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Effective torsional strength of axially restricted RC beams
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Abstract. In a previous study, design charts where proposed to help the torsional design of axially restricted reinforced
concrete (RC) beams with squared cross section. In this article, new design charts are proposed to cover RC beams with
rectangular cross section. The influence of the height to width ratio of the cross section on the behavior of RC beams under
torsion is firstly shown by using theoretical and experimental results. Next, the effective torsional strength of a reference RC
beam is computed for several values and combinations of the study variables, namely: height to width ratio of the cross section,
concrete compressive strength, torsional reinforcement ratio and level of the axial restraint. To compute the torsional strength,
the modified Variable Angle Truss Model for axially restricted RC beams is used. Then, an extensive parametric analysis based
on multivariable and nonlinear correlation analysis is performed to obtain nonlinear regression equations which allow to build
the new design charts. These charts allow to correct the torsional strength in order to consider the favourable influence of the

compressive axial stress that arises from the axial restraint.
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1. Introduction

Since the 60s of the last century, several theories have
been developed to compute the torsional strength of
reinforced concrete (RC) beams. The Space Truss Analogy
(STA), which constitutes a simple model to understand the
behavior of RC beams under torsion, has deeply influenced
a large number of researchers and working groups to set
standard rules. As an example, in 1995 the ACI code
substituted previous rules based on the skew bending theory
by new ones based on the STA. Other codes of practice
(e.g., European codes) adopted, right from their origin, rules
based on the STA.

The STA assumes that a RC beam under torsion behaves
as a thin tube which resists to the external torque with a
circulatory shear flow. This tube is analyzed with a space
truss analogy, which consists of inclined concrete struts
interacting with the longitudinal and transverse
reinforcement. This concept is quite enlightening to
understand how the compressive concrete and tensile
reinforcements resist to the external torque. From the
developments of the STA proposed by several authors, one
of the most used to characterize the ultimate behavior of RC
beams under torsion is the Variable Angle Truss Model
(VATM) proposed by Hsu and Mo (1985a). This model
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aimed to unify small and large cross sections (plain or
hollow) and incorporated, for the first time, a smeared stress
(0) - strain (&) curve for the concrete in compression to
account for the softening effect (influence of the diagonal
cracking due to transverse tensile stresses) instead of a
simple o—e curve based on uniaxial tests. By using such a
smeared curve the nonlinear behavior of concrete in
compression is better incorporated into the models, even for
low loading levels (Jeng ef al. 2011, 2013, Chen et al. 2016,
Wang et al. 2015).

As stated by Bernardo ef al. (2015a), in structural design
of RC members it is common to neglect the influence of the
axial restraint due to the connection to other structural
members, such as columns and walls. In current situations,
RC beams are axially restricted. Hence, among other
deformations, the axial deformation is not free. This is
mainly true for cracked stage. Therefore, a compressive
axial stress state arises, which is generally favorable for the
design. For some situations, this favorable effect is
considered by codes of practice. Most of the codes provide
rules to compute the increase of the shear strength for RC
beams due to simultancous compressive axial states.
However, for torsion no rules exist to compute the increase
of the torsional strength for similar situations.

This subject is not new and some experimental previous
studies exist with RC beams axially restricted in flexure
(e.g., Gomes 2011, Lou ef al. 2011). In such studies it is
found that, after cracking, as the axial restraint increases,
the stiffness and resistance of the beams increases.

For RC beams axially restricted under torsion, no
specific experimental studies were found in the literature.
For this reason, Bernardo et al. (2015a) proposed the
modified VATM for axially restricted RC beams. This
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model was checked with some experimental results with
prestress concrete beams under torsion, with external
prestress reinforcement. Such technique induces some axial
restraint due to the axial stiffness of the prestress bars which
are anchored at the ends of the beam. The modified VATM
was also checked with some numerical results (Bernardo et
al. 2015b). From these studies, the authors observed a
favorable effect on the torsional strength due to the axial
restraint. For this reason, and based on an extensive
parametrical analysis, the authors computed and proposed
charts to help the design of RC beams under torsion with
axial restraint (Bernardo et al. 2015a).

In the aforementioned studies, only RC beams with
squared cross section were studied. Despite beams with
primary torsional moments have cross sections with height
to width ratios close to unity, this constitutes a limitation for
design. In practical design, rectangular cross sections with
height to width ratios higher than unity constitutes a
common situation. For this reason, this article presents new
torsion design charts, similar to the ones from Bernardo et
al. (2015a), which cover RC beams with height to width
ratios different from unity (rectangular cross sections). For
this, extensive parametrical and nonlinear multivariable
regression analysis are performed by using the predictions
from the modified VATM. The following variable studies
are considered: concrete compressive strength, torsional
reinforcement ratio, height to width ratio and level of axial
restraint. The proposed new charts allow to correct the
torsional strength of rectangular RC beams under torsion to
account for the favorable influence of the axial restraint.
The torsional strength before correction can be computed
from current methods, such as from code’s rules.

It should be noted that warping was not considered in
this study. In cross-section thin-walled beams, warping is
usually an important phenomenon to be considered (Lando
1987, Murin and Kuti§ 2008, Chen ef al. 2016). This study
deals with current RC beams with rectangular cross section
(plain or hollow). In such members, the torque is mainly
resisted through a circulatory flow of tangential stresses
(circulatory torsion). However, warping effects can also
exist in restrained areas (for instance in the connection areas
to other members). In non-cracked stage and in such areas,
warping can locally increase the stiffness of the beams. This
can affect the torsional capacity of the member (Waldren
1988). However, in the cracked stage and for the ultimate
loading, the effects of warping can be highly reduced. This
is because the cracks somewhat release the initial restriction
and allow the out of plane deformation of the cross section
(Waldren 1988). This explains why codes of practice, such
as the European codes (Eurocode 2, Model Code 2010),
state that for current rectangular RC sections (plain or
hollow), the effect of warping can be neglected for the
design for the ultimate limit state.

In this article the principal purpose is to study the
ultimate behavior of axially restrained RC beams. In this
stage the beams are fully cracked. For this reason, the
influence of warping was not explicitly considered.

2. The modified VATM for axially restricted beams

To help the reader, this section summarizes the

equations and the solution procedure of the modified VATM
for axially restricted beams. More details about the
assumptions to incorporate the effect of the axial restraint in
the VATM, as well as the derivation of the equations, can be
found in Bernardo ef al. (2015a). The methodology to
modify the VATM was based from the previous one used by
Hsu (1984) to incorporate axial forces in the STA and also
by Hsu and Mo (1985b) to incorporate the longitudinal and
uniform prestress in the VATM.

In the cracked stage, the length (/) of a RC beam under
torsion increases. If no axial restraint exists (free condition),
the variation of the beam’s length, Al, can be simply
computed from the average strain in the longitudinal
reinforcement, e;: Al=lg;. If the beam is axially restricted, for
instance due to the connection to other structural elements,
the stiffness of such elements restrict the axial deformation
of the beam. In addition to the torque, a compressive axial
stress state arises. The resultant of this stress state, F., is
directly proportional to the level of axial restraint, &, and to
the free elongation of the beam, Al: F=Al‘k. This resultant
force acts on the beam in addition to the torque and must be
considered in the equilibrium and compatibility equations
of the VATM to derive the modified VATM for axially
restricted beams (Bernardo ef al. 2015a).

As for the VATM, the modified VATM assumes that the
external torque is resisted by the equivalent thin tube with a
circulatory shear flow, g, which is decomposed into a
tensile force acting in the longitudinal reinforcement and a
compressive force acting in the concrete struts with an
angle a to the longitudinal axis. From Bredt’s thin tube
theory, the torque 7T is related to the area enclosed by the
center line of the flow of shear stresses (which coincides
with the center line of the wall thickness, 4): g=7/24,.

The calculation procedure for the modified VATM
involves 3 equilibrium equations (see Table 1) to compute
the torque, T (Eq. (1)), the effective thickness of the
concrete struts of the equivalent hollow section, #; (Eq. (3)),
and the angle of the concrete struts to the longitudinal axis
of the beam, a (Eq. (2)). In these equations, oy is the stress
in the concrete strut, A; and o; are the total area and the
stress in the longitudinal reinforcement, respectively, po is
the perimeter of the center line of the flow of shear stresses,
A, and o; are the area of one bar and the stress in the
transverse reinforcement, respectively, and s is the
longitudinal spacing of the transverse reinforcement. It
should be noted that, despite plain and hollow beams
generally behaves differently (Valipour and Foster 2010),
for torsion and for the ultimate stage, plain and hollow
beams can be considered equivalent since the concrete core
can be neglected (Hsu 1984).

To compute the torque (7)-twist (d) curve from the
modified VATM, 3 compatibility equations (see Table 1) are
also need to compute the strain in the longitudinal
reinforcement, & (Eq. (4)), the strain in the transverse
reinforcement, & (Eq. (5)), and the twist, 0 (Eq. (6)).

For each input value for the strain at the outer surface of
the concrete strut, &4, the calculation procedure of the
modified VATM starts to compute the strain in the
longitudinal reinforcement for the beam without axial
restraint. From this value, the elongation of the beam A/ and
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Table 1 Equations for the modified VATM
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the compressive force F. due to the axial restraint are
calculated. With these values, the model calculates the
compressive strain of the longitudinal reinforcement ¢;. due
to F,, which is used to compute the compressive strain of
the concrete strut, &4, This latter is used to compute the
effective strain at the outer surface of the concrete strut,
&ds,er, from which the solution procedure goes on.

Table 1 presents Eq. (7) to (9) to compute the effective
strain at the outer surface of the concrete strut, where E. and
E; are the Young’s modulus for concrete and steel bars,
respectively, A, is the area limited by the outer perimeter of
the cross section and A4 is the area of the hollow part (for
hollow sections).

To characterize the behavior of the materials, smeared
and nonlinear o—¢ relationships are used to account for the
softening effect (concrete in compression) and stiffening
effect (steel bars in tension). As for the softening effect,
stiffening effect is also important to be considered here
(Khagehhosseini et al. 2013, Mondal and Prakash 2015).
From several proposals for the o—e¢ relationships, Bernardo
et al. (2012) found that the o—¢ relationship proposed by
Belarbi and Hsu (1994) for concrete in compression (Table
2, Eq. (10) and (11)), with the softening coefficient (8,= )
proposed by Zhang and Hsu (1998) (Table 2, Eq. (12) to
(15)), and the o—¢ relationship proposed by Belarbi and Hsu
(1994) for steel bars in tension (Table 2, Eq. (16) to (19)),
are suitable to compute the ultimate behavior of RC beams
under torsion. These oc—¢ relationships were incorporated in
the modified VATM.

In Table 2, f°. is the uniaxial concrete compressive
strength, & is the strain corresponding to f°c (peak stress), eci
is the tensile principal strain in the perpendicular direction
to the concrete strut, p; and p, are the longitudinal and
transverse reinforcement ratios, respectively, f; and f; are
the yielding stress for the longitudinal and transverse
reinforcement, respectively, and f;, is the tensile strength of
concrete.

To compute the solution points for the T—6 curve, a
solution procedure based on a trial-and-error technique is
used. Fig. 1 presents the flowchart for the solution
procedure of the modified VATM. The theoretical failure
point of the section is defined from the assumed maximum
(conventional) strains for the materials (e, for concrete and
&sy for steel).

3. Torsion design charts

This section starts to summarize the methodology used
by Bernardo et al. (2015a) to obtain the design charts for
the effective torsional strength of axially restricted RC
beams with squared cross section (Section 3.1).

This section also shows the influence of the height to
width ratio (4/b) of the cross section on the behavior of RC
beams under torsion, in order to justify the need of new
torsion design charts to incorporate this new variable study
(Section 3.2). To show the influence of A/b, some results
obtained from the modified VATM and some experimental
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Fig. 1 Flowchart for the calculation of the 7-0 curve

results from Hsu (1968) are presented. Finally, the new
torsion design charts are presented in Section 3.3.

As in the previous study from Bernardo et al. (2015a)
and for the other variable studies, the influence of A/b to
compute the effective torsional strength of axially restricted
RC beams is incorporated through the design charts.

This is because it is not possible to present a simple and
practical equation for the influence of such variable and for
its correlation with all the other variable studies.

3.1 Torsion design charts for squared RC beams

Bernardo et al. (2015a) showed that the influence of the
level of axial restraint on the torsional ultimate behavior of
RC beams can be relevant. In particular for the torsional
strength, the influence of the axial restraint is favorable. For
this reason, this effect should be considered in the design of
RC beams. To perform an extensive parametric analysis, 3
variable studies (f=f"c, pwr and k) with several reference
values were considered. From the considered values, 192
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Fig. 2 Theoretical 7-6 curves for the idealized RC beams
(=30 MPa, p;»=1.0% and A4~=7200 cm?)

combinations were studied. By using the statistical software
“R” with “stats” package to correlate the independent
variable studies with the method of least squares, a very
accurate polynomial surface of degree 13 (with 171 terms)
was found, with a coefficient of determination near to unity,
to compute the correction parameter (Cc,). From this
complex polynomial, design charts were obtained to assist
project. Such charts allow to obtain the correction
parameter C,, (coefficient of axial confinement) as function
of the variables f;, pw: and k, to compute the effective
torsional strength (7..), from the normal torsional strength
(T), in order to account for the influence of the axial
restraint:  7..,~CcT,. Details on the methodology to
compute parameter C., and to consider also the influence of
the length of the beam, as well as the presentation of the
design charts, can be found in Bernardo ef al. (2015a).

3.2 Influence of the height to width ratio

At this point, it is important to check the influence of the
height to width ratio of the cross section, A/b, on the
behavior of RC beams under torsion. For this, the modified
VATM (with no axial restraint, £~=0) is used to compute the
behavior of 3 idealized RC beams with equal concrete
compressive strength (=30 MPa), equal torsional
reinforcement ratio (pwn~prtp~1.0%) and equal cross
sectional area (4.=7200 cm?). In order to variate 4/b, while
maintaining the other variables fixed, the following cross
sections were considered: 80x90 cm (4/b=1.125), 60x120
cm (#/b=2.0) and 50144 cm (h/b=2.88).

Fig. 2 presents the theoretical 7-0 curves for the RC
beams. It should be remembered that VATM only provides
good results for the ultimate stage (domain to be studied in
this study), since it neglects the concrete tensile strength
(Hsu and Mo 1985a). For this reason, the transition between
the non-cracked and cracked stage is not captured.

The 7-6 curves from Fig. 2 show that, as 4/b decreases,
the torsional stiffness and strength increases, while the
ultimate twist decreases. These results show that VATM
capture the influence of A/b in the ultimate behavior of RC
beams under torsion. This observation justifies new design
charts, as the ones previously proposed by Bernardo et al.
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Table 3 Properties of the test beams from Hsu (1968)
Beam x=b y=h h Xl yi fe fy fy A P A S P Prot
(cm) (cm) b (em) (em) (MPa) (MPa) (MPa) (cm?d) (%) (cm?) (em) (%) (%)
B1 254 38.1 1.5 21.59 3429 27.58 31371 34129 516 053 0.71 1524 054 1.07
B2 254 38.1 1.5 21.59 3429 28.61 31647 31992 792 083 1.29 18.09 0.82 1.65
B3 254 38.1 1.5 21.59 3429 28.06 32750 31992 1135 1.17 1.29 12.70 1.17 234
B4 254 38.1 1.5 21.59 3429 30.54 31992 32336 1552 1.6 1.29 9.21 1.61 3.21
B5 254 38.1 1.5 21.59 3429 29.03 33233 321.29 2039 211 1.29 6.99 213 424
B6 254 38.1 1.5 21.59 3429 28.82  331.64 322,67 2579 267 1.29 5.72 2.61 528
G2 254 50.8 2.0 21.59 46.99 30.89  322.67 333.71 792  0.62 0.71 12.07  0.63 1.25
G3 254 50.8 2.0 21.59 46.99 26.82 33853 32750 11.35 0.88 1.29 1556  0.88 1.76
G4 254 50.8 2.0 21.59 46.99 2827 32543 32129 1552 1.2 1.29 11.43 1.2 2.40
G5 254 50.8 2.0 21.59 46.99 26.89 33095 327.50 2039 1.58 1.29 8.57 1.6 3.18
G6 254 50.8 2.0 21.59 46.99 2992 33439 34956 7.74 0.6 0.71 1270 0.59  1.19
G7 254 50.8 2.0 21.59 46.99 3096 319.23 32267 11.88 093 1.29 14.61 094 187
G8 254 50.8 2.0 21.59 46.99 2834 32199 32888 17.03 132 1.29 10.48 1.31 2.63
N1 15.24 3048 2.0 13.03 28.27 29.51 35232 34129 285 0.61 0.32 9.21 0.62 1.23
Nla 15.24 3048 2.0 13.03 28.27 28.69 346.12 34474 285 0.61 0.32 9.21 0.62 1.23
N2 15.24 3048 2.0 13.03 28.27 30.41 33095 337.84 5.16 1.11 0.32 5.08 1.13 224
N2a 15.24 3048 2.0 13.03 28.27 28.41 333.02 360.59 5.16 1.11 0.71 11.43 1.1 2.21
N3 15.24 3048 2.0 13.03 28.27 2730 351.63 351.63 428 092 0.32 6.35 090 1.82
K1 15.24 49.53 325 1143 4572 29.85 34543 35439 428 056 0.71 19.05 0.56 1.13
K2 15.24 49.53 325 1143 4572 30.61 335.77 337.84 7.74 1.03 0.71 10.48 1.03  2.05
K3 15.24 49.53 325 1143 4572 29.03  315.78 320.61 11.88 1.59 1.29 12.38 1.58  3.17
K4 15.24 49.53 325 1143 4572 28.61 344.05 33991 17.03 226 1.29 8.57 228 4.54
C1 254 254 1.0  21.59 21.59 27.03 34129 34129 285 044 0.71 21.59 044 0.88
Cc2 254 254 1.0 21.59 21.59 26.54 33439 34474 5.16 0.8  0.71 11.75 0.81 1.61
C3 254 254 1.0 21.59 21.59 26.89 33095 32957 792 124 1.29 13.97 1.24 248
C4 254 25.4 1.0 21.59 21.59 27.17  336.46 32750 11.35 1.76 1.29 9.84 1.76  3.52
C5 25.4 25.4 1.0 21.59 21.59 2723  328.19 328.88 1552 24 1.29 7.30 236 476
C6 25.4 25.4 1.0 21.59 21.59 27.58  315.78 327.50 2027 3.16 1.29 5.40 32 6.36
(2015a), to include also the variation of 4/b. equation (Eq. (20)) to compute the torsional strength
To validate the aforementlgned results .from the (T=T,), as a linear function of parameter Q. Eq. (20)
modified VATM, a comparative study with some includes two components for the internal torque: one
experimental  results is performed. For this, the contributed by the transverse reinforcement (x1y1(4/s)fy)

experimental study from Hsu (1968) is considered, in which
28 RC beams of interest for this study were tested under
pure torsion. The main properties of such beam are
presented in Table 3. Parameters x; and y; are the width and
height of the stirrups, respectively.

Among several performed analysis, the results of the
tested beams were used by Hsu (1968) to study the
influence of 2 variables which characterize the rectangular
cross section: the scale effect (which is related with the area
of the cross section) and the height to width ratio of the
cross section. Beams from B, G, N, K and C series were
used for such study because they allowed to isolate the
effect of the previous 2 variables. It should be referred that,
from the characteristics of the beams, the effect of each of
these 2 variables could not be fully isolated (Hsu 1968).

From the experimental results for beams with balanced
reinforcement (p/=p;), Hsu (1968) proposed an empirical

and another one contributed by the concrete beam without
reinforcement (7y), which can be computed from Saint-
Venant’s theory.

T, =T, +Qxlyl% fy (20)

In Eq. (20), Q is the coefficient of proportionality with
the internal torque contributed by the transverse
reinforcement. In a x1y1(4/s)f,—T. plot, Q is the slope of the
straight line. This parameter is influenced by the
dimensions of the cross section (Hsu 1968) and, for this
reason, incorporates the influence of //b.

To evaluate how parameter Q evolves, Hsu (1968)
studied beams from series G and N, with different areas of
the cross section and equal /4/b. Hsu plotted the graphs

x1y1(44s)fy—T, for these beams and computed the following
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Table 4 Comparative analysis for the torsional strength

Beam Tuexp Tuv,th TU_th
(kNm) (kNm) T exp

B1 22.26 22.20 0.997
B2 29.26 30.97 1.058
B3 37.51 39.65 1.057
B4 47.34 48.34 1.021
BS 56.15 51.28 0.913
B6 61.69 53.62 0.869
G2 40.34 37.49 0.929
G3 49.60 48.15 0.971
G4 64.85 58.93 0.909
G5 71.97 65.30 0.907
G6 39.09 37.36 0.956
G7 52.65 50.92 0.967
G8 73.44 62.05 0.845
N1 9.10 8.29 0912
Nla 8.99 8.24 0916
N2 14.46 12.68 0.877
N2a 13.22 12.42 0.940
N3 12.20 10.95 0.897
K1 15.37 14.63 0.952
K2 23.73 22.47 0.947
K3 28.47 26.82 0.942
K4 35.03 29.86 0.852
Cl 11.30 11.04 0.977
C2 15.25 17.59 1.153
C3 20.00 22.68 1.134
C4 25.31 26.02 1.028
Cs 29.72 28.34 0.954
C6 34.23 30.23 0.883
X = 0.96

s= 0.08
cv= 8.06%

values for parameter Q: Q=1.45 for series G and Q=1.30
for series N. From this result, Hsu concluded that Q is not
constant for beams with different areas of the cross section
and with equal 4/b. Hsu also performed a similar analysis
for beams with equal width, b. For this, Hsu grouped beams
from series G, B and C with beams from series N and K,
and observed that Q increases as h/b increases. However,
this analysis do not allow to conclude about the influence of
parameter h/b alone, since this variable was not isolated
from the area of the cross section. Hsu fixed the width » and
the area of the cross section, and correlated the height /4 of
the cross section and parameter Q with yi/x;, which is
similar to A/b. Hsu observed that Q depends on yi/x; and
also concluded that the torsional strength also depends on
h/b. From these results, it can be concluded that A/b
influences the behavior of RC beams under torsion.

The aforementioned results confirm the previous
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theoretical results from the modified VATM (Fig. 2),
namely that a real influence of 4/b exists. Therefore, it can
be concluded that the modified VATM is valid to study the
influence of /#/b on the behavior of rectangular RC beams
under torsion.

To confirm the previous statement, the modified VATM
is firstly used to compute the theoretical values of the
torsional strengths for beams from Table 3. These values are
compared with the experimental ones to validate the
theoretical model. The results are summarized in Table 4,
which presents the experimental (7..,) and theoretical
(Twum) values for the torsional strength, the ratio T,/ Tiexp
and the corresponding values for the mean (X ), standard
deviation (s) and coefficient of variation (cv). From the
results, it can be concluded that the modified VATM
predicts well the torsional strength of the beams (X =0.96)
with an acceptable dispersion of the results (cv=8.06%).



Effective torsional strength of axially restricted RC beams 471

Table 5 Comparative analysis for the percentage variations
of parameter Q between series

Series Qrisu Qunvarm
(%) (%)
Series C to Series B 26.32 22.01
Series B to Series G 20.83 17.31
Series N to Series K 15.38 13.09

Hence, it can be concluded that the theoretical model
can be considered valid to study the ultimate torsional
behavior of the RC beams from Table 4.

Next, the modified VATM is used to reproduce the
experimental results from Hsu (1968), related with the
influence of A4/b. in parameter Q for the RC beams from
Table 3. From the theoretical results of Table 4, the
theoretical plots xiyi(A4/s)f,—T. are presented in Fig. 3(a)
and (b), as Hsu (1968) also did with the experimental
results (original imperial units were also adopted). Fig. 3
incorporates the theoretical points and the corresponding
fitting curves. The straight lines are obtained from a linear
regression analysis for the points located in the straight part
of the graphs (as Hsu also did). The equation of the straight
lines is also given, which allow obtaining the values for the
slope (Q).

From Fig. 3 it can be seen that the modified VATM also
capture the variation of parameter Q, as experimentally
observed by Hsu (1968) for the same beams and with the
same graphical analysis. Table 5 presents the theoretical and
experimental values for the percentage variations of
parameter Q between beams’ series. From Table 5, it can be
concluded that the theoretical and experimental trends for
the percentage variations of Q agree, although the
theoretical values are slightly underestimated.

From these results, it is confirmed that the modified
VATM is valid to study the ultimate behavior of rectangular
RC beams under torsion, with different values for A/b and
with the other variables fixed.

At this point, it should be referred that, for this study,
only values in the range 4/b>1 are considered. For pure
torsion, the geometrical parameter s can always be
attributed to the maximum size of the rectangular cross
section.

3.3 New torsion design charts

This section aims to present the new design charts for
the correction parameter to compute the effective torsional
strength of rectangular RC beams axially restricted,
considering the influence of variable //b, in addition to the
other variable studies. To obtain these new design charts,
new correlations between the increment of the torsional
strength, due to the axial restraint, and the variable studies
are need, namely with: concrete compressive strength, fc,
torsional reinforcement ratio, p, level of axial restraint, £,
and height to width ratio of the cross section, 4/b.

Based on the previous study from Bernardo er al
(2015a), the same reference values were adopted for
variables f, p.r, and k. For variable & the following values
were considered: 0, 10000, 20000, 30000, 40000, 50000,

60000, 70000 and 80000 kN/m. The range of these values
was considered to be representative for the axial restraint of
beams in current structures (Bernardo et al. 2015a). For
variable p. the following values were considered: 0.2, 0.3,
0.4, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6%. The range of these
values include RC beams with brittle and ductile torsional
failures and also the minimum (pwimix) and maximum
(pProtmax) values from ACI code (Bernardo et al. 2015a),
which are used as reference values. For variable f. the
following values were considered: 30, 50, 70 and 90 MPa.

The range of value for variable A/b is defined by
checking the cross section of several RC test beams under
torsion found in the literature (Hsu 1968, Lampert and
Thurlimann 1969, Leonhardt and Schelling 1974,
McMullen- and Ragan 1978, Rasmussen and Baker 1995,
Koutchoukali and Belarbi 2001, Bernardo and Lopes 2009,
Fang and Shiau 2004, Chiu et al. 2007, Peng and Wong
2011, Jeng 2015). From these test beams, the following
values were considered for variable 4/b: 1.0, 1.5, 2.0, 2.5
and 3.0. The same reference beam used by Bernardo et al.
(2015a) for the parametric analysis is also used here (Beams
A2 from Bernardo and Lopes 2009). To variate 4/b, the
width of the cross section was fixed (x=60 cm) and the
height variated to obtain the previous values.

Based on the values assumed for the variables to be
studied, 1980 combinations were defined. For each
combination of values for f., pws, k and A/b, the modified
VATM was used to compute the effective theoretical
torsional strength of the corresponding and modified
reference beam A2. The obtained values were compared
with the ones without axial restraint and, for each case, the
correction parameter C, was computed. Parameter Ce,
represents the multiplicative coefficient used to correct the
torsional strength in order to consider the increment of
resistance due to the axial restraint.

From the values obtained for C.,, for each combination,
regression equations are found to relate parameter C., with
the variable studies. For each equation, the maximum
absolute residue m.a.r for C. (difference between the
sample values for C. and the corresponding values
predicted by fitted equation) and the corresponding
coefficient of determination R?> (which traduces the quality
of the fitted equation) are also computed. The regression
equations are presented in Eq. (21) (m.a.r = 0.1007722; R?
= 0.963) and Eq. (22) (m.a.r = 0.2185; R?= 0.989), which
allow to compute parameter C. for pn>1 and p,<l,
respectively, as function of f, pw:;, kK and A/b. For both
equations, m.a.r. is very low and R? is close to 1. This
means that both equations give accurate values for C., for
the considered ranges of the variable studies.

Despite good results were obtained, it was found that the
quality of the regression equations can be improved even
more if new equations are found by fixing the value for //b.
Tables 6 and 7 present these new equations for p,=>1.0%,
and p:<1.0%, respectively.

Egs. (21) to (32) were obtained using the statistical
software “R” to correlate the independent variable studies.
From the combination of values for C.,, as function of f,
puor, k and h/b, it was observed that the regression curves
obtained from the projection of the hypersurfaces in the 5
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For h/b=3.0

m.a.r. = 0.08055; R*=0.94165

dimensional space into the coordinate planes are not linear
and in general non-linearizable. For this reason, nonlinear
regression models based on the method of least squares
were used, namely with the algorithm proposed by
Levenberg (1944) and improved by Marquardt (1963). This
algorithm is available with software “R” with package
“nlmrt” (Functions for Nonlinear Least Squares Solutions),
version 2013-9.25. By using this algorithm, the gradient
singularity problem was avoided, which is a common
problem when Newton-Raphson Method or Gradient
Descent Method are used.

The torsion design charts are obtained by using the
equations presented in Tables 6 and 7. Such design charts
are presented in Fig. 7. For £<10000 kN/m, the estimate of
parameter C., is done by extending linearly each curve
through the origin. In such region of the charts, the curves
are represented with dashed lines.

In Fig. 7, it can be observed that the design charts
incorporate, as references, the curves corresponding to the
minimum (Pormin) and maximum (Prormex) limit for the
reinforcement ratio. Such limits where defined from ACI
code (2011) to avoid brittle failures due to insufficient or
excessive torsional reinforcement.

From the combination of variables f., k and A/b with
Protmin AN Prormar, 1t 18 possible do obtain the correlation
equations for C., corresponding to piurmin and prosmax. BY
using again the algorithm of Lavenberg-Marquardt, the
correlation curves from the corresponding polynomial
hypersurfaces were obtained, both with very low m.a.r and
with R? close to 1. This quality was possible to be obtained
because perfect correlation almost exists between f. and
Protmin, and also between f. and piormax. This allows to adjust
well the polynomial hypersurfaces with one variable less.
This is because piormin and prormer are computed from
equations which incorporate, in addition to other
parameters, the variable f.. As examples, Egs. (33) and (34)
present, respectively, the equation for prmin for h/b=1.5
(m.a.r = 0.059156) and the equation for prosmae for A/b=2.0
(m.a.r =0.00250435).

In Fig. 7, it can be also observed that no reference curve
exists for prwmin When f;=30 MPa. Some inconsistencies are
observed for pmin for this concrete strength range. These
kinds of problems were previously observed in other studies
and occurs because the equation of the ACI code to
compute de minimum torsional reinforcement is mainly
empirical (Ali and White 1999).
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Table 7 Equations to compute C,, for p<1.0% and for fixed values of #/b
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In Fig. 7, the design charts are organized as function of
the concrete strength range (f.) and the height to width ratio
of the cross section (4/b). To obtain the increment of the
torsional strength for a RC beam with axial restraint, the
user must previously know the level of axial restraint (k),
the torsional reinforcement ratio (p«:), the height to width
ratio of the cross section (4/b) and the torsional strength (77,)
of the non-restricted RC beam. This latter can be computed,
for instance, from code’s rules.

The steps to use the torsion design charts are the
following ones:

1. Choose the chart as function of 4/b and f;;

2. From a given k in the horizontal axis, draw a vertical
line to intersect the curve corresponding to pros;

3. Project the obtained intersection point (Step 2) into
the vertical axis to obtain the correction parameter Ce;

4. Compute the effective torsional strength (7)..) from
the equation

T, of = Calr (35)

The reference beam used to perform the parametrical
analysis (Beams A2 from Bernardo and Lopes 2009), which
led to the torsion design charts, has a length (/) equal to
5.90 m. Bernardo et al. (2015a) showed that the used
methodology to compute the effective torsional strength for
axially restricted RC beams depends on the real beam'’s
length (/). To consider this aspect, instead to incorporate a
new variable, /., and perform new correlations analysis, the
influence of the beam’s length can be considered by
correcting the level of axial restraint (k). As previously

(34)

referred in this paper, the compressive axial force due to the
axial restraint is function of k£ and also of the elongation of
the beam for the free condition (A/). This latter is directly
proportional to the real length (/). Therefore, to introduce
the influence of the beam’s length, the corrected level of
axial restraint (kicor) can be computed from Eq. (36). This
value is then used to obtain C, form the design charts.

=kx i (36)

kl,cor - 590

3.4 Comparison between design charts

In this section, numerical examples are presented to
show the differences between the values obtained for
parameter C,, by using the design charts for squared cross
sections previously proposed by the authors (Bernardo ef al.
2015a) and the new ones proposed in this study. The
objective is to show that the influence of variable A/b is
important to be considered to compute the -effective
resistance torque of axially restricted RC beams.

Let us consider first a RC beam with squared cross
section (4/b=1), compressive concrete strength /=70 MPa,
total torsional reinforcement ratio p.,~=1.0% (with balanced
reinforcements, p/=p;) and axially restricted with A=50000
kN/m. Parameter C. is obtained using the design chart
corresponding to the assumed concrete strength. By using
the previously presented steps to use the torsion design
charts (Section 3.3), the following value is obtained from
the charts proposed by Bernardo et al. (2015a): Ce=1.31
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(Fig. 4).
For the same previous beam and using the new proposed

design charts in this study, the corresponding chart for
h/b=1 gives the same value C.,=1.31 (Fig. 5), as expected.
Now let us consider a RC beam with rectangular cross
section (4/b=2), compressive concrete strength /=70 MPa,
total torsional reinforcement ratio p~=1.0% with balanced
reinforcements, p/=p;) and axially restricted with A=50000
kN/m. By using the charts proposed by Bernardo et al.
(2015a), which don’t incorporate the influence of A/b, the
previous value C,=1.31 remains valid (Fig. 4). However,
by using the corresponding new chart proposed in this study
for h/b=2 the following new value is obtained: C.,~1.19
(Fig. 6). As a consequence, the effective resistance torque of
the beam is lower by considering the influence of variable
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4. Conclusions

In this article, new torsion design charts, similar to the
charts previously proposed by Bernardo et al. (2015a), were
proposed to compute the effective torsional strength of
rectangular RC beams. For this, in addition to the previous
variable studies considered by Bernardo et al. (2015a) (f.,
P and k), the height to width ratio of the cross section was
also considered (//b).

From parametrical and comparative analysis between
theoretical results obtained from the modified VATM
(Bernardo et al. 2015a) and also experimental results from
Hsu (1968), the influence of variable /4/b on the behavior of
RC beams under torsion, namely the torsional strength, was

demonstrated. It was observed that the torsional strength
decreases as h/b increases. From these analyses, the
modified VATM proved to be valid to predict the torsional
strength of rectangular RC beams with different values for
h/b and with the other variables fixed.

By using the modified VATM and the statistical
software “R” with some specific packages, extensive
theoretical parametric analysis and multivariable nonlinear
correlations were performed to compute the increment of
torsional strength due to the axial restraint, as function of
the variable studies (f:, pwr, £ and A/b) to obtain regression
equations.

From the obtained regression equations, new torsion
design charts were proposed to compute the effective
resistance torque of axially restricted RC beams with
rectangular sections. Such charts allow accounting for the
favorable influence of the axial restraint in the torsional
strength.

Additionally, a simplified procedure was also presented
to consider the influence of the real length of the beams to
compute the effective torsional strength.



Ccal-]

Ceal-]

2,90
2,80
2,70
2,60
2,50
2,40
2,30
2,20
2,10
2,00
150
1,80
1,70
1,60
1,50
140
1,20
120
1,10
1,00

2,30

2,20

2,10

2,00

1.80

180

1,70

1.60

150

140

1,30

a 10000

o 10000

20000

20000

30000 40000

30000 40000

Effective torsional strength of axially restricted RC beams

— 2,70
© 260
ptot=0,2% o

2,50

2,40

2,30

ptot=0,3% 2,20

2,10

2,00

ptot=0,4% 190

1,80

1,70

ptot=0,6% 1,60

1,50

1,40
ptot,max=0,83%

= ptot=0,2% 1,30
ptot=1,0%
ptot=1,2%

ptot=1,4%
ptot=1,6%

] 10000 20000 30000 40000

50000 ©0000 70000 80000 S0000

k [kN/m)]
— 3,00
—
8 2,50
prot=0,2% G .
2,70
2,60
pEot=0,3% 250
2,40
2,30
ptot=0,4%
---------- - 2,20
e prot,min=0,41%
""" 2,10
2,00
ptot=0,6% 150
1,80
1,70
ptot=0,8% 1,60
ptot=1,0% 150
1,40
1,30
1,20
ptot=1,6%
1,10
1,00
50000 60000 70000 ES0000 50000 0 10000 20000 30000 40000
k [kN/m]
- 2,60
m
prot=02% o °°
2,40
2,30

ptot=0,3%

ptot=0,4%

ptot=0,6%

20000

30000

40000

piot=0,8%
— — — — — ~piotr,max=0,39%
ptot=1,0%
ptot:
it
Etot

50000 60000 70000 BOOOO 50000

o 10000 20000 30000 40000

k [kN/m]
Fig. 7 Torsion design charts

50000

50000

50000

60000

60000

60000

70000

70000

70000

475

ptot=0,2%

ptot,min=0,25%

ptot=0,3%

ptot=0,4%

ptot=0,6%

ptot=0,8%

ptot=1,0%

— _ —|— =~ ptot,max=1,07%

ptot=1,2%
ptot=1,4%
ptot=1,6%

80000 90000
k [kN/m]

ptot=02%

ptot=0/3%

ptot=0/4%

ptot=0,6%

ptot=0,8%
ptet=H0%
ptet=12%
plot=1,4%

xmax=1/44%
ptot=1,6%

80000 950000
k [kN/m]

ptot=0,2%

“-+piot, min=0,25%

ptot=0,3%

ptot=0,4%

ptot=0,6%

ptot=0,8%

ptot=1,0%
ptot,max=1,12%

ptot=1,2%
piot=1,4%
ptot=1,6%
80000 90000
k [kN/m]



Catia S.B. Taborda, Luis F.A. Bernardo and Jorge M.R. Gama

476
— 290
‘® 280
g ptot=0,2%
2,70
2,60
2,50
2,40 ptot=0,3%
2,30
2,20
2,10
2,00
1,90
1,80
ptot=0/6%
1,70
1,60
150 ptot=0,8%
140 ptot=1,0%
1,30
1,20
1,10
1,00
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
k [kMN/m]
ptot=0/2%
ptot=0,3%
ptot=0,4%
ptot=0,6%
ptot=0,8%
,max=0,89%
7 ptot=1,0%
. g ptot=1,2%
100 seRRRTE—— ptot=1,4%
ptot=1,6%
0,90
0 10000 20000 30000 40000 50000 60000 70000 80000 S0000
k [kN/m]
— 2,80
g 2,70
2.60 ptoi=0,2%
2,50
2,40
2,30
2,20 ptot=0,3%
2,10
2,00 ptot=0,4%
1,90 Prot,min=0,41%
1,80
1,70 i
ll
1,60 1 ptot=0,6%
[}
1,50 ‘;
1,40 ri ptot=0,8%
I !
1}
130 ptot=1|0%
120 A ptot=1,2%
I g i} _ptot max=1,35%
= et
e _________________———-—-——— ptot=1]
100 RRRREE
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
k [kN/m]

0

Ccal-]

2,30
2,20
2,10

2,00

2,00

ptot=0,2%

ptot=0,3%

— plot=0,4%
ptot,min=0,41%

ptot=0,6%

ptot=0,8%

ptot=1,0%
ptot=1,2%
,max=1,32%
piot=1,4%
ptot=1,6%

80000 90000
k [kN/m]

30000 40000 50000 60000 70000

20000

10000

ptot=0,2%

ptot,min=0,25%

piot=0,3%

ptot=0,4%

ptot=0,6%

ptot=0,3%
ptot=1,0%
ptEt.rnale.M%
ptot=1,2%
ptot=1,4%
ptot=16%
80000 20000

k [kN/m]

o 10000 20000 30000 40000 50000 60000 70000

ptot=0|2%

ptot=0,3%

ptot=0,4%

ptot,min=0,55%
ptot=0,6%

ptot=0,8%

ptot=1)0%
ptot=1)2%
ptot=1/4%
smax=1,53%
ptot=1,6%
80000 20000

k [kN/m]

70000

a 10000 20000 30000 40000 50000 GOO000

Fig. 7 Continued



Ccal[-]

2,00

1,90

180

1,70

1,60

1,50

1,40

1,30

1,20

Effective torsional strength of axially restricted RC beams

ptot=0,2%

ptot=0,3%

ptot=0,4%

ptot=0,6%

ptot=0,8%

o 10000 20000 30000 40000 50000 60000 70000 80000 20000
k [kN/m]

ptot=0,2%

ptot=0,3%

..... ptot=0,4%
ptot,min=0,41%

/ ptot=0,6%
‘!
’
3
3 ptot=0,8%
J‘ ’
I
L ptot=1/0%
HEaG ptot=1)2%
',';’,’ = —— | ptotmax=1,35%
,,::’.:, —— ptot=1,4%
e piot=1,6%
0 10000 20000 30000 40000 50000 60000 70000 80000 50000
k [kN/m]

ptot=0,2%

ptot=0,3%

ptot=0,4%

ptot=0,6%

T ptot=0,3%
Lot ptot,max=0,90%

A tot=1/0%
d&annn Pot=112%

ptot=1,4%
ptot=1L6%
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

k [kN/m]

2,20

2,10

2,00

1,80

Ceal-]
r
o
o

Ceal[-]

2,60
2,50
2,40
2,30
2,20
2,10
2,00
1,80

2,40

2,30

2,20

2,10

2,00

1,90

1,80

1,70

1,60

1,50

1,40

1,30

1,20

1,10

1,00

0,90

a

Fig. 7 Continued

L

477

ptot=0,3%

plot,min=0,25%

ptot=0,4%

ptot=0,6%

ptot=0,8%

prot=1,0%
tot, max=1,14%

= prot=1,2%

ptot=1,4%

10000 20000

30000 40000

50000 60000

1% ' —— ptot,max=1,53%
MR ptot=1,6%

10000 20000 30000 40000 50000 60000

ptot=16%
70000 80000 90000

k [kN/im]

prot=0,2%

ptot=0,3%

ptot=0,4%

ptot,min=0;55%

ptot=0,0%

ptot=0,8%

ptot=1,0%
ptot=1,2%

70000 80000 9S0000
k [kN/m]

ptot=0,2%

ptot,min=0}25%

ptot=0,3%

ptot=0,4%

ptot=0,6%

ptot=0,8%

tot=1,0%

7 ptol.glale,l?%
B4 - e S ptot=1,2%
HaREE ptot=1,4%

10000 20000

30000 40000

50000 60000

ptot=1,6%

70000 820000 90000
k [kN/m]



478 Catia S.B. Taborda, Luis F.A. Bernardo and Jorge M.R. Gama

2,60

—
8 250 h/b=3,0
“ ptot=0,2%
2,40
2,30
2,20
210
ptot=0,3%
2,00
1,90
ptot=0,4%

1,80

1,70

ptot=0,6%

ptot=0,8%

1,20 7 ptoi=1,0%
! ptot=1,2%

1,10 Qtol,max:l,aﬁ%
e / ptot=1,4%

100 MaRRRR prot=1,6%
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
k [kN/m]

—_ 2,70
< h/b=30 ptot=0|2%
2,50
f.=90 MPa
2,40
2,30
2,20
ptot=0,3%
2,10
2,00
1,90
ptot=0,4%
1,80
1,70
1,60 ptot,min=0}55%
1,50 plot=0}6%
1,40
ptot=D|8%
1,30
ptot=1,0%
120 ptot=1,2%
110 A — ptot=1/4%
e ——— oL, max=1|56%
1,00 MRERE e o 24
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
k [kN/m]

Fig. 7 Continued

References

Ali, M.A. and White, R.N. (1999), “Toward a rational approach
for design of minimum torsion reinforcement”, J. Am. Concrete
Inst., 96(1), 40-45.

Belarbi, A. and Hsu, T.C. (1994), “Constitutive laws of concrete in
tension and reinforcing bars stiffened by concrete”, Struct. J.
Am. Concrete Inst., 91(4), 465-474.

Bernardo L.F.A. and Lopes, S.M.R. (2009), “Torsion in HSC
hollow beams: Strength and ductility analysis”, ACI Struct. J.,
106(1), 39-48.

Bernardo, L.F.A., Andrade, J.M.A. and Lopes, S.M.R. (2012),
“Softened truss model for reinforced NSC and HSC beams
under torsion: A comparative study”, Eng. Struct., 42, 278-296.

Bernardo, L.F.A., Taborda, C.S.B. and Gama, J.M.R. (2015a),
“Parametric analysis and torsion design charts for axially
restricted RC beams”, Struct. Eng. Mech., 55(1), 1-27.

Bernardo, L.F.A., Taborda, C.S.B. and Andrade, J.M.A. (2015b),
“Ultimate torsional behavior of axially restricted RC beams”,
Comput. Concrete, 16(1), 67-97.

Chen, S., Ye, Y., Guo, Q., Cheng, S. and Diao, B. (2016),
“Nonlinear model to predict the torsional response of U-shaped
thin-walled RC members”, Struct. Eng. Mech., 60(6), 1039-
1061.

Chiu, H.J., Fang, LK., Young, W.T. and Shiau J.K. (2007),
“Behavior of reinforced concrete beams with minimum
torsional reinforcement”, Eng. Struct., 29(9), 2193-2205.

Fang, I.K. and Shiau, J.K. (2004), “Torsional behavior of normal
and high-stregth concrete beams”, ACI Struct. J., 101(3), 304-
313.

CEB-FIP MODEL CODE (2010), Comité Euro-International du
Béton, Suisse.

Gomes, D.P. (2011), “Flexural strength of reinforced concrete
beams axially restricted”, M.Sc. Dissertation, University of
Coimbra, Coimbra, Portugal.

Hsu, T.T. (1968), Torsion of Structural Concrete-Behavior of
Reinforced Concrete Rectangular Members, Torsion of
Structural Concrete, SP-18, American Concrete Institute,
Detroit, 261-306.

Hsu, T.T.C. (1984), Torsion of Reinforced Concrete, Van Nostrand
Reinhold Company.

Hsu, T.T.C. and Mo, Y.L. (1985a), “Softening of concrete in

torsional members-theory and tests”, J. Am. Concrete Inst., 82(3),
290-303.

Hsu T.T.C. and Mo, Y.L. (1985b), “Softening of concrete in
torsional members-prestressed concrete”, J. Am. Concrete Inst.,
82(5), 603-615.

Jeng, C.H. (2015), “Unified softened membrane model for torsion
in hollow and solid reinforced concrete members-modeling the
entire pre- and post-cracking behavior”, J. Struct. Eng., 141(10).

Jeng, C.H., Peng, X. and Wong, Y.L. (2011), “Strain gradient
effect in RC elements subjected to torsion”, Mag. Concrete
Res., 63(5), 343-356.

Jeng, C.H., Chiu, H.J. and Peng, S.F. (2013), “Design formulas for
cracking torque and twist in hollow reinforced concrete
members”, ACI Struct. J., 110(3), 457-468.

Koutchoukali, N.E. and Belarbi, A. (2001), “Torsion of high-
strength reinforced concrete beams and minimum reinforcement
requirement”, ACI Struct. J., 98(4), 462-469.

Khagehhosseini, A.H., Porhosseini, R., Morshed, R. and Eslami,
A. (2013), “An experimental and numerical investigation on the
effect of longitudinal reinforcements in torsional resistance of
RC beams”, Struct. Eng. Mech., 47(2), 247-263.

Lando, M. (1987), “Torsion of closed cross-section thin-walled
beams: The influence of shearing strain”, Thin-Wall. Struct.,
5(4), 277-305.

Lampert, P. and Thurlimann, B. (1969), Torsions-Beige-Versuche
an Stanhlbetobalken (Torsion Tests of Reinforced Concrete
Beams), Bericht, No. 6506-2, Institute fur Baustatik, ETH,
Zurich, Swiss.

Leonhardt, F. and Schelling, G. (1974), Torsionsversuche an Stahl
Betonbalken, Bulletin No. 239, Dreurscher Ausschuss Fur
Stahlbeton, Berlin, Germany.

Levenberg, K. (1944), “A method for the solution of certain non-
linear problems in least squares”, Quarter. Appl. Math., 2, 164-
168.

Lou, T., Lopes, A. and Lopes, S. (2011), “Numerical behaviour of
axially restricted RC beams”, Proceedings of the International
Conference on Recent Advances in Nonlinear Models-Structural
Concrete Applications.

Marquardt, D.W. (1963), “An algorithm for least-squares
estimation of nonlinear parameters”, SIAM J. Appl. Math.,
11(2), 431-441.

McMullen, A.E. and Rangan, B.V. (1978), “Pure torsion in


http://technopress.kaist.ac.kr/?page=search2&mode=result#1
http://technopress.kaist.ac.kr/?page=search2&mode=result#1

Effective torsional strength of axially restricted RC beams

rectangular sections: A re-examination”, J. Am. Concrete Inst.,
75(10), 511-519.

Mondal, T.G. and Prakash, S.S. (2015), “Effect of tension
stiffening on the behaviour of square RC column under torsion”,
Struct. Eng. Mech., 54(3), 2131-2134.

Murin, J. and Kuti§, V. (2008), “An effective finite element for
torsion of constant cross-sections including warping with
secondary torsion moment deformation effect”, Eng. Struct.,
30(10), 2716-2723.

Nash, J.C. (1990), Compact Numerical Methods for Computers.
Linear Algebra and Function Minimisation, 2nd Edition, Adam
Hilger, Bristol and New York.

NP EN 1992-1-1 (2010), Eurocode 2: Design of Concrete
Structures-Part 1: General Rules and Rules for Buildings.

Peng, X.N. and Wong, Y.L. (2011), “Behavior of reinforced
concrete walls subjected to monotonic pure torsion-an
experimental study”, Eng. Struct., 33(9), 2495-2508.

Rasmussen, L.J. and Baker, G. (1995), “Torsion in reinforced
normal and high-strength concrete beams-part 1: Experimental
test series”, J. Am. Concrete Inst., 92(1), 56-62.

Valipour, H.R. and Foster, S.J. (2010), “Nonlinear analysis of 3D
reinforced concrete frames: Effect of section torsion on the
global response”, Struct. Eng. Mech., 36(4), 421-445.

Waldren, P. (1988), “The significance of warping torsion in the
design of straight concrete box girder bridges”, Can. J. Civil
Eng., 15(5), 879-889.

Wang, Q., Qiu, W. and Zhang, Z. (2015), “Torsion strength of
single-box multi-cell concrete box girder subjected to combined
action of shear and torsion”, Struct. Eng. Mech., 55(5), 953-964.

Zhang, L.X. and Hsu, T.C. (1998), “Behavior and analysis of 100
MPa concrete membrane elements”, J. Struct. Eng., 124(1), 24-
34.

cC

479


http://technopress.kaist.ac.kr/?page=search2&mode=result#1
http://technopress.kaist.ac.kr/?page=search2&mode=result#1
http://technopress.kaist.ac.kr/?page=search2&mode=result#1



