession, 'out1')
call MXCOPYPTRTOREAL8(MXGETPRS(out2), out3, No)

Fig. A5. The general program for bringing back the

MATLAB function’s output using the FORTRAN

messenger

It is evident that variables out1, out2, and out3 are

classified in general block part 2 (suppressed for the sake

of brevity). Finally, the amplitude is updated in FORTRAN

subroutine based on the values of out3, and the array is

deallocated as: call MXDESTROYARRAY(T) for the new

increment.

Additional notes:

• Since the routines in the interface block are mixed-

case, the declarations in Fig. A6 are needed before interface.

Pre-interface block
!DEC$ OBJCOMMENT LIB:"libeng.lib"
!DEC$ OBJCOMMENT LIB:"libmx.lib"
!DEC$ OBJCOMMENT LIB:"libmat.lib"

Fig. A6. Intel-style pre-processing directives

where the OBJCOMMENT LIB directive postulates a library

in an object heading. In this case, the “linker” looks for the

character constant .lib by the OBJCOMMENT directive in

the command line of the script. The reason behind this

obligatory declaration is that FORTRAN is not case-

sensitive. However C is, and the routines in MATLAB

libraries are mixed-case. As a result, Intel-style pre-

processing directives are required. The three libraries

mentioned above are available by installing the MATLAB

software.

• If C code correctly links with the external libraries but

“unresolved external symbol reference” error appears,

assembler output should be checked. For Microsoft

Windows operating systems (OS), some changes should be

applied: low case, up case, and mixed case. A list of such

changes is available for the linker in the header file “fintrf.h”

provided by Mathworks which contains the declaration of

the pointer type needed by the MATLAB/FORTRAN

interface. Since this header file is not readable for

ABAQUS compiler, those changes should be found and

applied manually from the assembler output. One should

note that only Windows linker has this feature. For instance,

in this paper, mxCopyReal8ToPtr is replaced with

MXCOPYREAL8TOPTR730 along with some other

modifications. These changes are different from one OS to

another. This is a common approach when one needs to

write an assembly program to interface with a C application

using decorated function names. Then, in order to figure out

the problematic name mangling, an empty shell subroutine

in C is recommended to be written. The produced assembly

output, gives the correct form to be referred to in subroutine

that should be applied manually.

As it can be seen in the interface block part 2,

additional subroutines are MXDESTROYARRAY,

MXCOPYREAL8TOPTR, and MXCOPYPTRTOREAL8, which all

require DECORATE attribute on a mixed-language

application. Additionally, unlike the functions, no return

values should be assigned to them.

656

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

Appendix 2

The material properties of the composite structure are

provided for the host structure

𝐶ℎ =

[

28.3 12.1 12.1 0 0 0
12.1 28.3 12.1 0 0 0
12.1 12.1 28.3 0 0 0
0 0 0 8.1 0 0
0 0 0 0 8.1 0
0 0 0 0 0 8.1]

 [GPa],

and the piezo-actuator/sensor (density: 𝜌𝑎 = 5300
kg

m3
, 𝜌𝑠 =

7500
kg

m3
)

𝐶𝑎 =

[

23.9 10.4 5.2 0 0 0
10.4 24.7 5.2 0 0 0
5.2 5.2 13.5 0 0 0
0 0 0 6.5 0 0
0 0 0 0 6.6 0
0 0 0 0 0 7.6]

 × 10[GPa]

𝐶𝑠 =

[

13.9 7.8 7.43 0 0 0
7.8 13.9 7.43 0 0 0
7.43 7.43 11.5 0 0 0
0 0 0 2.56 0 0
0 0 0 0 2.56 0
0 0 0 0 0 3.06]

 × 10[GPa]

𝐸𝑎 =

[

4.3 0 0
−0.4 0 0
−0.3 0 0

0 0 0
0 0 2.8
0 3.4 0]

 [C/m2] 𝐸𝑠 =

[

15.1 0 0
−5.2 0 0
−5.2 0 0

0 0 0
0 0 12.7
0 12.7 0]

 [C/m2]

𝜖𝑎 = [
1.96 0 0
0 2.01 0
0 0 0.28

] [nF/m] 𝜖𝑠 = [
6.5 0 0
0 6.5 0
0 0 5.6

] [nF/m]

where 𝐸𝑎 , 𝐸𝑠 , 𝜖𝑎 , and 𝜖𝑠 represent the piezoelectricity

matrices (stress coefficients) and the dielectric matrices for

actuator and sensor, respectively.

interface block part. 2
 function MXCREATEDOUBLEMATRIX (a1,b1,c1)
 * bind(C,name="MXCREATEDOUBLEMATRIX")
 integer*8 :: a1,b1,c1
 integer*8 :: MXCREATEDOUBLEMATRIX
 intent(in) :: a1,b1,c1
 end function MXCREATEDOUBLEMATRIX

 function MXCREATEDOUBLESCALAR (a2)
 * bind(C,name="MXCREATEDOUBLESCALAR")
 real*8 :: a2
 integer*8 :: MXCREATEDOUBLESCALAR
 intent(in) :: a2
 end function MXCREATEDOUBLESCALAR

 Subroutine MXDESTROYARRAY (a3)
!DEC$ ATTRIBUTES DECORATE, ALIAS:"MXDESTROYARRAY" :: MXDESTROYARRAY
 integer*8, dimension(*) :: a3
 end Subroutine MXDESTROYARRAY

 function MXGETPR(a4) result(ptr) bind(C, name='MXGETPR')
 import
 implicit none
 integer*8, dimension(*), intent(in) :: a4
 integer*8 :: ptr
 end function MXGETPR

 Subroutine MXCOPYREAL8TOPTR (a5,b5,c5)
!DEC$ ATTRIBUTES DECORATE, ALIAS:"MXCOPYREAL8TOPTR" :: MXCOPYREAL8TOPTR
 real*8 a5(*)
 integer*8 b5
 integer*8 c5
 end Subroutine MXCOPYREAL8TOPTR

 function ENGPUTVARIABLE (a6,b6,c6)
 * bind(C,name="ENGPUTVARIABLE")
 integer*8, intent(in) :: a6
 character, dimension(*), intent(in) :: b6
 integer*8, dimension(*), intent(in) :: c6
 end function ENGPUTVARIABLE

 function ENGEVALSTRING (a7,b7)
 * bind(C,name="ENGEVALSTRING")
 integer(INT_PTR_KIND()) :: ENGEVALSTRING
 integer*8, intent(in) :: a7
 character, dimension(*), intent(in) :: b7
 end function ENGEVALSTRING

 function ENGGETVARIABLE (a8,b8)
 * bind(C,name="ENGGETVARIABLE")
 integer*8 :: ENGGETVARIABLE
 integer*8, intent(in) :: a8
 character, dimension(*), intent(in) :: b8
 end function ENGGETVARIABLE

 Subroutine MXCOPYPTRTOREAL8 (a9,b9,c9)
!DEC$ ATTRIBUTES DECORATE, ALIAS:"MXCOPYPTRTOREAL8" :: MXCOPYPTRTOREAL8
 integer*8 a9
 real*8 b9
 integer*8 c9
 end Subroutine MXCOPYPTRTOREAL8

 function engClose (a10) bind(C,name="engClose")
 integer(INT_PTR_KIND()) :: engClose
 integer*8, intent(in) :: a10
 end function engClose

Fig. A7. The second part of the interface block after Fig. A2

657

Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorović

Appendix 3

In optimal control design for the output regulation

problem, the feedback law is synthesized by minimizing a

time-dependent function that includes the measure of

system output (sensor measurement) and control effort to

achieve an optimal tradeoff between reduction in the plant

response and injected control energy. Following the

conventional linear quadratic output regulator (LQRY)

technique in (Gawronski, 2004) for the system in Eq. (1)

and given initial condition 𝑥(0), the control input signal

(𝑢) is constructed by optimizing the objective function in

Eq. (C1) such that within a specific time window [0 𝜏]
(in steady state 𝜏 → ∞), the system outputs converge to

origin.

𝐽LQRY = ∫ [𝑦(𝑡)𝑇𝑄 𝑦(𝑡) + 𝑢(𝑡)𝑇𝑅 𝑢(𝑡)] d𝑡
𝜏

0

,
(

(C1)

where 𝑄 = 𝑄𝑇 > 0, and 𝑅 = 𝑅𝑇 > 0, are user-defined

time-independent weighting matrices selected by control

engineer. Following Lewis and Syrmos (Lewis, 1996), the

LQRY can be converted to linear quadratic regulation

problem (LQR) by translating the weighting matrices as Eq.

(C2)

[
𝑄 0
0 𝑅

] = [𝐶
𝑇 0

0 𝐼
] [

𝑄∗ 0
0 𝑅∗] [

𝐶 0
0 𝐼

].
(

(C2)

In order to add to the generality of the problem, the

strictly proper system is assumed to be under the effect of

unknown input disturbance and output measurement noise

as formulated in Eq. (C3) instead of (1)

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝛯𝑤,

𝑦 = 𝐶𝑥 + 𝑛,
(C3)

in which, 𝛯, 𝑛, and 𝑤 represent the real-values unknown-

input matrix with appropriate dimensions, output

measurement noise, and unknown but 𝐿2 -bounded

mismatch disturbance signal. Additionally, 𝑛 and 𝑤 are

assumed to be the result of some uncorrelated zero-mean

Gaussian stochastic processes with constant power spectral

density matrices (𝒲n and 𝒲d , respectively). Since, in

practical problems generally the states of the system are

unavailable for measurement, an observer based on Kalman

filter is combined with the deterministic LQR to formulate

the control synthesis in linear quadratic Gaussian (LQG)

framework. As a result, the control input is proposed in

terms of observed states (𝑥̂) as 𝑢 = −𝑇𝑥𝑥̂(𝑡) under the

assumption that the pair (𝐴, 𝐶) is observable where 𝑇𝑥 =

 𝑅∗−1𝐵𝑇X with X = X𝑇 ≥ 0 being the unique positive-semi

definite solution of the ARE of 𝐴𝑇X + X𝐴 − X𝐵𝑅∗−1𝐵𝑇X +
𝑄∗ = 0 (Macijejowski 1989). Moreover, the dynamics of

the state observer in the presence of measurement noise is

assigned as 𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿[𝑦 − 𝐶 𝑥̂], such that

𝐸{[𝑥 − 𝑥̂]𝑇[𝑥 − 𝑥̂]} is minimized. 𝐸{. } represents the

expectation operator, while 𝐿 = Y𝐶𝑇𝒲n
−1 with Y =

YT ≥0. The steady state solution of the latter optimization

problem is proven to be obtained by solving ARE: Y𝐴𝑇 +
𝐴Y − Y𝐶𝑇𝒲n

−1𝐶Y + 𝒲d = 0 . It is obvious that the

behavior of the closed-loop system obtained based on LQG

configuration can be determined by analyzing the closed-

loop poles based on Separation theorem (Skogestad and

Postlethwaite 2007).

658

