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1. Introduction 
 

It is well known that the basic theory of beam bending 

based on assumptions Euler-Bernoulli neglects shear 

deformation and stress concentration. This theory is 

applicable for the slender beams and is not applicable for 

thick or short beams since it is based on the hypothesis that 

the normal to the neutral axis remains perpendicular to the 

same axis during and after bending. Therefore, the stress 

and the shear distortion are void. Since the Euler-Bernoulli 

theory neglected the transverse shear deformation, it 

overestimates the arrows in the case of thick beams or the 

effects of shear deformation are significant. 

Bress (1859) and Timoshenko (1921) are the 

investigative pioneers to include the refined effects such as 

rotational inertia and shear deformation in beam theory. 

Timoshenko (1921) showed that the shear effects and 

greater than this of the rotational inertia for the transversal 

vibration of the beams. Noted by the beam theory of 

Timoshenko or the theory of first order shear deformations. 

(FSDT) in the literature of this theory, the distributions of 

the transverse shear deformation are assumed to be constant 

through the thickness of the beam and therefore coefficients 

of shear corrections are necessary to be determined. Cowper 

(1968) gave an enriched expression for the shear correction 

factor for different cross-section of the beams.  

The precision of the Timoshenko beam theory for 

transverse vibrations of a simply supported beam for the  
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fundamental frequency is verified by Cowper (1968), using 

the planar stress elasticity solution. Several authors (Al-

Basyouni et al. 2015, Arani and Kolahchi 2016, Kolahchi et 

al. 2016a, b, Bilouei et al. 2016, Madani et al. 2016, 

Bouderba et al. 2016, Bellifa et al. 2016, Zamanian et al. 

2017, Zarei et al. 2017, Shokravi 2017a, b, Youcef et al. 

2018) have employed also FSDT and classical theory to 

study beam/plates structures. To remove the gaps in the 

classical beam theory and the shear deformation theory of 

the first order, the theories of refining or high-order shear 

deformation are developed and are available in the literature 

for static and dynamic analysis (vibration) of beams. 

Several researchers (Levinso 1981, Baluch et al. 1984, 

Relfied and Murty 1982, Krishnu and Murty 1984, Di 

Sciuva et al. 1984, Bhinardd and Chandras 1993) have 

presented parabolic shear-deformation theories, that use a 

nonlinear variation of axial displacement in terms of the 

coordinate of the thickness. These theories respect the 

conditions of the zero shear stress at the upper and lower 

sides of the beam and therefore the shear correction factor 

becomes more necessary. Irretier (1986) studied the 

dynamic effects in homogeneous beams using refined 

theories that exceed the limits of the Euler-Bernoulli beam 

theory. These studied effects are rotational inertia, shear 

deformation and coupling between bending and torsion. 

Kant and Gupta (1988) and Heyliger and Reddy (1988) 

presented finite element models based on the high-order 

shear deformation theory for rectangular beams. However, 

these shifts based on finite element models do not respect 

the shear stress conditions at the upper and lower surface of 

the beam (April and Reddy 1992, Reddy 1997). There is 

another class of refined theories, which included  
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Fig. 1 Bending beam in the X-Z plane 

 

 

trigonometric functions to represent the effects of shear 

deformation through the thickness. Levinson (1981) and 

Stein (1989) developed theories of shear deformation for 

thick beams by including a sine function in terms of the 

thickness coordinates in the field of motion. Ghorbanpour 

Arani et al. (2016) also used a sinusoidal shear deformation 

theory for viscoelastic nano-plates resting on orthotropic 

elastic medium. A synthesis study carried out by Ghugal 

and Shimpi (2001) indicated that the research work dealing 

with the analysis of the bending of thick beams using 

hyperbolic and trigonometric shear deformation theories is 

very rare and remains to developed. Kreja (2011) presented 

a literature review on computational models for laminated 

composite and sandwich panels. Recently, a number of high 

shear deformation theories (HSDTs) are also developed for 

analyzing beams and plates (Aldousari 2017, Baseri et al. 

2016, Kar et al. 2016, Akavci 2015, Attia et al. 2015, 

Ahmed 2014, Ait Amar Meziane et al. 2014, Swaminathan 

and Naveenkumar 2014, Zehra and Shinde 2012a, Tounsi et 

al. 2013, Bouderba et al. 2013, Kar et al. 2015, Belkorissat 

et al. 2015, Mahapatra et al. 2016, Kolahchi and Moniri 

Bidgoli 2016, Ahouel et al. 2016, Sahoo et al. 2016, 

Bounouara et al. 2016, Boukhari et al. 2016, Kolahchi et al. 

2017a, b, c, Mehar et al. 2017, Hirwani et al. 2017, 

Hajmohammad et al. 2017, Shokravi 2017c, d, Beldjelili et 

al. 2016, Bousahla et al. 2016, Mehar and Panda 2016, 

2017a, b, Kolahchi and Cheraghbak 2017, Abdelaziz et al. 

2017, Besseghier et al. 2017, Kolahchi 2017, Bellifa et al. 

2017a, b). Recently, new beam/plate theories are developed 

with lower number of variables to study mechanical 

behavior of different structures (Houari et al. 2016, Khetir 

et al. 2017, Mouffoki et al. 2017, Zidi et al. 2017, Klouche 

et al. 2017, Hachemi et al. 2017, Kaci et al. 2018, Belabed 

et al. 2018, Mokhtar et al. 2018, Fourn et al. 2018, Yazid et 

al. 2018). 

In this work a shear deformation theory that uses a 

single variable is developed. This theory is applied to the 

thick isotropic beam. The significant feature of this 

formulation is that, in addition to including the shear 

deformation effect, it deals with only one unknown as the 

Euler-Bernoulli. The effects of shear deformations are 

considered through a sinus function in terms of the 

coordinate of the thickness in the axial displacement. 

Numerical results are presented to validate the present 

theory. 
 

 

2. Theory and formulation 

The beam in consideration is shown in the Fig. 1 and the 

Cartesian coordinates system (x, y, z) is adopted with the 

following areas of space 

2 2 2 20 ; ;b b h hx L y z       
 

(1) 

Such as x, y and z are the Cartesian coordinates, L and b 

are the length and width of the beam in the directions x, and 

y respectively, and h is the thickness of the beam according 

to the z direction. 

The beam is homogeneous, isotropic and linearly 

elastic. 
 

2.1 Kinematic relations 
 

The new proposed displacement field of the present 

theory is given as follows 

 
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Such as 

Where u is the axial displacement according to the 

direction x and w0 is the transverse displacement according 

to the direction z of the beam, α is an unknown parameter to 

be determined. 

Normal strain and transverse shear strain for beam are 

given by 

 
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The stress-strain relationships used are as follows 

 

2.2 Governing equations  
 
Governing equations are obtained using the principle of 

virtual work as follows (Zidi et al. 2014, Ait Atmane et al. 

2015, Ait Yahia et al. 2015, Zemri et al. 2015, Benadouda 

et al. 2017, Menasria et al. 2017, Meksi et al. 2018, Attia et 

al. 2018, Bakhadda et al. 2018) 

  0   VU 
 

(6) 

Where δU is the virtual variation of the energy of 

deformation and δV is the virtual variation of the work of 

the external forces. 

The variation of the beam's deformation energy is given 

by 
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Where (ζx, ηxz) and (εx, γxz) are the components of stress 

and strain, respectively, A is the top surface of the beam, M, 

P and Q are the stress results defined by 


A

xdAfzPM   ) ,(),(

 


A

xzdAzfQ  )(' 

 

(8) 

The variation of the work of the external forces is 

expressed by 


L

wdxqV

0

  

 

(9) 

Where q is the transverse load. 

Substitute the expressions of δU and δV From the Eqs. 

(7) and (9) in the Eq. (6), and after integrations by party. 

The following equation of motion is determined 

0- 
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(10) 

Replace the Eqs. (8) in the Eq. (10) and after overrides 

the expressions found in the Eq. (10), the effects are 

obtained as follows 

4

4

2

2

dx

wd
D

dx

wd
DM s

 

(11a) 

4

4

2

2

dx

wd
H

dx

wd
DP ss 

 

(11b) 

3

3

dx

wd
AQ s

 

(11c) 

Where D, Ds, Hs and As are the stiffness coefficients’ 

given as follows  
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(12) 

The governing equation in terms of displacement 

variables are obtained as follows 
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2.3 Analytical solutions 
 

In this section, analytical solutions for bending are 

presented for anisotropic simply supported beam. 

According to the Navier solution, the transverse 

displacements are expanded in Fourier series as given 

below 








1

 ) sin(

n

n xWw 

 
(14) 

Where β=n π/L 

 Wn is an arbitrary parameter to be determined, the 

following numerical examples are considered 

Example 01 
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(15) 

The beam is subjected to a sine load according to the z 

direction, the load is expressed as 

Where q0 is the intensity of the sine load in the middle 

of the beam. 

Example 02: 

The beam is subjected to a uniform load q(x) according 

to the direction z 

0
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Where qn are the coefficients of Fourier expansion of 

load which are given by 

Example 03 
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(18) 

The beam is loaded by a load distributed linearly 

according to the direction z 

The FOURIER coefficients for this loading case are 

given by 
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(20) 

Substitution the expressions of w and q(x) from in the 

following algebraic equation: 

With 

6468 2  sss DDAHs   
(21) 

The displacements and stresses are given by 
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3. Numerical results and discussion 
 

3.1 Verification studies 
 

In this part, the results of axial displacement (u), 
transverse displacement (w), the axial bending stress 
(ζx), and transverse shear stress (ηxz) are presented in the 
following non dimensional form 
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The parameter α is expressed as 
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  
Example 01: sinusoidal Loading case 

Table 1 shows a comparison of displacements and 

stresses for a simply supported isotropic beam submitted to 

a sinusoidal load. The comparison study is carried out with 

other theories such Zehra and Shinde (2012b), Ghugal and 

Shinpi (2001) and Reddy’s theory. 

The maximum axial displacement predicted by present 

theory is in good agreement with Reddy’s solution (see Fig. 

2). 

Table 1 Comparison of axial displacement  u
 at 

 
2

,0 hzx 
, transverse displacement  w

 at 
 0,

2
 zLx

, axial stress  x
 at 

 
2

,
2

hzLx 
, and transverse shear stress zx

 at  0,0  zx
 for isotropic beam 

subjected to sinusoidal loading 

S  Theory Model u  w  x
 zx

 

 
Present Theory HSDT 12,715 1,429 9,986 1,906 

 
Zehra and Shinde (2012b) SVSDT 12,311 1,414 9,95 2,631 

4 Bernoulli-Euler ETB 12,385 1,232 9,727 
 

 
Timoshenko FSDT 12,385 1,397 9,727 1,273 

 
Reddy HSDT 12,715 1,429 9,986 1,906 

 
Ghugal and Shinpi (2001) Exact 12,297 1,411 9,958 1,9 

 
Present Theory HSDT 194,3365 1,263 61,052 4,773 

 
Zehra and Shinde (2012b) SVSDT 202,142 1,242 55,709 8,711 

10 Bernoulli-Euler ETB 193,509 1,232 60,793 
 

 
Timoshenko FSDT 193,509 1,258 60,793 3,183 

 
Reddy HSDT 193,337 1,264 61,053 4,779 

 
Ghugal and Shinpi (2001) Exact 192,95 1,261 60,917 4,771 

Table 2 Comparison of axial displacement  u
 at 

 
2

,0 hzx 
, transverse displacement  w

 at 
 0,

2
 zLx

, 

axial stress  x
 at 

 
2

,
2

hzLx 
, and transverse shear stress zx

 at  0,0  zx
 for isotropic beam subjected 

to uniformly distributed loading 

S  Theory Model u  w  x
 zx

 

 
Present Theory HSDT 16.177 1,814 12,711 2,640 

 
Zehra and Shinde (2012b) SVSDT 15,753 1,808 12,444 2,980 

4 Bernoulli-Euler ETB 16 ,000 1,5630 12,000 - 

 
Timoshenko FSDT 16,000 1,8063 12,000 2,400 

 
Reddy HSDT 16,506 1,8060 12,260 2,917 

 
Ghugal and Shinpi (2001) Exact 15,800 1,7852 12,200 3,000 

 
Present Theory HSDT 250.682 1,601 75,277 7,324 

 
Zehra and Shinde (2012b) SVSDT 250,516 1,6015 75,238 7,4875 

10 Bernoulli-Euler ETB 249,998 1,5630 75,000 - 

 
Timoshenko FSDT 250,000 1,6015 75,000 6,0000 

 
Reddy HSDT 251,285 1,6010 75,246 7,4160 

 
Ghugal and Shinpi (2001) Exact 249,500 1,5981 75,200 7,5000 
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Fig. 2 Variations of axial displacement u through the 

thickness of a beam simply supports at 
 

2
,0 hzx 

 

in the case of sine loading with S=4 

 

 

Fig. 3 Variations of axial Normal stress x  through the 

thickness of a beam simply supports at 

 
2

,5.0 hzLx 
 in the case of sine loading with S=4 

 

 

Fig. 4 Variations of the transverse shear stress zx
 through 

the thickness of a beam simply supports  0,0  zx  in 

the case of sine loading with S=4 

 

 
Fig. 5 Variations of axial displacement u through the 

thickness of a beam simply supports at 
 

2
,0 hzx 

 

in the case of uniformly distributed loading with S=4 

Table 3 Comparison of axial displacement  u
 at 

 
2

,0 hzx 
, transverse displacement  w

 at 
 0,

2
 zLx

, 

axial stress  x
 at 

 
2

,
2

hzLx 
, and transverse shear stress zx

 at  0,0  zx
 for isotropic beam subjected 

to linearly varying load 

S  Theory Model u  w  x
 zx

 

 
Present Theory HSDT 8,088 0 ,907 6 ,355 1,320 

 
Zehra and Shinde (2012b) SVSDT 7,773 0,8923 6,141 1,386 

4 Bernoulli-Euler ETB 8,000 0,7815 6,000 - 

 
Timoshenko FSDT 8,000 0,9032 6,000 1,200 

 
Reddy HSDT 8,253 0,9030 6,130 1,458 

 
Ghugal and Shinpi (2001) Exact 7,900 0,8926 6,100 1,500 

 
Present Theory HSDT 125,341 0 ,800 37 ,638 3 ,662 

 
Zehra and Shinde (2012b) SVSDT 123,620 0,7903 37,129 3,0769 

10 Bernoulli-Euler ETB 124,999 0,7815 37,500 - 

 
Timoshenko FSDT 125,000 0,8008 37,500 3,0000 

 
Reddy HSDT 125,643 0,8005 37,623 3,7080 

 
Ghugal and Shinpi (2001) Exact 124,750 0,7991 37,600 3,7500 
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The maximal transverse displacement w  predicted by 

this theory and also comparable to that of Reddy’s theory  

 

 

 

 

for all dimensional ratios S (are 4 or 10). 

Fig. 3 shows the distribution of the axial stress through 

 

Fig. 6 Variations of axial Normal stress x  through the thickness of a beam simply supports at 
 

2
,5.0 hzLx 

 in 

the case of uniformly distributed loading with S=4 

 

Fig. 7 Variations of axial displacement u  through the thickness of a beam simply supports at 
 

2
,0 hzx 

 when 

subjected to linearly varying load for aspect ratio 4 

 

Fig. 8 Variations of axial Normal stress x  through the thickness of a beam simply supports at 
 

2
,5.0 hzLx 

 
when subjected to linearly varying load for aspect ratio 4 
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the thickness of the beam. From Fig. 3, it can be concluded 

that the results computed by this theory are in excellent 

agreement with those of Reddy. 

From Table 1, it is found that axial stresses determined 

by Timoshenko theory (FSDT) and the Euler-Bernoulli 

(ETB) theory are identical. 

The transverse shear stress predicted by this theory and 

also in very good agreement with Reddy’s theory for all 

dimension ratios used. Fig. 4 confirms also this finding. 

Example 02: uniformly distributed Loading case 

Table 2 shows comparison of displacements and stresses 

for the simply supported isotropic beam subjected to 

uniformly distributed load. The axial and vertical 

displacement obtained by present theory are in good 

agreement with Reddy’s theory. The bending stress x

calculated by present theory is in excellent agreement with 

the theory of Reddy, while the theory of Timoshenko 

(FSDT) and Euler-Bernoulli theory (ETB) underestimate 

this stress compared to the present theory and the theory of 

Reddy for all aspect ratios. The variation of axial 

displacement and axial stress through the thickness of 

isotropic beam subjected to uniformly distributed loading 

are shown in Figs. 5 and 6, respectively, and a good 

agreement between the present results and those of Reddy’s 

theory is observed. 

Example 03: linearly varying Loading case 

A comparison between displacement and stresses for a 

simply supported isotropic beam subjected to linearly 

varying load are shown in Table 3. The maximum axial 

displacement and transverse displacement predicted by 

present theory are in good agreement with Reddy’s theory. 

Fig. 7 demonstrates also this remark. Fig. 8 shows that the 

axial stress predicted by present theory is in close 

agreement with Reddy’s theory, whereas FSDT and ETB 

underestimate this constraint for all dimension ratios. 

 

 

5. Conclusions 
 

This work presents a refined shear deformation theory 

with only a single variable for the investigation of the static 

behavior of thick isotropic beams. The equations of 

equilibrium are determined using the principle of virtual 

work. Analytical solutions for static flexure problems are 

obtained for a simply supported thick beam. Through this 

study, the following conclusions were drawn:  

Present theory is variationally consistent and requires no 

shear correction factor. 

The present theory gives good results compared to the 

other theory of shear deformation which uses more variable. 

Finally, the current study provides a good foundation for 

extension to more general computational simulation for 

more complex geometrical configurations such as shells 

structures (Zine et al. 2017, Karami et al. 2018a, b) and 

other type of materials such as functionally graded (Belabed 

et al. 2014, Hebali et al. 2014, Bousahla et al. 2014, Larbi 

Chaht et al. 2015, Bourada et al. 2015, Hamidi et al. 2015, 

Bennoun et al. 2016, Sekkal et al. 2017a, b, Bouafia et al. 

2017, El-Haina et al. 2017, Fahsi et al. 2017, Abualnour et 

al. 2018, Younsi et al. 2018, Bouhadra et al. 2018, 

Benchohra et al. 2018, Karami et al. 2018c) and composite 

materials (Mahi et al. 2015, Draiche et al. 2016, Chikh et 

al. 2017). 
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