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1. Introduction 
 

Favorable qualities like high strength-weight and high 

stiffness-weight ratios combined with low operational cost 

have led to increased use of composites in the structural 

engineering field. Often, these composite structures act as 

the load carrying members and thus are subjected to various 

static and dynamic loads (Kalita and Haldar 2017). 

Therefore it is desirable that any machinery installed on 

these structures are not in resonance with it. An easy way to 

ensure this is by allowing the machinery to operate well 

outside the range of the inherent frequency of the structure. 

As such the ability to fine tune structures so as to maximize 

or minimize its natural frequencies would be a handy option 

for design engineers (Kalita et al. 2018).  

With rapid advancement in computing power, there has 

been a competitive development of numerical tools and 

theories in structural optimization field. A plethora of 

nature-inspired optimization techniques have been 

developed in the last three decades to solve multimodal and 

computationally intensive optimization problems using 

heuristic approaches. While well-tuned metaheuristics are 

known to escape the pit of local optima—a serious 

drawback of classical optimization techniques, many of 

these metaheuristics (Boussaid et al. 2013) are known to 

depend on several parameters to be set by the user a priori, 

the choice of which considerably influences the success of 

the approach. For example, in case of Genetic Algorithm, a  
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nature-inspired technique that has been around for almost 

four decades now, there is still considerable disagreement 

(Mills et al. 2015) amongst researchers regarding the 

various tuning parameter settings. In fact, De Jong (2007) 

suggested that any numerical experimentation based on 

evolutionary algorithms should first conduct a few 

preliminary experiments to determine the optimal parameter 

setting. Additionally, to gain sufficient confidence in the 

predicted output, often an optimization problem needs to be 

solved multiple times using several combinations of the 

tuning parameters involved in the particular metaheuristics. 

Though this can be easily done for problems involving a 

small number of parameters and small search space, in 

structural optimization problems involving finite element 

simulations this can be a tedious and time-consuming 

option. Finite element approaches are known to be accurate 

but are computationally intensive.  

A remarkable reduction in the total computational effort 

can be obtained by reducing the number of structural 

analyses. This can be done by developing globally robust 

approximation routines. Such an approximation routine or 

metamodel eliminates the linkage of finite element and 

optimization algorithm codes (Abu-Odeh and Jones 1998), 

thereby eliminating the need to run the computationally 

intensive FE models iteratively. By replacing the original 

FE model with a metamodel, the objective function can be 

evaluated at a fraction of the original cost (Pajunen and 

Heinonen 2014). Response surface methodology (RSM) 

(Box and Wilson 1992), artificial neural network (ANN) 

(Haykin 2001) and radial basis functions (RBF) (Hardy 

1971) are some of the most popular and widely studied 

metamodeling techniques. In RSM, the basic functions for 
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 and υ12 are considered as the independent variables while simultaneously maximizing fundamental 

frequency, λ1  and frequency separation between the 1
st
 two natural modes, λ21 . The optimal material combination for 

maximizing λ1 and λ21 is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand 

the effect of each parameter on the desired response parameters. 
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approximation are chosen a priori. RSMs use polynomial 

basis functions and have been widely used in structural 

optimization problems like helicopter rotor (Ganguli 2002), 

truss (Ju et al. 2013) (Fang and Tee 2017), stiffened plates 

(Heinonen and Pajunen 2011), marine structures (Pajunen 

and Heinonen 2014), laminated plates subject to stress and 

displacement constraints (Abu-Odeh and Jones 1998), 

lateral stability of arch bridge (Pan et al. 2011), FRP 

composite deck (Kim et al. 2009) (Mukhopadhyay et al. 

2015) (Mukhopadhyay et al. 2015) (Dey et al. 2015) 

composite plates (Abu-Odeh and Jones 1998) and shells 

(Dey et al. 2016), etc.  

Though the literature search reveals that RSM 

metamodels are effective in structural engineering, it also 

initiates the necessity to explore further. One interesting 

avenue is to test its applicability in a multi-objective 

optimization scenario. In tune with genetically modified 

organisms whose genetic material is altered to increase 

yield or for some other specific purpose, the present 

research work explores genetically optimized composite 

laminates, whose material properties have been altered with 

the help of the in-silico counterpart of genetic engineering, 

viz. genetic algorithm, to simultaneously maximize the 

fundamental frequency and frequency separation between 

first two natural modes. This paper is organized as- section 

1 details the necessity and scope of the research. Section 2 

presents a brief overview of the overall design and 

optimization framework. The finite element formulation 

and response surface model used in the research is 

discussed in detail to ensure reproducibility. A small 

discussion regarding genetic algorithms is also included. In 

section 3, the FE model is validated with published results. 

The RSM model is discussed and a general sensitivity 

analysis is also carried out. The RSM-based second order 

equations built to replace the FE model are then used as 

objective functions in a multi-objective GA in the final part 

of section 3. Section 4 lists the key findings and 

recommendations.  

 
 

2. Design and optimization framework 
 

Traditionally, finite element analysis (FEA) is directly 

coupled with optimization algorithms to predict the optimal 

settings. However, due to the time intensive nature of FEA, 

the optimization scheme may take hours or days (depending 

on model complexity and dimensionality) to converge to an 

optimal solution. By replacing the FEA with a metamodel, 

this can be done in a fraction of the actual computational 

cost. For example, if an optimization algorithm needs 

50,000 iterations to converge to an optimal solution, the 

function evaluation would need the FEA to run 50,000 

times. However, if suppose say the FEA is replaced with a 

second-order polynomial equation, the 50,000 function 

evaluations would take very little time. But, it should be 

noted that to build the metamodel, a training dataset is 

necessary which in structural engineering is often generated 

by using FEA. However, the size of training dataset needed 

in RSM is very small. For example, for a 4-variable design 

problem, RSM CCD needs only 30 design points. An 

additional advantage of using an RSM metamodel with  

 

Fig. 1 Design and optimization framework used in the 

current study 

 

 

optimization algorithms in place of using FEA directly 

includes ease of conducting sensitivity analysis.  

In this article, a multi-objective multiparameter 

optimization procedure is developed by combining response 

surface models with an evolutionary search algorithm-GA. 

The RSM metamodels are developed by using the highly 

accurate numerical data from an author compiled finite 

element program. Fig. 1 shows the design and optimization 

framework for the current problem. Based on the design 

problem, the input (in this case 
𝐸1

𝐸2
, 
𝐺12

𝐸2
 , 

𝐺23

𝐸2
 and 𝜐12) and 

output parameters (fundamental frequency,  𝜆1  and 

frequency separation between the 1
st
 two modes, 𝜆21) are 

identified. A design of experimentation scheme based on the 

RSM design (described in section 2.2) is selected and the 

numerical experiments are conducted using the finite 

element formulation reported in section 2.1. Metamodels 

(also called surrogate model) are developed based on these 

RSM sample points using the FE data. The model is tested 

for the desired level of accuracy and analysis of variance 

(ANOVA) test is performed to remove the non-significant 

terms from the metamodel. The metamodel is then used as 

the objective function for the multi-objective optimization 

using a genetic algorithm. 
 

2.1 Finite element formulation 
 

In the current formulation, the finite element method is 

used for free vibration of the plate. The midplane of the 

plate of the element is regarded as the reference plane. 

Since composites are weak in shear, the shear deformation 

effect is accounted for here. This is done by using the 

theory of Mindlin plate where it is assumed that the normal 

to the central plane of the plate before bending remains 

straight but not necessarily normal to the deformed middle 

surface after bending (Kalita and Haldar 2017) (Kalita et al. 

2018) (Kalita et al. 2016).  

A nine-node isoparametric plate bending element is used 

in the current finite element formulation. One of the main  
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Table 1 Design points patterned by CCD 

Trial No. 

Coded Inputs Un-coded Inputs 

𝐸1
𝐸2

 
𝐺12
𝐸2

 
𝐺23
𝐸2

 𝜐12 
𝐸1
𝐸2

 
𝐺12
𝐸2

 
𝐺23
𝐸2

 𝜐12 

1 -1 -1 -1 -1 30 0.5 0.4 0.22 

2 1 -1 -1 -1 50 0.5 0.4 0.22 

3 -1 1 -1 -1 30 0.7 0.4 0.22 

4 1 1 -1 -1 50 0.7 0.4 0.22 

5 -1 -1 1 -1 30 0.5 0.6 0.22 

6 1 -1 1 -1 50 0.5 0.6 0.22 

7 -1 1 1 -1 30 0.7 0.6 0.22 

8 1 1 1 -1 50 0.7 0.6 0.22 

9 -1 -1 -1 1 30 0.5 0.4 0.28 

10 1 -1 -1 1 50 0.5 0.4 0.28 

11 -1 1 -1 1 30 0.7 0.4 0.28 

12 1 1 -1 1 50 0.7 0.4 0.28 

13 -1 -1 1 1 30 0.5 0.6 0.28 

14 1 -1 1 1 50 0.5 0.6 0.28 

15 -1 1 1 1 30 0.7 0.6 0.28 

16 1 1 1 1 50 0.7 0.6 0.28 

17 −𝛼 0 0 0 20 0.6 0.5 0.25 

18 𝛼 0 0 0 60 0.6 0.5 0.25 

19 0 −𝛼 0 0 40 0.4 0.5 0.25 

20 0 𝛼 0 0 40 0.8 0.5 0.25 

21 0 0 −𝛼 0 40 0.6 0.3 0.25 

22 0 0 𝛼 0 40 0.6 0.7 0.25 

23 0 0 0 −𝛼 40 0.6 0.5 0.19 

24 0 0 0 𝛼 40 0.6 0.5 0.31 

25 - 30 0 0 0 0 40 0.6 0.5 0.25 

 

 

advantages of the element is that any form of plate can be 

well managed with a simple mapping technique that can be 

defined as 

𝑥 =∑𝑁𝑟𝑥𝑟      and        𝑦 =∑𝑁𝑟𝑦𝑟

9

𝑟=1

9

𝑟=1

 (1) 

where (𝑥, 𝑦) are the coordinates of any point within the 

element are, (𝑥𝑟 , 𝑦𝑟) are the coordinates of 𝑟th
 nodal point 

and 𝑁𝑟 is the corresponding interpolation function of the 

element. In this element, Lagrangian interpolation function 

has been used for 𝑁𝑟. 

The elegance of the formulation lies in the treatment of 

the inclusion of the shear deformation effect by taking the 

bending rotations as independent variables in the field, 

which are as follows 

{
𝜙𝑥
𝜙𝑦
} =

{
 

 𝜃𝑥 −
𝜕𝑤

𝜕𝑥

𝜃𝑦 −
𝜕𝑤

𝜕𝑦}
 

 
 

where 𝜙𝑥 and 𝜙𝑦 are the average shear rotation over the 

entire plate thickness and 𝜃𝑥 and 𝜃𝑦 are the total rotations  

 
Fig. 2 Non-dimensional fundamental frequency 

λ= ωa2 h⁄ √ρ E2⁄  of antisymmetric cross-ply (0
o
/90

o
)n 

square laminate 
 

 

in bending. 

Other independent field variables are u, v and w, where 

u and v are the corresponding in-plane displacements, while 

w is the transverse displacement. 

The interpolation functions used for the representation 

of element geometry, Eq. (1), are used to express the 

displacement field at a point within the element in terms of 

nodal variables as 

𝑢 =∑𝑁𝑟𝑢𝑟

9

𝑟=1

;           𝑣 = ∑𝑁𝑟𝑣𝑟

9

𝑟=1

;          𝑤

=∑𝑁𝑟𝑤𝑟

9

𝑟=1

; 

𝜃𝑥 =∑𝑁𝑟𝜃𝑥𝑟

9

𝑟=1

;               𝜃𝑦 =∑𝑁𝑟𝜃𝑦𝑟

9

𝑟=1

 

(2) 

For a laminate, the generalized stress-strain relationship 

with respect to its reference plane may be expressed as 

*𝜎+ = ,𝐷-*𝜀+ (3) 

The generalized stress vector {σ} in the above equation 

is 

*𝜎+𝑇 = [𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦 𝑀𝑥  𝑀𝑦 𝑀𝑥𝑦 𝑄𝑥  𝑄𝑦] (4) 

where, 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦 are in-plane force resultants; 𝑀𝑥, 𝑀𝑦 

are the bending moments in 𝑥 and 𝑦 directions; 𝑀𝑥𝑦 is 

the twisting moment resultant; and 𝑄𝑥 ,  𝑄𝑦  are the 

transverse shear force resultants. 

In the first-order shear deformation theory a shear 

correction factor (𝑘𝑐) is required to adjust the transverse 

shear stiffness for studying the static or dynamic problems 

of plates. The accuracy of solutions of the FSDT is strongly 

dependent on predicting better estimates for the shear 

correction factor. In this case, the shear correction factor is 

assumed to be 5/6. 

The generalized strain in terms of displacement is 

written as, 

 
(5) 
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and 

 

(6) 

where,  

𝐴𝑖𝑗  , 𝐵𝑖𝑗  , 𝐷𝑖𝑗  are the extensional, extensional-bending 

and bending stiffness coefficients, which are defined in 

terms of the lamina stiffness coefficients (Kalita et al. 2018) 

genetically optimized skew laminates.  

With the help of Eq. (2) and Eq. (5), the strain vector 

may be written as 

*𝜀+ =∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑟
𝜕𝑥

0 0 0 0

0
𝜕𝑁𝑟
𝜕𝑦

0 0 0

𝜕𝑁𝑟
𝜕𝑦

𝜕𝑁𝑟
𝜕𝑥

0 0 0

0 0 0 −
𝜕𝑁𝑟
𝜕𝑥

0

0 0 0 0 −
𝜕𝑁𝑟
𝜕𝑦

0 0 0 −
𝜕𝑁𝑟
𝜕𝑦

−
𝜕𝑁𝑟
𝜕𝑥

0 0
𝜕𝑁𝑟
𝜕𝑥

−𝑁𝑟 0

0 0
𝜕𝑁𝑟
𝜕𝑦

0 −𝑁𝑟 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9

𝑟=1

{
 
 

 
 
𝑢𝑟
𝑣𝑟
𝑤𝑟
𝜃𝑥𝑟
𝜃𝑦𝑟}
 
 

 
 

 (7) 

or, *𝜀+ = ∑ ,𝐵-𝑟*𝛿𝑟+𝑒
9
𝑟=1  

or, *𝜀+ = ,𝐵-*𝛿+ 
Where [B] is the strain matrix containing interpolation 

functions and their derivatives and {δ} is the nodal 

displacement vector having order 45 × 1 

Once the matrices [B] and [D] are obtained, the stiffness 

matrix of the plate element [K] can be easily derived by the 

virtual work method and it may be expressed as 

,𝐾-𝑒 = ∫ ∫ ,𝐵-𝑇,𝐷-,𝐵-  | 𝐽 |  𝑑𝜉 𝑑𝜂

+1

−1

+1

−1

 (1) 

In the above equation, the Jacobean | 𝐽 | is derived 

from Eq. (1) by taking the derivatives of the co-ordinates 

Eq. (7). The integration is carried out numerically following 

Gauss quadrature technique. 

Similarly, the consistent mass matrix of an element can 

be derived and it may be expressed as 

,𝑀- = 𝜌ℎ ∫ ∫ [,𝑁𝑢-
𝑇,𝑁𝑢- + ,𝑁𝑣-

𝑇,𝑁𝑣-

+1

−1

+1

−1

+ ,𝑁𝑤-
𝑇,𝑁𝑤- +

ℎ2

12
[𝑁𝜃𝑥]

𝑇
[𝑁𝜃𝑥]

+
ℎ2

12
[𝑁𝜃𝑦]

𝑇

[𝑁𝜃𝑦]] |𝐽|𝑑𝜉𝑑𝜂 

(2) 

where,   

,𝑁𝑢- = [,𝑁𝑟-,𝑁0-,𝑁0-,𝑁0-,𝑁0-] 

,𝑁𝑣- = [,𝑁0-,𝑁𝑟-,𝑁0-,𝑁0-,𝑁0-] 

,𝑁𝑤- = [,𝑁0-,𝑁0-,𝑁𝑟-,𝑁0-,𝑁0-] 

[𝑁𝜃𝑥] = [,𝑁0-,𝑁0-,𝑁0-,𝑁𝑟-,𝑁0-] 

,𝑁𝜃𝑦- = [,𝑁0-,𝑁0-,𝑁0-,𝑁0-,𝑁𝑟-] 

where, [N0] = null matrix of the order 1×9 

In Eq. (9), the first two terms of the mass matrix are 

associated with in-plane movements of mass and the third 

term indicates transverse movement of mass (which is 

usually found to contribute the major inertia) whereas the 

last two terms are associated with rotary inertia and their 

contribution becomes significant only in a plate having 

higher thickness. In this formulation, the effect of rotary 

inertia as well as transverse and in-plane movements of 

mass are considered. 

The element stiffness matrix and mass matrix having an 

order of forty-five are evaluated for all the elements and 

they are assembled together to form the overall stiffness 

matrix [K0] and mass matrix [M0]. Once [K0] and [M0] are 

obtained the equations of motion of the plate may be 

expressed as 

*,𝐾0- − 𝜔
2,𝑀0-+*𝛿+ = 0 (3) 

After incorporating the boundary conditions in the 

above equation it is solved by the simultaneous iterative 

technique to get frequency ω. Unless otherwise stated, all 

the frequency parameters are reported in this manuscript in 

non-dimensional form as, 

𝜆 = 𝜔𝑎2√𝜌ℎ 𝐷0⁄  , where, 𝐷0 =
𝐸2ℎ

3

12(1−𝜐12𝜐21)
 

 

2.2 Response surface methodology 
 

Response surface methodology (RSM) generates an 

approximate equation relating the independent (input) 

parameters to the dependent (output) parameters. The 

inherent statistical and mathematical analysis fits an 

equation of the following form, 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, …… . 𝑥𝑘) + ε (4) 

Here, 𝑓 denotes the approximate response surface and 

𝜀  is the normally distributed statistical error. 𝑥′𝑠 

represents each independent parameter while 𝑘  is the 

maximum number of independent parameters. In general, a 

second-order models may be fitted as 

𝑦 = 𝛽0 +∑𝛽𝑖

𝑘

𝑖=1

𝑥𝑖 +∑∑𝛽𝑖𝑗

𝑘

𝑗>𝑖

𝑘

𝑖=1

𝑥𝑖 𝑥𝑗 +∑𝛽𝑖𝑖

𝑘

𝑖=1

𝑥𝑖
2

+ 𝜀 

(5) 

In this work, the central composite design (CCD) of 

RSM design is used. These designs consist of three distinct 

types of design points-two-level factorial design points, 

axial design points and center design points. The two-level 

factorial design points are coded as ±1; axial design points 

are coded as ±𝛼 and center design points are coded as 0. 
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The full or partial two-level factorial design points forms 

the core while the axial design points lie outside the design 

space to offer rotatability to the design. This allows the 

response to predicted with equal variance irrespective of the 

direction from the centre of the design space. In general, the 

axial points, |𝛼| > 1. For a CCD design with full factorial 

core, the axial points can be calculated as (Rahman et al. 

2017) 

|𝛼| =  √,2𝑘-
4

 (6) 

Four parameters namely  
𝐸1

𝐸2
, 
𝐺12

𝐸2
 , 

𝐺23

𝐸2
 and 𝜐12  are 

studied to find their effect on fundamental frequency, 𝜆1 

and frequency separation, 𝜆21. Table 1 shows design points 

in non-randomized standard sequence based on the CCD. 

However, while fitting the training data to second-order 

RSM model, the design points are randomized. 

Randomizing the 30 trials or design points (16 factorial 

terms, 8 axial terms and 6 replicates of center point) allows 

each trial to become an equal participant in the study. This 

contributes in distinguishing a „true and rigorous 

experiment‟ from an observational study or a quasi-

experiment (Shadish et al. 2008). The 16 factorial terms 

form the core of the CCD design, while the 8 axial terms 

ensure that even the extreme axial runs are within the area 

of operability. This is why in CCD design the area of 

interest must be within the area of operability. Traditionally 

the experiment corresponding to the center point is 

conducted multiple times to account for experimental error. 

However, in this article, since a FEA simulation is used 

there is no variation in experiment values for a particular 

point even when it is repeated multiple times. If the same 

set of inputs are provided for a FEA simulation, it would 

return the same output on repeated trials. Thus, in context of 

the present manuscript, trial number 25-30 represent the 

same input and output.   

The CCD model is constructed from these 30 design 

points by using the multiple regression fitting scheme. The 

difference between the FE design points (𝑦𝑖) and the CCD 

RSM model predicted points (𝑦̂𝑖) is called residual.  

ε𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (7) 

The 𝛽𝑖 estimates in Eq. (12) are selected such that the 

sum of squares of the residuals is minimized. The sum of 

squares of the residuals is also commonly called as the sum 

of squares of the errors(𝑆𝑆𝐸).  

𝑆𝑆𝐸 =∑ε𝑖
2

𝑛

𝑖=1

 (8) 

The statistically non-significant terms are screened and 

removed from the RSM model. This is done by using an 

analysis of variance (ANOVA) test, where the effect of each 

independent variable on total model variance is 

quantitatively evaluated.  

𝐹𝐴 =

𝑆𝑆𝑚𝑜𝑑𝑒𝑙
𝑘⁄

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
(𝑛 − 𝑘 − 1)⁄

 (9) 

𝐹𝐴  is the F-test value of any independent variable, 

𝑆𝑆𝑚𝑜𝑑𝑒𝑙  and 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  are the sum of squares due to 

model and residual respectively, 𝑛 is the number of sample 

points, k is the number of independent variables. If 𝐹𝐴 

exceeds the selected criterion value, the particular 

independent variable has a significant effect on the 

dependent variable. The non-significant terms are dropped 

from the model by backward, forward or stepwise 

elimination. This is done by calculating the p-value and the 

prob.>F value. P-value is the probability associated with 

the F-test value. It signifies the probability of getting the 

particular F-test value if the term did not have an effect on 

the response. Thus lower the p-value, more is the 

significance of the term. In general, a significant term 

should have p-value less than 0.05 (Keblouti et al. 2017). 

Additional criteria like R
2
, adjusted R

2 
and predicted R

2 

should also be considered for accepting or rejecting a model 

(Kalita et al. 2017). These can be calculated as, 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑆𝑆𝑚𝑜𝑑𝑒𝑙
 (10) 

𝑎𝑑𝑗. 𝑅2 = 1 −

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
(𝑛 − 𝑘 − 1)⁄

(𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑆𝑆𝑚𝑜𝑑𝑒𝑙 )
(𝑛 − 1)⁄

 
(11) 

𝑝𝑟𝑒𝑑. 𝑅2 = 1 −
𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑆𝑆𝑚𝑜𝑑𝑒𝑙
 (12) 

𝑃𝑅𝐸𝑆𝑆 is the predicted residual sum of squares, which 

is a measure of how the model fits the samples in the design 

space. 𝑅2 means how well the model is predicting a trend. 

0% indicates that the model explains no variability of the 

response data and 100% means all variability around its 

mean is accounted for. However, 𝑅2 can sometimes be 

misleading. This is why the performance of the model in 

terms of the adjusted 𝑅2 and predicted 𝑅2 should also be 

taken into account. Artificial inflation of 𝑅2, occurs through 

the addition of terms to the model, regardless, of their 

statistical significance. However, if statistically insignificant 

terms are added both adj. 𝑅2 and predicted 𝑅2 would 

decrease. For an acceptable solution, both should be within 

20% of each other.  

 

2.3 Genetic algorithm 
 

Genetic Algorithm (GA) is good at taking huge search 

spaces and navigating them, looking for optimal 

combinations of parameters and predicting solutions. It 

works on Darwin's principle of natural selection (Goldberg 

2006). GA is superior to most conventional search 

techniques in three major ways. It does not get trapped in 

local optima as it performs parallel search throughout the 

population of solutions. Secondly rather than optimizing the 

parameters itself, GA works on chromosomes which are an 

encrypted form of a potential solution, effectively bringing 

about a faster convergence. Thirdly the algorithm uses a 

fitness score based on the objective function to predict a 

feasible solution, which invites better performing solutions 

to influence successive searches. The user typically chooses  
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Table 2 Adequacy of the RSM models 

Metamodel R2 Adj. R2 Pred. R2 
Adequate 

Precision 
p-value 

Box-Cox 

transformation 

parameter (Λ) 

Eq. (20) 0.9998 0.9997 0.9991 364.09 4.79e-26 No transformation 

Eq. (21) 0.9999 0.9997 0.9992 372.87 3.33e-26 No transformation 

Eq. (24) 1.0 1.0 1.0 22290.47 8.50e-66 2 

Eq. (25) 1.0 1.0 1.0 7341.93 1.23e-56 2 

 

 

the best structure from the last generation as the optimal 

solution if the algorithm is set to terminate after a certain 

tolerance level is reached. However, running the algorithm 

for a predetermined number of times is more common 

among researchers. In this case, the algorithm terminates 

when the total predetermined number of iterations is 

reached, and it reports back the best solution encountered 

among all the generations (Kalita et al. 2018). Several 

research groups like Killickap and co-workers (Kilickap 

and Huseyinoglu 2010) (Kilickap et al. 2011) (Yardimeden 

et al. 2014); Jafarian and co-workers (Jafarian et al. 2013) 

(Jafarian et al. 2015) (Jafarian et al. 2014) (Jafarian et al. 

2016) have regularly used genetic algorithms for a variety 

of optimization problems. 

 
 
3. Results and discussion 

 

3.1 Validation of FE results 
 

In this section, an example from literature is 

independently reproduced using the finite element 

formulation described in section 2.1. An all side clamped 

square angle-ply (45/-45/45/-45) composite plate with 

different side-to-thickness ratios (a/h= 10 and 100) is 

considered. The relative material properties of each layer 

are E1/E2 = 25, G12 = G13= 0.5E2, G23 = 0.2E2, ν12= 0.25. 

The first six natural frequencies obtained by the present 

formulation are presented in Fig. 2 along with the published 

results of Shi et al. (2004) and Xiang et al. (2010). The 

present results are in more agreement with those of Shi et 

al. (2004) as compared to Xiang et al. (2010), who has used 

higher order deformation theory (HSDT). Shi et al. (2004) 

incorporated the transverse shear effects by considering first 

order shear deformation theory (FSDT) of Mindlin. Though 

FSDT is not as accurate as HSDT for very thick plates, it is 

simple to implement and gives much better results than the 

CPT and hence is reliable for thin and moderately thick 

plates. Further, the computational cost of using FSDT is 

cheaper than using HSDT. In past, the authors have shown 

the current finite element formulation to be able to produce 

highly accurate results (< 0.5%) for various structures 

(Kalita et al. 2016) (Kalita and Haldar 2017). 
 

3.2 Building the RSM model 
 

An all edges simply supported square 8-layer angle ply 

[45/-45/45/-45]s composite laminate with thickness ratio 

h/a=0.01 is selected. Based on the central composite design 

reported in section 2.2, a training data set of 30 samples is 

selected. Multiple regression fitting scheme of the training  

 

Fig. 3 Normal probability plot for metamodels built with 

untransformed data (a) fundamental frequency metamodel 

(b) frequency separation metamodel 
 

 

Fig. 4 Box-Cox plots for (a) fundamental frequency 

metamodel (b) frequency separation metamodel 
 

 

dataset with respect to Eq. (12) leads to the development of 

non-linear second-order equations for fundamental 

frequency and frequency separation.  

 

(13) 

 

(14) 

The percentage residual (r) in the metamodels and the 

numerical finite element models is calculated as, 

𝑟 % =
𝜆𝐹𝐸𝑀 − 𝜆𝑅𝑆𝑀

𝜆𝐹𝐸𝑀
× 100% (15) 

The detailed statistics for checking the adequacy of the 

fitted RSM model with respect to R
2
, adjusted R

2
, predicted 

R
2
, adequate precision and model p-value are reported in 

Table 2. Overall, the models appear to be excellent with 

high R
2
, adjusted R

2
, predicted R

2
, adequate precision etc. 

However additional tests reveal that the model can be 

further improved. Many statistical tests and intervals are 

based on the assumption of normality. The assumption of 

normali ty often leads to  tests  that  are simple, 

mathematically tractable, and powerful compared to tests  
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Fig. 5 Normal probability plot for metamodels built with 

Box-Cox transformed data (a) fundamental frequency 

metamodel (b) frequency separation metamodel 

 

Table 3 ANOVA for metamodels built with Box-Cox 

transformed data 

Source 

Fundamental Frequency Frequency Separation 

Sum of Squares F Value p-value Sum of Squares F Value p-value 

Model 83619120.77 27328299.82 <0.0001 187083643.32 2967353.84 <0.0001 

𝐸1
𝐸2

 83616942.35 273275878.67 <0.0001 186917172.18 29647134.25 <0.0001 

𝐺12
𝐸2

 937.50 3063.93 <0.0001 137409.50 21794.67 <0.0001 

𝐺23
𝐸2

 695.75 2273.83 <0.0001 16438.77 2607.37 <0.0001 

𝜐12 0.01 0.02 0.8992 1002.94 159.08 <0.0001 

𝐸1
𝐸2

𝐺12
𝐸2

 107.87 352.55 <0.0001 2274.66 360.79 <0.0001 

𝐸1
𝐸2

𝐺23
𝐸2

 99.99 326.79 <0.0001 2237.62 354.91 <0.0001 

𝐺12
𝐸2

𝐺23
𝐸2

 15.62 51.03 <0.0001 343.43 54.47 <0.0001 

(
𝐸1
𝐸2
)
2

 321.49 1050.70 <0.0001 6758.30 1071.94 <0.0001 

(
𝐺12
𝐸2
)
2

 6.87 22.45 0.0001 145.96 23.15 0.0001 

𝜐12
2 6.25 20.43 0.0002 145.63 23.10 0.0001 

Residual 5.81 
  

119.79 
  

Lack of Fit 5.81 
  

119.79 
  

 

 

that do not make the normality assumption. Unfortunately, 

many real data sets are in fact not approximately normal. 

Normal probability plots of the externally studentized 

residuals for the fundamental frequency (Eq. (20)) and 

frequency separation (Eq. (21)) metamodels are shown in 

Fig. 3. Externally studentized residuals are the quotient 

resulting from the division of a residual by an estimate of its 

standard deviation. It is seen that the externally studentized 

residuals are not normally distributed and there are clusters 

of residuals at one place. This means the data may have ties, 

thus implying that the measuring resolution might not have 

been adequate. Box-Cox plots (Fig. 4) reveals that power 

transformations for the data may remove these inadequacies 

in the models. The minimum point of the curve generated 

by the natural log of the sum of squares of the residuals 

represents the appropriate transformation parameter. Thus, 

the training dataset is transformed using Box-Cox 

transformations calculated as,  

𝑦′ = (𝑦 + 𝐶)Λ (16) 
 

Where C is a constant and Λ is the power of  

 

Fig. 6 Residuals for the training dataset for Box-Cox 

transformed data metamodels 
 

 

Fig. 7 Comparison of the original model and final 

metamodels 
 

 

transformation. Again multiple regression fitting of the 
transformed training dataset with respect to Eq. (12) leads 
to the development of two new second-order equations for 
fundamental frequency and frequency separation. ANOVA 
is then performed on the metamodels to reduce them and 
remove the statistically insignificant terms. The final 
metamodels are reported in Eqs. (24) and (25) respectively. 
The detailed statistics like R

2
, adjusted R

2
 etc. are presented 

in Table 2, which shows considerable improvement over 
untransformed data models. The ANOVA results for 
metamodels stated as Eqs. (24) and (25) are reported in 
Table 3. Further Fig. 5 shows that a considerable 
improvements in normality of residuals is achieved by Box-
Cox transformation.  

 

(17) 

 

(18) 

Fig. 6 shows the percentage residual for the training 

dataset calculated using Eq. (22). It is seen that the 

metamodels have a prediction accuracy in the order of 10
-4

. 

The metamodels for fundamental frequency and frequency  

307



 

Kanak Kalita, Pratik Nasre, Partha Dey and Salil Haldar 

 

 

Fig. 8 Sensitivity of  
E1

E2
,
G12

E2
,
G23

E2
  on fundamental 

frequency and frequency separation 

 

 

Fig. 9 Sensitivity of 𝜐12  on fundamental frequency and 

frequency separation 
 

 

separation are plotted against their respective finite element 

models in Fig. 7 for a randomly generated testing dataset of 

100 sample points.  
 

3.3 Sensitivity analysis 
 

Sensitivity analysis is a fundamental approach in  

 

Fig. 10 Pareto front of the optimal solutions for maximized 

fundamental frequency and frequency separation 

 

 

determining which input responses have the most influence 

on the output variables. In this research, sensitivity analyses 

are performed by using a first-order derivate of the output 

response with respect to each independent variable. The 

individual sensitivity coefficients are then calculated by 

varying the independent variable in consideration within its 

selected range while keeping the other 3 independent 

variables at their respective mean levels.  

Fig. 8(a)-(c) illustrates the sensitivity of   
E1

E2
 on 𝜆1 

and 𝜆21  with variation in 
E1

E2
,
G12

E2
 and 

G23

E2
 respectively. 

Positive values of sensitivity means that  𝜆1  and 𝜆21 

increases with corresponding increase in the value of the 

material property ratio whereas a negative value means that 

𝜆1 and 𝜆21decreases with the corresponding decrease in 

material property ratio. In general, it is seen that 𝜆1 and 

𝜆21  are very sensitive to 
E1

E2
 and though positive, the 

sensitivity of   
E1

E2
 with change in 

G12

E2
 and 

G23

E2
 is minimal. 

Fig. 8(d)-(f) illustrates the sensitivity of   
G12

E2
  on 𝜆1 and 

𝜆21  with variation in 
E1

E2
,
G12

E2
 and 

G23

E2
 respectively. 

Sensitivity of  
G12

E2
  increases with corresponding increase 

in 
E1

E2
 but decreases for increasing values of 

G12

E2
 and 

G23

E2
. 

Similarly in Fig. 8(g) sensitivity of  
G23

E2
  increases with 

corresponding increase in 
E1

E2
 but decreases for increasing 

values of 
G12

E2
 and 

G23

E2
 as seen in Fig. 8(h) and Fig. 8(i) 

respectively. As seen from Fig. 9, 𝜆1 and 𝜆21 are sensitive 

to changes in 𝜐12 but there is no effect of variation of 
E1

E2
,
G12

E2
 and 

G23

E2
 on the sensitivity of 𝜐12 . Sensitivity of 

𝜐12  increases with the corresponding decrease in 𝜐12 . 

Overall, the sensitivity analysis plots reveal that  𝜆21  is 

more sensitive to any changes in material properties as 

compared to 𝜆1 . 
E1

E2
 is the most influential parameter 

whereas 𝜐12 is least influential.  
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3.4 Optimization using GA 
 

The genetic algorithm solver „gamultiobj‟ provided in 

MATLAB Optimization Toolbox™ is used for solving this 

multi-objective optimization problem. The second-order 

non-linear equations developed using the RSM approach 

i.e., Eqs. (24) and (25) are used as the objective functions. 

An initial double vector type population of 100 individuals 

is selected. The creation function for the population is 

specified as „feasible population‟. This ensures that 

randomly created initial set of individuals satisfies the 

prescribed upper and lower bounds. A tournament section 

technique is then applied to randomly select the parents for 

the next generation. Tournament size is set at 2 i.e., two 

random individuals from generation „n‟ are ranked against 

each other and the best amongst them in terms of scaled 

values from the fitness functions are selected as a parent for 

(n+1)
th

 generation. Crossover fraction is set at 0.9 i.e. 90% 

of (n+1)
th

 generation is produced by crossover and the 

remaining 10% is produced by mutation. A relatively low 

mutation prevents the loss of any key genetic material. 

Maximum generation limit and function tolerance are set at 

200 and 10
-6

. It means that the genetic algorithm will 

terminate once 200 generations are reached or the weighted 

average change in the fitness function is less than 10
-6

. 

Optimal combinations predicted by the „gamultiobj‟ are 

reported in Fig. 10 in form of a Pareto front.  

 

 

4. Conclusions 
 

In this study, a multiobjective GA is used for designing 
composite plates for simultaneously maximized 
fundamental frequency and frequency separation between 
the first two natural modes. Instead of using a conventional 
variational method like Rayleigh-Ritz or finite element 
method for the numerical calculations, a novel 
metamodeling approach is used. The study successfully 
highlighted the potential of the proposed approach in a 
drastic reduction of computation cost at a very marginal 
loss of accuracy. Further, the effectiveness of Box-Cox 
transformation in augmenting the normality of a non-linear 
dataset is shown. An analysis of variance test is used for 
removing the insignificant terms from the metamodels, 
thereby making them more robust. Near-ideal values of 
descriptive parameters like R

2
, adjusted R

2
 and predicted R

2
 

depicted the excellent goodness of fit of a model. 
Sensitivity analysis of the metamodels revealed modulus 
ratio and Poisson‟s ratio to be the most and least influential 
parameters respectively. By carefully selecting the GA 
tuning parameters and incorporating the metamodels in it, a 
robust multiobjective optimization tool is developed to 
„genetically engineer‟ the composite laminates for desired 
maximum frequency and frequency separation. 
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