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1. Introduction 
 

Since the 60s of the last century, several theories have 

been developed to compute the torsional strength of 

reinforced concrete (RC) beams. The Space Truss Analogy 

(STA), which constitutes a simple model to understand the 

behavior of RC beams under torsion, has deeply influenced 

a large number of researchers and working groups to set 

standard rules. As an example, in 1995 the ACI code 

substituted previous rules based on the skew bending theory 

by new ones based on the STA. Other codes of practice 

(e.g., European codes) adopted, right from their origin, rules 

based on the STA. 

The STA assumes that a RC beam under torsion behaves 

as a thin tube which resists to the external torque with a 

circulatory shear flow. This tube is analyzed with a space 

truss analogy, which consists of inclined concrete struts 

interacting with the longitudinal and transverse 

reinforcement. This concept is quite enlightening to 

understand how the compressive concrete and tensile 

reinforcements resist to the external torque. From the 

developments of the STA proposed by several authors, one 

of the most used to characterize the ultimate behavior of RC 

beams under torsion is the Variable Angle Truss Model 

(VATM) proposed by Hsu and Mo (1985a). This model  
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aimed to unify small and large cross sections (plain or 

hollow) and incorporated, for the first time, a smeared stress 

(σ) - strain (ε) curve for the concrete in compression to 

account for the softening effect (influence of the diagonal 

cracking due to transverse tensile stresses) instead of a 

simple σ−ε curve based on uniaxial tests. By using such a 

smeared curve the nonlinear behavior of concrete in 

compression is better incorporated into the models, even for 

low loading levels (Jeng et al. 2011, 2013, Chen et al. 2016, 

Wang et al. 2015). 

As stated by Bernardo et al. (2015a), in structural design 

of RC members it is common to neglect the influence of the 

axial restraint due to the connection to other structural 

members, such as columns and walls. In current situations, 

RC beams are axially restricted. Hence, among other 

deformations, the axial deformation is not free. This is 

mainly true for cracked stage. Therefore, a compressive 

axial stress state arises, which is generally favorable for the 

design. For some situations, this favorable effect is 

considered by codes of practice. Most of the codes provide 

rules to compute the increase of the shear strength for RC 

beams due to simultaneous compressive axial states. 

However, for torsion no rules exist to compute the increase 

of the torsional strength for similar situations. 

This subject is not new and some experimental previous 

studies exist with RC beams axially restricted in flexure 

(e.g., Gomes 2011, Lou et al. 2011). In such studies it is 

found that, after cracking, as the axial restraint increases, 

the stiffness and resistance of the beams increases. 

For RC beams axially restricted under torsion, no 

specific experimental studies were found in the literature. 

For this reason, Bernardo et al. (2015a) proposed the 

modified VATM for axially restricted RC beams. This 
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model was checked with some experimental results with 

prestress concrete beams under torsion, with external 

prestress reinforcement. Such technique induces some axial 

restraint due to the axial stiffness of the prestress bars which 

are anchored at the ends of the beam. The modified VATM 

was also checked with some numerical results (Bernardo et 

al. 2015b). From these studies, the authors observed a 

favorable effect on the torsional strength due to the axial 

restraint. For this reason, and based on an extensive 

parametrical analysis, the authors computed and proposed 

charts to help the design of RC beams under torsion with 

axial restraint (Bernardo et al. 2015a). 

In the aforementioned studies, only RC beams with 

squared cross section were studied. Despite beams with 

primary torsional moments have cross sections with height 

to width ratios close to unity, this constitutes a limitation for 

design. In practical design, rectangular cross sections with 

height to width ratios higher than unity constitutes a 

common situation. For this reason, this article presents new 

torsion design charts, similar to the ones from Bernardo et 

al. (2015a), which cover RC beams with height to width 

ratios different from unity (rectangular cross sections). For 

this, extensive parametrical and nonlinear multivariable 

regression analysis are performed by using the predictions 

from the modified VATM. The following variable studies 

are considered: concrete compressive strength, torsional 

reinforcement ratio, height to width ratio and level of axial 

restraint. The proposed new charts allow to correct the 

torsional strength of rectangular RC beams under torsion to 

account for the favorable influence of the axial restraint. 

The torsional strength before correction can be computed 

from current methods, such as from code´s rules. 
It should be noted that warping was not considered in 

this study. In cross-section thin-walled beams, warping is 
usually an important phenomenon to be considered (Lando 
1987, Murín and Kutiš 2008, Chen et al. 2016). This study 
deals with current RC beams with rectangular cross section 
(plain or hollow). In such members, the torque is mainly 
resisted through a circulatory flow of tangential stresses 
(circulatory torsion). However, warping effects can also 
exist in restrained areas (for instance in the connection areas 
to other members). In non-cracked stage and in such areas, 
warping can locally increase the stiffness of the beams. This 
can affect the torsional capacity of the member (Waldren 
1988). However, in the cracked stage and for the ultimate 
loading, the effects of warping can be highly reduced. This 
is because the cracks somewhat release the initial restriction 
and allow the out of plane deformation of the cross section 
(Waldren 1988). This explains why codes of practice, such 
as the European codes (Eurocode 2, Model Code 2010), 
state that for current rectangular RC sections (plain or 
hollow), the effect of warping can be neglected for the 
design for the ultimate limit state. 

In this article the principal purpose is to study the 
ultimate behavior of axially restrained RC beams. In this 
stage the beams are fully cracked. For this reason, the 
influence of warping was not explicitly considered. 
 

 

2. The modified VATM for axially restricted beams 
 

To help the reader, this section summarizes the 

equations and the solution procedure of the modified VATM 

for axially restricted beams. More details about the 

assumptions to incorporate the effect of the axial restraint in 

the VATM, as well as the derivation of the equations, can be 

found in Bernardo et al. (2015a). The methodology to 

modify the VATM was based from the previous one used by 

Hsu (1984) to incorporate axial forces in the STA and also 

by Hsu and Mo (1985b) to incorporate the longitudinal and 

uniform prestress in the VATM. 

In the cracked stage, the length (l) of a RC beam under 

torsion increases. If no axial restraint exists (free condition), 

the variation of the beam´s length, Δl, can be simply 

computed from the average strain in the longitudinal 

reinforcement, εl: Δl=lεl. If the beam is axially restricted, for 

instance due to the connection to other structural elements, 

the stiffness of such elements restrict the axial deformation 

of the beam. In addition to the torque, a compressive axial 

stress state arises. The resultant of this stress state, Fc, is 

directly proportional to the level of axial restraint, k, and to 

the free elongation of the beam, Δl: Fc=Δl∙k. This resultant 

force acts on the beam in addition to the torque and must be 

considered in the equilibrium and compatibility equations 

of the VATM to derive the modified VATM for axially 

restricted beams (Bernardo et al. 2015a). 

As for the VATM, the modified VATM assumes that the 

external torque is resisted by the equivalent thin tube with a 

circulatory shear flow, q, which is decomposed into a 

tensile force acting in the longitudinal reinforcement and a 

compressive force acting in the concrete struts with an 

angle α to the longitudinal axis. From Bredt’s thin tube 

theory, the torque T is related to the area enclosed by the 

center line of the flow of shear stresses (which coincides 

with the center line of the wall thickness, td): q=T/2A0. 

The calculation procedure for the modified VATM 

involves 3 equilibrium equations (see Table 1) to compute 

the torque, T (Eq. (1)), the effective thickness of the 

concrete struts of the equivalent hollow section, td (Eq. (3)), 

and the angle of the concrete struts to the longitudinal axis 

of the beam, α (Eq. (2)). In these equations, σd is the stress 

in the concrete strut, Al and σl are the total area and the 

stress in the longitudinal reinforcement, respectively, p0 is 

the perimeter of the center line of the flow of shear stresses, 

At and σt are the area of one bar and the stress in the 

transverse reinforcement, respectively, and s is the 

longitudinal spacing of the transverse reinforcement. It 

should be noted that, despite plain and hollow beams 

generally behaves differently (Valipour and Foster 2010), 

for torsion and for the ultimate stage, plain and hollow 

beams can be considered equivalent since the concrete core 

can be neglected (Hsu 1984). 

To compute the torque (T)-twist (θ) curve from the 

modified VATM, 3 compatibility equations (see Table 1) are 

also need to compute the strain in the longitudinal 

reinforcement, εl (Eq. (4)), the strain in the transverse 

reinforcement, εt (Eq. (5)), and the twist, θ (Eq. (6)).  

For each input value for the strain at the outer surface of 

the concrete strut, εds, the calculation procedure of the 

modified VATM starts to compute the strain in the 

longitudinal reinforcement for the beam without axial 

restraint. From this value, the elongation of the beam Δl and 
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the compressive force Fc due to the axial restraint are 

calculated. With these values, the model calculates the 

compressive strain of the longitudinal reinforcement εl,c due 

to Fc, which is used to compute the compressive strain of 

the concrete strut, εds,c. This latter is used to compute the 

effective strain at the outer surface of the concrete strut, 

εds,ef, from which the solution procedure goes on. 

Table 1 presents Eq. (7) to (9) to compute the effective 

strain at the outer surface of the concrete strut, where Ec and 

Es are the Young’s modulus for concrete and steel bars, 

respectively, Ac is the area limited by the outer perimeter of 

the cross section and Ah is the area of the hollow part (for 

hollow sections). 

To characterize the behavior of the materials, smeared 

and nonlinear σ−ε relationships are used to account for the 

softening effect (concrete in compression) and stiffening 

effect (steel bars in tension). As for the softening effect, 

stiffening effect is also important to be considered here 

(Khagehhosseini et al. 2013, Mondal and Prakash 2015).  

From several proposals for the σ−ε relationships, Bernardo 

et al. (2012) found that the σ−ε relationship proposed by 

Belarbi and Hsu (1994) for concrete in compression (Table 

2, Eq. (10) and (11)), with the softening coefficient (βσ= βε) 

proposed by Zhang and Hsu (1998) (Table 2, Eq. (12) to 

(15)), and the σ−ε relationship proposed by Belarbi and Hsu 

(1994) for steel bars in tension (Table 2, Eq. (16) to (19)), 

are suitable to compute the ultimate behavior of RC beams 

under torsion. These σ−ε relationships were incorporated in 

the modified VATM. 

 

 

 

In Table 2, f’c is the uniaxial concrete compressive 

strength, ε0 is the strain corresponding to f’c (peak stress), εc1 

is the tensile principal strain in the perpendicular direction 

to the concrete strut, ρl and ρt are the longitudinal and 

transverse reinforcement ratios, respectively, fly and fty are 

the yielding stress for the longitudinal and transverse 

reinforcement, respectively, and fcr is the tensile strength of 

concrete. 

To compute the solution points for the T−θ curve, a 

solution procedure based on a trial-and-error technique is 

used. Fig. 1 presents the flowchart for the solution 

procedure of the modified VATM. The theoretical failure 

point of the section is defined from the assumed maximum 

(conventional) strains for the materials (εcu for concrete and 

εsu for steel). 

 

 
3. Torsion design charts 
 

This section starts to summarize the methodology used 

by Bernardo et al. (2015a) to obtain the design charts for 

the effective torsional strength of axially restricted RC 

beams with squared cross section (Section 3.1).  

This section also shows the influence of the height to 

width ratio (h/b) of the cross section on the behavior of RC 

beams under torsion, in order to justify the need of new 

torsion design charts to incorporate this new variable study 

(Section 3.2). To show the influence of h/b, some results 

obtained from the modified VATM and some experimental 

Table 1 Equations for the modified VATM 
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   ds 0 : 

2

0 0

2
 

     
  =  −   

        

ds ds
d cf

 (10a)   0   ds : 

2

0

0 0

1 





   − 
  =  − 

 −    

ds

d cf

 (10b)  1d ck f  =
 (11) 

( )

1400
1

 


 =  =


+



c

c

R f

'
 (12)     


 =



l ly

t ty

f

f
 (13) (14) (15) 

Ordinary reinforcement in tension (Belarbi and Hsu 1994) 

(16) (17) (18) (19) 

467



 

Cátia S.B. Taborda, Luís F.A. Bernardo and Jorge M.R. Gama 

 

 

Fig. 1 Flowchart for the calculation of the T−θ curve 

 

 

results from Hsu (1968) are presented. Finally, the new 

torsion design charts are presented in Section 3.3. 

As in the previous study from Bernardo et al. (2015a) 

and for the other variable studies, the influence of h/b to 

compute the effective torsional strength of axially restricted 

RC beams is incorporated through the design charts.  

This is because it is not possible to present a simple and 

practical equation for the influence of such variable and for 

its correlation with all the other variable studies. 

 

3.1 Torsion design charts for squared RC beams 
 

Bernardo et al. (2015a) showed that the influence of the 

level of axial restraint on the torsional ultimate behavior of 

RC beams can be relevant. In particular for the torsional 

strength, the influence of the axial restraint is favorable. For 

this reason, this effect should be considered in the design of 

RC beams. To perform an extensive parametric analysis, 3 

variable studies (fc=f’c, ρtot and k) with several reference 

values were considered. From the considered values, 192  

 

Fig. 2 Theoretical T−θ curves for the idealized RC beams 

(f’c=30 MPa, ρtot=1.0% and Ac=7200 cm2) 

 

 

combinations were studied. By using the statistical software 

“R” with “stats” package to correlate the independent 

variable studies with the method of least squares, a very 

accurate polynomial surface of degree 13 (with 171 terms) 

was found, with a coefficient of determination near to unity, 

to compute the correction parameter (Cca). From this 

complex polynomial, design charts were obtained to assist 

project. Such charts allow to obtain the correction 

parameter Cca (coefficient of axial confinement) as function 

of the variables fc, ρtot and k, to compute the effective 

torsional strength (Tr,ef), from the normal torsional strength 

(Tr), in order to account for the influence of the axial 

restraint: Tr,ef=CcaTr. Details on the methodology to 

compute parameter Cca and to consider also the influence of 

the length of the beam, as well as the presentation of the 

design charts, can be found in Bernardo et al. (2015a). 

 

3.2 Influence of the height to width ratio 
 

At this point, it is important to check the influence of the 

height to width ratio of the cross section, h/b, on the 

behavior of RC beams under torsion. For this, the modified 

VATM (with no axial restraint, k=0) is used to compute the 

behavior of 3 idealized RC beams with equal concrete 

compressive strength (f’c=30 MPa), equal torsional 

reinforcement ratio (ρtot=ρl+ρt=1.0%) and equal cross 

sectional area (Ac=7200 cm2). In order to variate h/b, while 

maintaining the other variables fixed, the following cross 

sections were considered: 80×90 cm (h/b=1.125), 60×120 

cm (h/b=2.0) and 50×144 cm (h/b=2.88). 

Fig. 2 presents the theoretical T−θ curves for the RC 

beams. It should be remembered that VATM only provides 

good results for the ultimate stage (domain to be studied in 

this study), since it neglects the concrete tensile strength 

(Hsu and Mo 1985a). For this reason, the transition between 

the non-cracked and cracked stage is not captured.  

The T−θ curves from Fig. 2 show that, as h/b decreases, 

the torsional stiffness and strength increases, while the 

ultimate twist decreases. These results show that VATM 

capture the influence of h/b in the ultimate behavior of RC 

beams under torsion. This observation justifies new design 

charts, as the ones previously proposed by Bernardo et al.  
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(2015a), to include also the variation of h/b. 

To validate the aforementioned results from the 

modified VATM, a comparative study with some 

experimental results is performed. For this, the 

experimental study from Hsu (1968) is considered, in which 

28 RC beams of interest for this study were tested under 

pure torsion. The main properties of such beam are 

presented in Table 3. Parameters x1 and y1 are the width and 

height of the stirrups, respectively.  

Among several performed analysis, the results of the 

tested beams were used by Hsu (1968) to study the 

influence of 2 variables which characterize the rectangular 

cross section: the scale effect (which is related with the area 

of the cross section) and the height to width ratio of the 

cross section. Beams from B, G, N, K and C series were 

used for such study because they allowed to isolate the 

effect of the previous 2 variables. It should be referred that, 

from the characteristics of the beams, the effect of each of 

these 2 variables could not be fully isolated (Hsu 1968). 

From the experimental results for beams with balanced 

reinforcement (ρl=ρt), Hsu (1968) proposed an empirical  

 

 

equation (Eq. (20)) to compute the torsional strength       

(Tu=Tr), as a linear function of parameter Ω. Eq. (20) 

includes two components for the internal torque: one 

contributed by the transverse reinforcement (x1y1(At/s)fty) 

and another one contributed by the concrete beam without 

reinforcement (T0), which can be computed from Saint-

Venant’s theory.  

0 1 1

t

u ty

A
T T x y f

s
= +

 
(20) 

In Eq. (20), Ω is the coefficient of proportionality with 

the internal torque contributed by the transverse 

reinforcement. In a x1y1(At/s)fty−Tu plot, Ω is the slope of the 

straight line. This parameter is influenced by the 

dimensions of the cross section (Hsu 1968) and, for this 

reason, incorporates the influence of h/b. 

To evaluate how parameter Ω evolves, Hsu (1968) 

studied beams from series G and N, with different areas of 

the cross section and equal h/b. Hsu plotted the graphs 

x1y1(At/s)fty−Tu for these beams and computed the following  

Table 3 Properties of the test beams from Hsu (1968)        

Beam 
x b  
(cm) 

y h  
(cm) 

h

b  

x1 

(cm) 

y1 

(cm) 
cf   

(MPa) 

lyf
 

(MPa) 

tyf
 

(MPa) 

lA
 

(cm2) 

l  
(%) 

tA
 

(cm2) 

s  
(cm) 

t   
(%) 

tot
 

(%) 

B1 25.4 38.1 1.5 21.59 34.29 27.58 313.71 341.29 5.16 0.53 0.71 15.24 0.54 1.07 

B2 25.4 38.1 1.5 21.59 34.29 28.61 316.47 319.92 7.92 0.83 1.29 18.09 0.82 1.65 

B3 25.4 38.1 1.5 21.59 34.29 28.06 327.50 319.92 11.35 1.17 1.29 12.70 1.17 2.34 

B4 25.4 38.1 1.5 21.59 34.29 30.54 319.92 323.36 15.52 1.6 1.29 9.21 1.61 3.21 

B5 25.4 38.1 1.5 21.59 34.29 29.03 332.33 321.29 20.39 2.11 1.29 6.99 2.13 4.24 

B6 25.4 38.1 1.5 21.59 34.29 28.82 331.64 322.67 25.79 2.67 1.29 5.72 2.61 5.28 

G2 25.4 50.8 2.0 21.59 46.99 30.89 322.67 333.71 7.92 0.62 0.71 12.07 0.63 1.25 

G3 25.4 50.8 2.0 21.59 46.99 26.82 338.53 327.50 11.35 0.88 1.29 15.56 0.88 1.76 

G4 25.4 50.8 2.0 21.59 46.99 28.27 325.43 321.29 15.52 1.2 1.29 11.43 1.2 2.40 

G5 25.4 50.8 2.0 21.59 46.99 26.89 330.95 327.50 20.39 1.58 1.29 8.57 1.6 3.18 

G6 25.4 50.8 2.0 21.59 46.99 29.92 334.39 349.56 7.74 0.6 0.71 12.70 0.59 1.19 

G7 25.4 50.8 2.0 21.59 46.99 30.96 319.23 322.67 11.88 0.93 1.29 14.61 0.94 1.87 

G8 25.4 50.8 2.0 21.59 46.99 28.34 321.99 328.88 17.03 1.32 1.29 10.48 1.31 2.63 

N1 15.24 30.48 2.0 13.03 28.27 29.51 352.32 341.29 2.85 0.61 0.32 9.21 0.62 1.23 

N1a 15.24 30.48 2.0 13.03 28.27 28.69 346.12 344.74 2.85 0.61 0.32 9.21 0.62 1.23 

N2 15.24 30.48 2.0 13.03 28.27 30.41 330.95 337.84 5.16 1.11 0.32 5.08 1.13 2.24 

N2a 15.24 30.48 2.0 13.03 28.27 28.41 333.02 360.59 5.16 1.11 0.71 11.43 1.1 2.21 

N3 15.24 30.48 2.0 13.03 28.27 27.30 351.63 351.63 4.28 0.92 0.32 6.35 0.90 1.82 

K1 15.24 49.53 3.25 11.43 45.72 29.85 345.43 354.39 4.28 0.56 0.71 19.05 0.56 1.13 

K2 15.24 49.53 3.25 11.43 45.72 30.61 335.77 337.84 7.74 1.03 0.71 10.48 1.03 2.05 

K3 15.24 49.53 3.25 11.43 45.72 29.03 315.78 320.61 11.88 1.59 1.29 12.38 1.58 3.17 

K4 15.24 49.53 3.25 11.43 45.72 28.61 344.05 339.91 17.03 2.26 1.29 8.57 2.28 4.54 

C1 25.4 25.4 1.0 21.59 21.59 27.03 341.29 341.29 2.85 0.44 0.71 21.59 0.44 0.88 

C2 25.4 25.4 1.0 21.59 21.59 26.54 334.39 344.74 5.16 0.8 0.71 11.75 0.81 1.61 

C3 25.4 25.4 1.0 21.59 21.59 26.89 330.95 329.57 7.92 1.24 1.29 13.97 1.24 2.48 

C4 25.4 25.4 1.0 21.59 21.59 27.17 336.46 327.50 11.35 1.76 1.29 9.84 1.76 3.52 

C5 25.4 25.4 1.0 21.59 21.59 27.23 328.19 328.88 15.52 2.4 1.29 7.30 2.36 4.76 

C6 25.4 25.4 1.0 21.59 21.59 27.58 315.78 327.50 20.27 3.16 1.29 5.40 3.2 6.36 
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Table 4 Comparative analysis for the torsional strength 

Beam 
Tu,exp 

(kNm) 

Tu,th 

(kNm) 

u ,th

u ,exp

T

T
 

B1 22.26 22.20 0.997 

B2 29.26 30.97 1.058 

B3 37.51 39.65 1.057 

B4 47.34 48.34 1.021 

B5 56.15 51.28 0.913 

B6 61.69 53.62 0.869 

G2 40.34 37.49 0.929 

G3 49.60 48.15 0.971 

G4 64.85 58.93 0.909 

G5 71.97 65.30 0.907 

G6 39.09 37.36 0.956 

G7 52.65 50.92 0.967 

G8 73.44 62.05 0.845 

N1 9.10 8.29 0.912 

N1a 8.99 8.24 0.916 

N2 14.46 12.68 0.877 

N2a 13.22 12.42 0.940 

N3 12.20 10.95 0.897 

K1 15.37 14.63 0.952 

K2 23.73 22.47 0.947 

K3 28.47 26.82 0.942 

K4 35.03 29.86 0.852 

C1 11.30 11.04 0.977 

C2 15.25 17.59 1.153 

C3 20.00 22.68 1.134 

C4 25.31 26.02 1.028 

C5 29.72 28.34 0.954 

C6 34.23 30.23 0.883 

  x = 0.96 

  s = 0.08 

  cv = 8.06% 

 

 
values for parameter Ω: Ω=1.45 for series G and Ω=1.30 
for series N. From this result, Hsu concluded that Ω is not 
constant for beams with different areas of the cross section 
and with equal h/b. Hsu also performed a similar analysis 
for beams with equal width, b. For this, Hsu grouped beams 
from series G, B and C with beams from series N and K, 
and observed that Ω increases as h/b increases. However, 
this analysis do not allow to conclude about the influence of 
parameter h/b alone, since this variable was not isolated 
from the area of the cross section. Hsu fixed the width b and 
the area of the cross section, and correlated the height h of 
the cross section and parameter Ω with y1/x1, which is 
similar to h/b. Hsu observed that Ω depends on y1/x1 and 
also concluded that the torsional strength also depends on 
h/b. From these results, it can be concluded that h/b 
influences the behavior of RC beams under torsion. 

The aforementioned results confirm the previous  

 

Fig. 3(a) Theoretical results for Ω: Series G, B and C; (1 in-

kips = 0.113 kNm) 

 

Fig. 3(b) Theoretical results for Series K e N (1 in-kips = 

0.113 kNm) 

 

 

theoretical results from the modified VATM (Fig. 2), 

namely that a real influence of h/b exists. Therefore, it can 

be concluded that the modified VATM is valid to study the 

influence of h/b on the behavior of rectangular RC beams 

under torsion. 

To confirm the previous statement, the modified VATM 

is firstly used to compute the theoretical values of the 

torsional strengths for beams from Table 3. These values are 

compared with the experimental ones to validate the 

theoretical model. The results are summarized in Table 4, 

which presents the experimental (Tu,exp) and theoretical 

(Tu,th) values for the torsional strength, the ratio Tu,th/Tu,exp 

and the corresponding values for the mean ( x ), standard 

deviation (s) and coefficient of variation (cv). From the 

results, it can be concluded that the modified VATM 

predicts well the torsional strength of the beams ( 0 96x .= ) 

with an acceptable dispersion of the results (cv=8.06%). 
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Table 5 Comparative analysis for the percentage variations 

of parameter Ω between series 

Series 
ΩHsu 

(%) 

Ωth,VATM 

(%) 

Series C to Series B 26.32 22.01 

Series B to Series G 20.83 17.31 

Series N to Series K 15.38 13.09 

 

 

Hence, it can be concluded that the theoretical model 

can be considered valid to study the ultimate torsional 

behavior of the RC beams from Table 4. 

Next, the modified VATM is used to reproduce the 

experimental results from Hsu (1968), related with the 

influence of h/b. in parameter Ω for the RC beams from 

Table 3. From the theoretical results of Table 4, the 

theoretical plots x1y1(At/s)fty−Tu are presented in Fig. 3(a) 

and (b), as Hsu (1968) also did with the experimental 

results (original imperial units were also adopted). Fig. 3 

incorporates the theoretical points and the corresponding 

fitting curves. The straight lines are obtained from a linear 

regression analysis for the points located in the straight part 

of the graphs (as Hsu also did). The equation of the straight 

lines is also given, which allow obtaining the values for the 

slope (Ω). 

From Fig. 3 it can be seen that the modified VATM also 

capture the variation of parameter Ω, as experimentally 

observed by Hsu (1968) for the same beams and with the 

same graphical analysis. Table 5 presents the theoretical and 

experimental values for the percentage variations of 

parameter Ω between beams´ series. From Table 5, it can be 

concluded that the theoretical and experimental trends for 

the percentage variations of Ω agree, although the 

theoretical values are slightly underestimated.  

From these results, it is confirmed that the modified 

VATM is valid to study the ultimate behavior of rectangular 

RC beams under torsion, with different values for h/b and 

with the other variables fixed.  

At this point, it should be referred that, for this study, 

only values in the range h/b>1 are considered. For pure 

torsion, the geometrical parameter h can always be 

attributed to the maximum size of the rectangular cross 

section.  
 

3.3 New torsion design charts 
 

This section aims to present the new design charts for 

the correction parameter to compute the effective torsional 

strength of rectangular RC beams axially restricted, 

considering the influence of variable h/b, in addition to the 

other variable studies. To obtain these new design charts, 

new correlations between the increment of the torsional 

strength, due to the axial restraint, and the variable studies 

are need, namely with: concrete compressive strength, fc, 

torsional reinforcement ratio, ρtot, level of axial restraint, k, 

and height to width ratio of the cross section, h/b.  

Based on the previous study from Bernardo et al. 

(2015a), the same reference values were adopted for 

variables fc, ρtot, and k. For variable k the following values 

were considered: 0, 10000, 20000, 30000, 40000, 50000, 

60000, 70000 and 80000 kN/m. The range of these values 

was considered to be representative for the axial restraint of 

beams in current structures (Bernardo et al. 2015a). For 

variable ρtot the following values were considered: 0.2, 0.3, 

0.4, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6%. The range of these 

values include RC beams with brittle and ductile torsional 

failures and also the minimum (ρtot,min) and maximum 

(ρtot,max) values from ACI code (Bernardo et al. 2015a), 

which are used as reference values. For variable fc the 

following values were considered: 30, 50, 70 and 90 MPa.  

The range of value for variable h/b is defined by 

checking the cross section of several RC test beams under 

torsion found in the literature (Hsu 1968, Lampert and 

Thurlimann 1969, Leonhardt and Schelling 1974, 

McMullen- and Ragan 1978, Rasmussen and Baker 1995, 

Koutchoukali and Belarbi 2001, Bernardo and Lopes 2009, 

Fang and Shiau 2004, Chiu et al. 2007, Peng and Wong 

2011, Jeng 2015). From these test beams, the following 

values were considered for variable h/b: 1.0, 1.5, 2.0, 2.5 

and 3.0. The same reference beam used by Bernardo et al. 

(2015a) for the parametric analysis is also used here (Beams 

A2 from Bernardo and Lopes 2009). To variate h/b, the 

width of the cross section was fixed (x=60 cm) and the 

height variated to obtain the previous values.  

Based on the values assumed for the variables to be 

studied, 1980 combinations were defined. For each 

combination of values for fc, ρtot, k and h/b, the modified 

VATM was used to compute the effective theoretical 

torsional strength of the corresponding and modified 

reference beam A2. The obtained values were compared 

with the ones without axial restraint and, for each case, the 

correction parameter Cca was computed. Parameter Cca 

represents the multiplicative coefficient used to correct the 

torsional strength in order to consider the increment of 

resistance due to the axial restraint. 

From the values obtained for Cca, for each combination, 

regression equations are found to relate parameter Cca with 

the variable studies. For each equation, the maximum 

absolute residue m.a.r for Cca (difference between the 

sample values for Cca and the corresponding values 

predicted by fitted equation) and the corresponding 

coefficient of determination R2 (which traduces the quality 

of the fitted equation) are also computed. The regression 

equations are presented in Eq. (21) (m.a.r = 0.1007722; R2 

= 0.963) and Eq. (22) (m.a.r = 0.2185; R2 = 0.989), which 

allow to compute parameter Cca for ρtot≥1 and ρtot<1, 

respectively, as function of fc, ρtot, k and h/b. For both 

equations, m.a.r. is very low and R2 is close to 1. This 

means that both equations give accurate values for Cca for 

the considered ranges of the variable studies. 

Despite good results were obtained, it was found that the 

quality of the regression equations can be improved even 

more if new equations are found by fixing the value for h/b. 

Tables 6 and 7 present these new equations for ρtot≥1.0%,  

and ρtot<1.0%, respectively. 

Eqs. (21) to (32) were obtained using the statistical 

software “R” to correlate the independent variable studies. 

From the combination of values for Cca, as function of fc, 

ρtot, k and h/b, it was observed that the regression curves 

obtained from the projection of the hypersurfaces in the 5  
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dimensional space into the coordinate planes are not linear 

and in general non-linearizable. For this reason, nonlinear 

regression models based on the method of least squares 

were used, namely with the algorithm proposed by 

Levenberg (1944) and improved by Marquardt (1963). This 

algorithm is available with software “R” with package 

“nlmrt” (Functions for Nonlinear Least Squares Solutions), 

version 2013-9.25. By using this algorithm, the gradient 

singularity problem was avoided, which is a common 

problem when Newton-Raphson Method or Gradient 

Descent Method are used.  

The torsion design charts are obtained by using the 

equations presented in Tables 6 and 7. Such design charts 

are presented in Fig. 7. For k<10000 kN/m, the estimate of 

parameter Cca is done by extending linearly each curve 

through the origin. In such region of the charts, the curves 

are represented with dashed lines. 

In Fig. 7, it can be observed that the design charts 

incorporate, as references, the curves corresponding to the 

minimum (ρtot,min) and maximum (ρtot,max) limit for the 

reinforcement ratio. Such limits where defined from ACI 

code (2011) to avoid brittle failures due to insufficient or 

excessive torsional reinforcement. 

 
 

From the combination of variables fc, k and h/b with 

ρtot,min and ρtot,max, it is possible do obtain the correlation 

equations for Cca corresponding to ρtot,min and ρtot,max. By 

using again the algorithm of Lavenberg-Marquardt, the 

correlation curves from the corresponding polynomial 

hypersurfaces were obtained, both with very low m.a.r and 

with R2 close to 1. This quality was possible to be obtained 

because perfect correlation almost exists between fc and 

ρtot,min, and also between fc and ρtot,max. This allows to adjust 

well the polynomial hypersurfaces with one variable less. 

This is because ρtot,min and ρtot,max are computed from 

equations which incorporate, in addition to other 

parameters, the variable fc. As examples, Eqs. (33) and (34) 

present, respectively, the equation for ρtot,min for h/b=1.5 

(m.a.r = 0.059156) and the equation for ρtot,max for h/b=2.0 

(m.a.r = 0.00250435). 

In Fig. 7, it can be also observed that no reference curve 

exists for ρtot,min when fc=30 MPa. Some inconsistencies are 

observed for ρtot,min for this concrete strength range. These 

kinds of problems were previously observed in other studies 

and occurs because the equation of the ACI code to 

compute de minimum torsional reinforcement is mainly 

empirical (Ali and White 1999). 
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Table 6 Equations to compute Cca for ρtot≥1.0% and for fixed values of h/b 

( )

( )
( ) ( ) ( )( )

2 3 4

0 7647

1 16264 0 673099 0 0126148 0 20004 2 3
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0 9787
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m.a.r. = 0.034346; R2=0.988 
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m.a.r. = 0.08055; R2=0.94165 

For h/b = 1.0 

For h/b = 1.5 

For h/b = 2.0 

For h/b = 3.0 

For h/b = 2.5 
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In Fig. 7, the design charts are organized as function of 

the concrete strength range (fc) and the height to width ratio 

of the cross section (h/b). To obtain the increment of the 

torsional strength for a RC beam with axial restraint, the 

user must previously know the level of axial restraint (k), 

the torsional reinforcement ratio (ρtot), the height to width 

ratio of the cross section (h/b) and the torsional strength (Tr) 

of the non-restricted RC beam. This latter can be computed, 

for instance, from code’s rules.  

The steps to use the torsion design charts are the 

following ones: 

1. Choose the chart as function of h/b and fc; 

2. From a given k in the horizontal axis, draw a vertical 

line to intersect the curve corresponding to ρtot; 

3. Project the obtained intersection point (Step 2) into 

the vertical axis to obtain the correction parameter Cca; 

4. Compute the effective torsional strength (Tr,ef) from 

the equation 

r ,ef ca rT C T=
 (35) 

The reference beam used to perform the parametrical 

analysis (Beams A2 from Bernardo and Lopes 2009), which 

led to the torsion design charts, has a length (l) equal to 

5.90 m. Bernardo et al. (2015a) showed that the used 

methodology to compute the effective torsional strength for 

axially restricted RC beams depends on the real beam´s 

length (lr). To consider this aspect, instead to incorporate a 

new variable, lr, and perform new correlations analysis, the 

influence of the beam´s length can be considered by 

correcting the level of axial restraint (k). As previously  

 

 

referred in this paper, the compressive axial force due to the 

axial restraint is function of k and also of the elongation of 

the beam for the free condition (Δl). This latter is directly 

proportional to the real length (lr). Therefore, to introduce 

the influence of the beam´s length, the corrected level of 

axial restraint (kl,cor) can be computed from Eq. (36). This 

value is then used to obtain Cca form the design charts. 

5 90

r
l ,cor

l
k k

.
= 

 
(36) 

 
3.4 Comparison between design charts 

 

In this section, numerical examples are presented to 

show the differences between the values obtained for 

parameter Cca by using the design charts for squared cross 

sections previously proposed by the authors (Bernardo et al. 

2015a) and the new ones proposed in this study. The 

objective is to show that the influence of variable h/b is 

important to be considered to compute the effective 

resistance torque of axially restricted RC beams. 

Let us consider first a RC beam with squared cross 

section (h/b=1), compressive concrete strength fc=70 MPa, 

total torsional reinforcement ratio ρtot=1.0% (with balanced 

reinforcements, ρl=ρt) and axially restricted with k=50000 

kN/m. Parameter Cca is obtained using the design chart 

corresponding to the assumed concrete strength. By using 

the previously presented steps to use the torsion design 

charts (Section 3.3), the following value is obtained from 

the charts proposed by Bernardo et al. (2015a): Cca=1.31  

Table 7 Equations to compute Cca for  ρtot<1.0% and for fixed values of h/b 
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( ) ( ) ( )
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For h/b = 1.0 

For h/b = 1.5 

For h/b = 2.0 

For h/b = 2.5 

For h/b = 3.0 
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Fig. 4 Example 1: h/b=1, fc=70 MPa, ρtot=1.0%, k=50000 

kN/m, charts from Bernardo et al. (2015a) 

 

 

Fig. 5 Example 1: h/b=1, fc=70 MPa, ρtot=1.0%, k=50000 

kN/m, new charts 

 

 

(Fig. 4). 

For the same previous beam and using the new proposed 

design charts in this study, the corresponding chart for 

h/b=1 gives the same value Cca=1.31 (Fig. 5), as expected. 

Now let us consider a RC beam with rectangular cross 

section (h/b=2), compressive concrete strength fc=70 MPa, 

total torsional reinforcement ratio ρtot=1.0% with balanced 

reinforcements, ρl=ρt) and axially restricted with k=50000 

kN/m. By using the charts proposed by Bernardo et al. 

(2015a), which don’t incorporate the influence of h/b, the 

previous value Cca=1.31 remains valid (Fig. 4). However, 

by using the corresponding new chart proposed in this study 

for h/b=2 the following new value is obtained: Cca=1.19 

(Fig. 6). As a consequence, the effective resistance torque of 

the beam is lower by considering the influence of variable 

h/b. 

 

Fig. 6 Example 2: h/b=2, fc=70 MPa, ρtot=1.0%, k=50000 

kN/m, new charts 

 

 

4. Conclusions 
 

In this article, new torsion design charts, similar to the 

charts previously proposed by Bernardo et al. (2015a), were 

proposed to compute the effective torsional strength of 

rectangular RC beams. For this, in addition to the previous 

variable studies considered by Bernardo et al. (2015a) (fc, 

ρtot and k), the height to width ratio of the cross section was 

also considered (h/b).  

From parametrical and comparative analysis between 

theoretical results obtained from the modified VATM 

(Bernardo et al. 2015a) and also experimental results from 

Hsu (1968), the influence of variable h/b on the behavior of 

RC beams under torsion, namely the torsional strength, was 

demonstrated. It was observed that the torsional strength 

decreases as h/b increases. From these analyses, the 

modified VATM proved to be valid to predict the torsional 

strength of rectangular RC beams with different values for 

h/b and with the other variables fixed. 

By using the modified VATM and the statistical 

software “R” with some specific packages, extensive 

theoretical parametric analysis and multivariable nonlinear 

correlations were performed to compute the increment of 

torsional strength due to the axial restraint, as function of 

the variable studies (fc, ρtot, k and h/b) to obtain regression 

equations. 

From the obtained regression equations, new torsion 

design charts were proposed to compute the effective 

resistance torque of axially restricted RC beams with 

rectangular sections. Such charts allow accounting for the 

favorable influence of the axial restraint in the torsional 

strength. 

Additionally, a simplified procedure was also presented 

to consider the influence of the real length of the beams to 

compute the effective torsional strength.  

1.31 

1.31 
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Fig. 7 Torsion design charts 
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Fig. 7 Continued 
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