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1. Introduction 
 

The stiffness of prestressed concrete beams is a crucial 

parameter defining, for example, the bridge deflection. 

Vibration measurements taken during the operation stage of 

a bridge are useful methods to evaluate the stiffness of 

prestressed concrete beams. Thus, questions arise on how 

the dynamic response of these beams is affected by the 

applied prestress force. This argument was discussed ex-

tensively, e.g., in the literature review by Noble et al. (2015, 

2016). Several works (Miyamoto et al. 2000, Law and Lu 

2005, Lu and Law 2006, Bonopera et al. 2018a, b, c) as-

sumed that the prestress force in the tendon is equivalent to 

an external axial load assigned to the beam ends. Conse-

quently, the natural frequencies of prestressed members 

tend to decrease as the compressive force is increased. This 

is known as the compression-softening effect and occurs in 

externally axially loaded Euler-Bernoulli beams prone to 

buckling failure (Timoshenko and Gere 1961, Bazant and  
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Cedolin 1991). Nonetheless, several dynamic tests 

illustrated an increase of natural frequencies with an 

increase in prestress force (Hop 1991, Saiidi et al. 1994, 

Kim et al. 2004, Zhang and Li 2007), as occurs in tension 

members within the elastic range (Tullini and Laudiero 

2008, Tullini et al. 2012, Rebecchi et al. 2013), thus 

contradicting the compression-softening theory. Noh et al. 

(2015) and Li and Zhang (2016) suggested that flexural 

rigidity (and natural frequency) of concrete beams with an 

eccentric straight unbonded tendon is also increased by 

other parameters, such as the beam camber, geometric 

stiffness of the cable and the stiffening effect of the beam-

tendon system. Hamed and Frostig (2006) and Wang et al. 

(2013) suggested that natural frequencies of prestressed 

members with an eccentric straight tendon are unaffected by 

the prestress force. Instead, Jaiswal (2008) pointed out that 

the increase of beam’s flexural rigidity depends on the 

eccentricity of the straight unbonded tendon, thus inducing 

greater moment and stiffening effect in the element. They 

claimed that the prestress force in the tendon modifies its 

original line of action during the member vibration, thus 

preserving its eccentricity with respect to the beam axis. 

Accordingly, a prestress force does not cause Euler 

buckling to occur. Because of the conflicts among the above 

theories, it results no clear which is the reference model for 

properly considering the dynamic behavior of concrete 

members with a straight unbonded tendon. Moreover, the 

aforementioned references lack of experimental studies on 

the relationship between the prestress force and natural 

frequency in large-scale concrete beams. In short, 

experiments on small-scale prestressed concrete members 

were executed only. Proper information on the structural  
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behavior of prestressed concrete beams are also required to 

study the prestress loss phenomena (Ortega et al. 2018, 

Bonopera et al. 2018c). 

In this study, due to the conflicts among the 

aforementioned theories, a large-scale simply supported 

Prestressed Concrete I (PCI) beam with an eccentric 

straight unbonded tendon and high strength concrete was 

adopted. The aim was to find the proper analytical solution 

to be taken into consideration for the dynamic and static 

behavior of a typical prestressed member. Free vibration 

and three-point bending tests with different prestress forces 

were performed on the beam in distinct days, therefore 

under different curing conditions of concrete. A set of servo 

velocity seismometers and Linear Variable Differential 

Transformers (LVDTs) were installed along the PCI beam’s 

length to measure the fundamental frequency and deflection 

shape. The member was found to be always preserved 

against crack formation. Subsequently, the results of 

numerical modeling based on the Euler-Bernoulli beam 

theory, where the cross sectional second moment of the area 

corresponded to the composite section formed of concrete 

and tendon, were compared with the experimental data. 

Specifically, the reference model was a simply supported 

Euler-Bernoulli beam prestressed by an eccentric straight 

unbonded tendon, where the prestress force was considered 

as an external compressive load applied to the beam ends.  

Results indicated that experimental data can be simulated 

analytically, thus demonstrating the accuracy of the 

assumption of the beam’s mechanical model, as predicted 

using the dynamic and static theory. The experimental 

natural frequencies were well described by the formula for 

the free vibration of the simply supported Euler-Bernoulli 

beam (Young and Budynas 2002), as predicted using the 

first-order theory. Thus, the fundamental frequency of PCI 

beams with an eccentric straight unbonded tendon is 

unaffected by the prestress force if the variation of the 

initial elastic modulus of concrete with time, due to its early 

curing process, is considered. Vice versa, the deflection 

shape is well approximated by the magnification factor 

formula of the compression-softening theory (Timoshenko 

and Gere 1961, Bazant and Cedolin 1991) assuming the 

secant elastic modulus. 

 

 

2. Large-scale laboratory testing program 
 

2.1 PCI beam with an eccentric straight unbonded 
tendon and related test layout 
 

A large-scale PCI beam of b = 450 mm in width, h =  

 

 

900 mm in height and high strength concrete was adopted 

(Fig. 1). The beam was longitudinally reinforced with 

rebars and transversally with stirrups, according to the 

Building Code Requirements for Structural Concrete (ACI 

318-14), corresponding to an unit weight of steel ρs of 

approximately 1.23 kN/m
3
. The straight unbonded tendon 

had an eccentricity of e = 220 mm (e / h = 0.24) with 

respect to the centroid of the cross section. Specifically, the 

tendon was composed by 15 steel cables “seven wire 

strand” of 15.2 mm in diameter inserted into a metallic duct 

embedded along the concrete beam’s length (Fig. 1). The 

metallic duct was not injected. The ultimate yield strength 

and elastic modulus of steel cables were respectively of 

1860 MPa and 200 GPa. Two pinned-end supports were 

placed at the beam ends to reproduce the most common 

boundary conditions of concrete beams, resulting a clear 

span of L = 14.5 m (Fig. 1). The cross sectional second 

moment of the area of the PCI beam’s composite section 

Iexact = 2.696 × 10
10

 mm
4
. The corresponding cross sectional 

area Aexact = 2.981 × 10
5
 mm

2
. The slenderness ratio was 

equal to 49. The beam had a rectangular cross section, of b 

× h = 450 mm × 900 mm, for a length of 650 mm from the 

pinned-end supports. The cross sectional area of the 

eccentric straight tendon Atendon = 2.085 × 10
3
 mm

2
. The 

geometric dimensions were verified by measuring-systems 

of 0.01-mm tolerance (laser rangefinder and caliper), once 

the member was positioned on the supports. The elastic 

modulus of the used high strength concrete was evaluated 

through compression tests on cylinders after 28-days of 

curing and during the experimental period (Section 2.4). 

   The PCI beam was inserted in a test rig (Fig. 2(a)). At 

one beam end, a hydraulic oil jack, of 4000 kN-force 

capacity, was used to apply the prestress forces pulling the 

tendon outward. At both ends, respectively, a 4000 kN load 

cell, with accuracy of 2 mV/V, was placed to measure the 

assigned prestress forces N0x1 and N0x2 (Fig. 3(b)). Four 

prestress forces N0x,aver were totally applied by values of 

approximately 1563, 1722, 1819 and 1921 kN to induce 

small second-order effects. A difference of approximately 

100 kN between the prestress forces N0x,aver was firstly 

planned. The indoor safety conditions of the laboratory 

involved the higher prestress force (N0x,aver = 1921 kN) to be 

lower than 2000 kN. Thus, the maximum tensile strength, 

reached in the tendon, was of approximately 50% of the 

ultimate yield strength of the cables. The different prestress 

forces N0x1 and N0x2, measured at the beam ends, were 

caused by the friction losses along the tendon (Fig. 1). The 

measure systems included four servo velocity seismometers 

and eight LVDTs deployed along the beam’s length (Fig. 4). 

The arrangement of the various devices is described as  

 

Fig. 1 Large-scale PCI beam with an eccentric straight unbonded tendon 
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follows: 
Servo velocity seismometer: Four high-precision servo 

velocity seismometers, VSE-15D, manufactured by Tokyo 
Sokushin Co. Ltd., were chosen for the experiments. The 
servo velocity seismometers have a sensitivity of 5 mV/gal 
and are lightweight (270 g). One velocity seismometer, 
labeled A3, was vertically placed on the top of the PCI 
beam, corresponding to the midspan cross section (i = 3), to 
collect acceleration data with respect to the strong axis (Fig. 
4). Two velocity seismometers, labeled A0 and A6, were 
instead fixed at the beam ends (i = 0 and 6). Additionally, 
one reference velocity seismometer, labeled Af, was fixed 
to the floor, close to the beam end at i = 0, to check possible 
abnormalities of the sensing system. All sensors were  

 

 

connected to a signal conditioner and, subsequently, to a 
data logger located on a desk close to the test rig (Fig. 3(a)). 
The test layout in Fig. 4 shows their positions (in red). 

Linear variable differential transformer (LVDT): Eight 
LVDTs, of 0.002-mm tolerance, were positioned at the cross 
sections i = 0, ..., 6 (Fig. 4). Steel plates were used to locate 
each LVDT probe at the level of the beam axis (Fig. 2(b)). 
Specifically, two reference LVDTs, labeled L0 and L6, were 
fixed at the beam ends i = 0 and 6, forming the reference 
line for the measurement system between the boundary 
conditions. An additional LVDT was located on the 
opposite side of the midspan cross section at i = 3, to 
measure possible rotations along the member axis. All 
LVDTs were connected to a data logger positioned on a  

  

(a) (b) 

Fig. 2(a) Indoor test rig. (b) LVDTs along the PCI beam’s length 

 

  

(a) (b) 

Fig. 3(a) Transverse steel beam at the midspan of the PCI beam and acceleration data logger. (b) Load cell, steel transition 

part and steel circular plate at one beam end 

 

 

Fig. 4 Test layout with locations of the instrumented sections with velocity seismometers and LVDTs. Units: m 
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Table 1 Measured loading parameters 

Days of 

concrete 

curing 

N0x2 N0x1 N0x,aver Nx2 Nx1 Nx,aver F  v1 v2 v3 v4 v5 

(kN) (kN) (kN) (kN) (kN) (kN) (kN)  (mm) (mm) (mm) (mm) (mm) 

87 

1514 1614 1564 1524 1620 1572 80.5  3.68 4.85 5.29 4.80 3.59 

1514 1614 1564 1526 1622 1574 100.9  4.58 6.08 6.67 6.03 4.47 

1520 1613 1567 1529 1624 1577 139.7  6.26 8.35 9.21 8.34 6.25 

88 

1668 1775 1722 1678 1789 1733 160.3  7.29 9.64 10.56 9.60 7.37 

1668 1775 1722 1679 1790 1735 171.4  7.85 10.40 11.42 10.36 7.93 

1668 1775 1722 1681 1792 1737 182.4  8.43 11.20 12.31 11.14 8.51 

88 

1754 1882 1818 1776 1896 1836 179.8  8.13 10.77 11.84 10.73 8.18 

1764 1880 1822 1775 1895 1835 180.7  8.16 10.81 11.86 10.79 8.24 

1754 1882 1818 1779 1898 1838 196.8  9.06 12.05 13.30 12.00 9.10 

90 

1848 1989 1918 1872 2002 1937 190.2  8.52 11.26 12.37 11.18 8.51 

1859 1987 1923 1871 2002 1937 191.8  8.68 11.48 12.55 11.44 8.77 

1848 1989 1918 1876 2006 1941 210.6  9.64 12.80 14.10 12.71 9.61 

 
 

desk close to the test rig. The test layout in Fig. 4 shows the 
positions of the LVDTs (in blue). Fiber Bragg grating-
differential settlement measurement (FBG-DSM) sensors 
(the green pillars in Fig. 2(b)) were used in a different study 
and the corresponding measurements were not taken into 
account in this work. 
 

2.2 Free vibration testing 
 

Free vibration tests were performed after the application 

of prestress forces N0x,aver. Specifically, four test cases with 

N0x,aver equal to 1563, 1722, 1819 and 1921 kN were 

considered (Fig. 1). All velocity seismometers (Section 2.1) 

acquired the acceleration data at a sampling rate of 200 Hz 

and with a block size of 2048 samples. For every prestress 

force N0x,aver, vibration measurements were performed 

thrice, for a total of twelve experiments. In detail, free 

vibrations were always imposed by breaking a steel rebar of 

10 mm in diameter anchored close to the midspan of the 

beam (Fig. 5(a)). The ultimate strength fsk of 540 MPa of 

the rebar was reached using a hydraulic oil jack, of 100 kN-

force capacity, pulling up each rebar until rupture (Fig. 

5(a)). The hydraulic oil jack was actuated by a hydraulic  

 

 

pump of 96.53 MPa in maximum pressure capacity, 

positioned on the floor (Fig. 5(b)). Thus, the concrete beam 

was vertically excited by a release force Fd of 

approximately 42.4 kN (Fig. 4) and its dynamic response 

was measured along the strong axis. The large-scale PCI 

beam did not develop cracks during testing. The applied 

prestress forces N0x1 and N0x2 (Fig. 1) were recorded every 

second for nearly 200 seconds by a data acquisition unit and 

using a distinct data log. The average measurements N0x1 

and N0x2 for every test case are illustrated in Section 3.2. 

 

2.3 Three-point bending tests 
 

After free vibration measurements, as described in the 

previous section, an additional load F was applied by a 

transverse steel beam at the midspan of the PCI beam for 

every prestress force N0x,aver (Fig. 3(a)). The vertical load F 

was increased from its initial magnitude, then gradually to 

two different values, depending on the magnitude of the 

prestress force N0x,ave. After the application of every load F, 

prestress forces N0x,aver always experienced a small 

increment. The average measurements of initial prestress 

forces (N0x2, N0x1, N0x,aver), prestress forces (Nx2, Nx1, Nx,aver) 

when loads F were applied, loads F and deflections vi for 

one repetition of the test combinations are listed in Table 1. 

The load F was always pulled both up and down using two 

hydraulic oil jacks, of 1000 kN-force capacity, fixed to the 

floor, and two other hydraulic oil jacks, similarly of 1000 

kN-force capacity, fastened at the top of the steel beam (Fig. 

3(a)). All values of the applied force F were obtained by 

summing the measurements of two load cells, of 1000 kN-

force capacity and 2 mV/V accuracy, located between the 

upper oil jacks and two steel plates (Fig. 3(a) and Table 1). 

This test condition was repeated thrice for every point load 

F, resulting in thirty-six tests, totally. 

The displacements vi, for i = 1, ..., 5, located according 

to the layout shown in Fig. 4, were recorded by the LVDTs 

after applying every load F. The initial reference deflection 

shape corresponded to that one after the assignment of 

prestress forces N0x1 and N0x2 (Fig. 6). Every prestress force 

Nx,aver prevented the PCI beam from developing cracks 

under the vertical load F. All test measurements were  

  

(a) (b) 

Fig. 5(a) Arrangement of the hydraulic oil jack on one steel rebar anchored close to the midspan. (b) Arrangement of the 
hydraulic pump connected to the hydraulic oil jack before activation 
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Fig. 6 Reference model for the PCI beam. Deflection shape 

v
(0)

 after eccentric prestress force N0x,aver has been applied. 

The dashed line represents the configuration of the beam 

without any imposed load 

 

 

recorded every second for nearly 200 seconds using a data 

acquisition unit. 

 

2.4 Evaluation of the time-dependent elastic modulus 
of the high strength concrete 
 

A set of 100 mm × 200 mm concrete cylinders were cast 

to measure the time-dependent elastic modulus of the high 

strength concrete through compression tests. Portland 

cement ASTM type I, chemical admixture, steel slag 

powder and a Class F fine fly ash were used in concrete 

making. The PCI beam and all cylindrical specimens were 

maintained under the same curing environmental conditions 

after casting and, specifically, outdoor the laboratory 

spaces. The elastic modulus E of each single cylinder was 

estimated using Eq. (1), in accordance with the ASTM C 

469/C 469M-14 Standard (Annual Book of ASTM 

Standards 2016) 

2 1

2 0.00005
fvtE E

 




 


 

(1) 

where σ2 is the stress corresponding to the 40% of the 

characteristic strength of concrete fck, and σ1 is the stress 

corresponding to the longitudinal strain of 0.00005. ε2 is the 

longitudinal strain produced by σ2. 

The aforementioned three values were determined by 

the “longitudinal compressive stress vs. longitudinal strain” 

graphs of the single cylinders, where the elastic modulus E 

was the initial tangent value. One compressometer, 

equipped with two LVDTs, was used as strain measurement 

system. The universal testing machine was set at a loading 

rate of approximately 1 mm/min. 

By considering the small second-order effects imposed 

during free vibration testing (Sections 2.2), an additional 

value of the initial tangent elastic modulus, labeled Efvt, was 

determinated using Eq. (1) for every cylinder where, 

conversely, σ2 is the existing maximum stress in the PCI 

beam during testing and corresponding to the day of curing 

under observation. Similarly, σ1 is the stress corresponding 

to the longitudinal strain of 0.00005, whereas ε2 is the 

longitudinal strain produced by the maximum stress σ2. In 

this way, a more realistic investigation of the elastic 

modulus of the PCI beam was obtained. A Finite Element 

(FE) second-order static analysis that assumed 9 beam 

elements and the cross sectional second moment of the area 

Iexact (Fig. 1) was used to compute the maximum stress σ2 

during each day of free vibration testing by applying the  

Table 2 Measured unit weight ρc, characteristic strength fck, 

stress σ2 and elastic modulus E of the high strength concrete 

     Eq. (1) with σ2 = 0.4 fck Eq. (1) with max stress σ2 

Days of 

concrete 

curing 

N0x,aver 

(kN) 
Cyl. 

ρc 

(kN/m3) 

fck 

(MPa) 

σ 2 

(MPa) 

E 

(MPa) 

Eaver 

(MPa) 

Var. 

(%) 

σ 2 

(MPa) 

Efvt 

(MPa) 

Efvt,aver 

(MPa) 

Var. 

(%) 

28 – 

A – 84.80 33.92 37458 

36490 – 

– – 

– – 

B – 94.28 37.71 34752 – – 

C – 93.43 37.37 37365 – – 

D – 82.70 33.08 36384 – – 

87 1563 

1 24.17 98.25 39.30 36061 

37139 1.8 

8.25 40053 

40163 10.1 

2 24.39 113.82 45.53 37712 8.25 41515 

3 24.89 98.30 39.32 38669 8.25 40854 

4 24.07 98.20 39.28 36112 8.25 38230 

88 1722 

1 24.14 100.59 40.24 36627 

37050 1.5 

8.79 38350 

39609 8.5 

2 24.11 86.52 34.61 35253 8.79 40244 

3 24.39 104.34 41.74 38108 8.79 40133 

4 23.68 107.28 42.91 38211 8.79 39709 

88 1819 

1 24.14 100.59 40.24 36627 

37050 1.5 

9.11 38281 

39598 8.5 

2 24.11 86.52 34.61 35253 9.11 40213 

3 24.39 104.34 41.74 38108 9.11 40274 

4 23.68 107.28 42.91 38211 9.11 39623 

90 1921 

1 24.35 114.78 45.91 38080 

37425 2.6 

12.45 39782 

39758 9.0 

2 24.38 104.62 41.85 36769 12.45 39733 

 

 

corresponding prestress force N0x,aver. 

The measured elastic modulus E after 28-days and 

during the experimental testing period are summarized in 

Table 2. Specifically, the average elastic moduli Eaver and 

Efvt,aver were obtained for each day by testing four cylinders. 

Separately, two specimens were tested at 90-days of curing. 

The variation of the elastic modulus Eaver experienced a 

progressive increment of 1.8%, 1.5% and 2.6% with respect 

to the value gained after 28-days, whereas the variation of 

the elastic modulus Efvt,aver experienced a progressive 

increment of 10.1%, 8.5% and 9.0%, respectively. Thus, the 

average reference elastic moduli were Eref = 37166 MPa and 

Efvt,ref = 39782 MPa. The higher values of the elastic 

modulus Efvt,aver were caused by the lower stresses σ2 

assumed in Eq. (1), as reported in Table 2. The average 

characteristic strength of the high strength concrete fck was 

102 MPa, considering the compression tests at 87-, 88- and 

90-days of curing (Table 2). The experimental unit weight 

of concrete, ρc = 24.21 kN/m
3
, was obtained by the average 

of the values of each cylinder shown in Table 2. Notably, 

the large difference between the characteristic strengths fck 

at 88- and 90-days of curing (Table 2) was probably caused 

by the different steel slag powder and fly ash contents in the 

concrete mixtures of the cylinders (Haque and Kayali 1998, 

Palanisamy et al. 2015). 

 

 
3. Prestress force effect on the fundamental 
frequency based on the free vibration testing 
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Table 3 Comparison of the experimental and analytical 

values of the fundamental frequency fI 

 fI  with  Eaver fI  with  Efvt,aver 

Days of 

concrete 

curing 

N0x2 N0x1 N0x,aver 
fI 

Exp 
Eaver 

fI 

Eq. (2) 

fI 

Eq. (3) 
Efvt,aver 

fI 

Eq. (2) 

fI 

Eq. (3) 

(kN) (kN) (kN) (Hz) (MPa) (Hz) (Hz) (MPa) (Hz) (Hz) 

87 1515 1611 1563 

8.8 

37139 

8.4 8.5 

40163 

8.7 8.8 

– -4.5% -3.4% -1.1% 0.0% 

88 1668 1775 1722 

8.8 

37050 

8.3 8.5 

39609 

8.6 8.8 

– -5.7% -3.4% -2.3% 0.0% 

88 1757 1882 1819 

8.8 

37050 

8.3 8.5 

39598 

8.6 8.8 

– -5.7% -3.4% -2.3% 0.0% 

90 1854 1988 1921 

8.9 

37425 

8.3 8.5 

39758 

8.6 8.8 

– -6.7% -4.5% -3.4% -1.1% 

 
 
3.1 Analytical model 

 
A simply supported Euler-Bernoulli beam was adopted 

as reference model (Fig. 6). The cross sectional area Aexact 

and the second moment of the area Iexact were established in 

accordance with the design drawings and, specifically, 

considering the composite behavior of the PCI beam’s cross 

section formed of concrete and cable. The elastic modulus 

of concrete was assumed to be a known parameter. When 

the compression-oftening theory is considered, the 

prismatic concrete member is subjected to an eccentric 

prestress force N0x,aver (with eccentricity e) with respect to 

the centroid of the cross section (Fig. 6). The prestress force 

N0x,aver is considered externally applied as a compressive 

axial load (Fig. 6). The deflection shape, after the eccentric 

prestress force N0x,aver has been applied, is labeled as v
(0)

 in 

Fig. 6. By assuming the characteristic strength of concrete, 

fck = 102 MPa (Section 2.4), the serviceability limit state in 

the PCI beam is satisfied until a prestress force of 4300 kN, 

corresponding to 9.1% of the Euler buckling load NcrE = 

π
2
Eref Iexact /L

2
 = 47036 kN. 

 

3.2 Free vibration tests and comparison with 
analytical model 
 

Fig. 7(a) shows the acceleration measured at the  

 

 

midspan cross section (i = 3) (Fig. 4), whereas Fig. 7(b) 

reports the corresponding Fast Fourier Transform (FFT). 

The peak-picking method was adopted. In short, natural 

frequencies were located at each peak of the FFT functions 

(Fig. 7(b)). In total, twelve FFT functions were collected, 

considering that every test was repeated thrice for every 

prestress force N0x,aver. The maximum prestress force 

N0x,aver,max = 1921 kN was of approximately 45% of the 

maximum allowable prestress force of 4300 kN. 

The average fundamental frequencies fI, from the three 

repetitions, are listed in Table 3. Notably, the velocity 

seismometer A3 always provided equal frequency during 

the repetitions of each test case. The average measurements 

N0x2 and N0x1 (recorded for nearly 200 seconds by a data 

acquisition unit) are also reported in Table 3. 

Based on the compression-softening model, the 

fundamental frequency of an externally axially loaded, 

simply supported beam (Fig. 6) is (Young and Budynas 

2002) 

0 ,

4
1

2

x averexact
I

tot crE

NEI g
f

m L N


 

 
(2) 

where the PCI beam’s weight per unit length is mtot = (ρs + 

ρc) × Aexact = 7.584 kN/m. The elastic modulus of each test 

day, labeled as E and dependent on the curing of concrete, 

have to be assumed in the calculations by the values of Eaver 

or Efvt,aver (Table 2). The cross sectional second moment of 

the area of the composite section Iexact was considered in 

accordance with the design drawings. Moreover, Euler 

buckling load of the PCI beam is obtained by NcrE = 

π
2
EIexact/L

2
, where the elastic modulus E takes the values of 

Eaver or Efvt,aver for each test day (Table 2). The gravitational 

acceleration g is 9.81 m/s
2
. By neglecting the term 

containing the compressive axial load N0x,aver, the 

fundamental frequency fI reduces to 

1 2

42

exact
I

tot

EI g
f

m L

  
  

  . 
(3) 

Table 3 points out the effect of the prestress force N0x,aver 
on the fundamental frequency. Notably, the experimental 
frequency increased from 8.8 Hz to 8.9 Hz despite the 
increasing of 22.9% of the corresponding average prestress  

  

(a) (b) 

Fig. 7(a) Acceleration time history and (b) FFT for the instrumented section A3 when N0x,aver = 1563 kN 

0 0.5 1 1.5 2 2.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time [sec]

A
3

 [
m

/s
2
]

260



 

Prestress force effect on fundamental frequency and deflection shape of PCI beams 

 

 

Fig. 8 Reference model of the PCI beam. Deflection curve 
v

(1)
 after load F has been applied to the deflection curve v

(0)
 

depicted in Fig. 6. The dashed line represents the initial 
deflection curve 

 
 

Fig. 9 Reference model of the PCI beam. Deflection curve 
( )

tot

av  after load F has been applied. The dashed line 

represents the initial deflection curve 
 
 

force N0x,aver. Conversely, the increase of the elastic 
modulus Eaver was 37425/37139 = 1.01, corresponding to an 
increase of 0.8% of the square root of Eaver with time; 
whereas, the variation of the elastic modulus Efvt,aver 
(39758/40163 = 0.99) can be neglected. Therefore, the 
increase of the fundamental frequency seems to be related 
to the increase of the square root of the elastic modulus of 
concrete with time. This trend confirms the theoretical 
results presented by Hamed and Frostig (2006), Jaiswal 
(2008) and Wang et al. (2013), where natural frequencies of 
prestressed concrete beams with a straight unbonded tendon 
are unaffected by the prestress force. Notably, other 
previous studies (Saiidi et al. 1994, Jacobs and De Roeck 
2003, Limongelli et al. 2016) agree with the results 
illustrated in Table 3. 

Table 3 compares the mean values of the fundamental 
frequency of the PCI beam with the corresponding 
analytical values fI obtained by Eqs. (2)-(3), that 
respectively use the values Eaver and Efvt,aver. The beam 
model based on the first-order theory (Eq. (3)) can properly 
represent the dynamic behavior of the PCI beam. In fact, a 
maximum error of 1.1% was obtained by considering the 
elastic modulus Efvt,aver, even though the prestress force was 
increased of 23%, from N0x,aver,min = 1563 kN to N0x,aver,max = 
1921 kN, which is equal to 4.1% of NcrE. The relative errors 
increase by adopting the compression-softening theory (Eq. 
(2)). Notably, the cables (under tensile force) were always 
in contact with the surrounding metallic duct during testing. 
Thus, the beam model that uses the first-order theory 
(Young and Budynas 2002) can well describe the dynamic 
behavior of PCI beams with an eccentric straight unbonded 
tendon. 

A FE analysis that assumed 9 beam elements and the 

flexural rigidity variation along the PCI beam’s length (Fig. 

1) pointed out that the fundamental frequency does not vary 

with respect to the analytical models (Eqs. (2)-(3)). Nine 

Euler-Bernoulli beam elements adopting exact shape 

functions describing second-order effects (Bazant and 

Cedolin 1991) were used to consider the compression-

softening theory. The reference value Efvt,ref = 39782 MPa 

was taken into account. Thus, the assumption of a unique 

value of the cross sectional second moment of the area Iexact 

(midspan cross section) was correct for the aim of this 

study. The aforementioned FE analysis was additionally 

used to consider the eccentric mass of 1.05 kN composed of 

load cell, steel transition part and steel plate (Fig. 3(b)) at 

the beam ends, respectively. Similarly, the obtained 

fundamental frequency does not vary with respect to the 

analytical models (Eqs. (2)-(3)). 

 
 

4. Prestress force effect on the deflection shape 
based on three-point bending tests 
 

4.1 Analytical model 
 

A point load F at the midspan is applied to the static 

deflection curve v
(0)

 of the simply supported beam in Fig. 6. 

By substituting the bending moments in the left- and 

right-portions of the beam in Fig. 8, Eqs. (2(a)-(b)) reported 

in Bonopera et al. (2018c), in the expression for the 

curvature of the beam axis M = – EIexact d
2
v

(1)
/dx

2
 yields the 

solution  v
(1)

 = v
(0)

 + 
( )

tot

av . Specifically, 
( )

tot

av  is the 

deflection curve of the beam under the concentric 

compressive axial load Nx,aver and load F (Fig. 9) 

(Timoshenko and Gere 1961, Bazant and Cedolin 1991, 

Tullini 2013) expressed as follows 

( )

tot ,
3

,,

,

1
( ) sin

cos 22

a

x aver

x averx aver

x aver

x
v x n

Lnn

x
n

L

   
   

 


 

   
for  0  x  L/2, 

(4a) 
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v x
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x x
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L L

 
 
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for  L/2  x  L, 

(4b) 

where nx,aver = Nx,aver L
2
/ EIexact and ψ = FL

3
/ EIexact. As n 

approaches zero, the limit of Eqs. (4) yields the 

corresponding first-order displacement 
)(

I
av  expressed as 

follows 






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
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12
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 for 0  x  L/2, 
(5a) 
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 for L/2  x  L. 
(5b) 

The vertical displacement 
( )

tot ( )av x  in Eqs. (4) is well 

approximated by the first-order deflection 
( )

I ( )av x  in Eqs. 

(5) multiplied by the magnification factor 1 / (1 – Nx,aver / 

NcrE) based on the compression-softening theory 

(Timoshenko and Gere 1961, Bazant and Cedolin 1991) 
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( )
( ) I
tot

, crE

( )
( )

1

a
x

x aver

v x
v x

N N



, 

(6) 

where Euler buckling load is NcrE = π
2
EIexact / L

2
. Thus, the 

magnification factor coincides with the ratio 
( )

I ( )av x
/

( )

tot ( )xv x .  

 

 

The measured displacements vi in the three-point bending 

tests, presented in Section 2.3, were compared with the 

analytical displacements obtained by Eqs. (5(a)-(b)) and (6). 

More details of the formulas reported in this section are 

described in Bonopera et al. (2018c). 
 

 

Fig. 10 Errors of displacements v3 versus test number adopting elastic modulus Eaver for all thirty-six test cases 

 

 

Fig. 11 Errors of displacements v3 versus test number adopting elastic modulus Eslt,aver for all thirty-six test cases 

 

 

Fig. 12 Comparison of the deflection shapes of the four prestress forces Nx,aver for the maximum values of F 
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4.2 Three-point bending tests and comparison with 

analytical model 
 

Twelve test cases were defined, yielding a total of thirty-

six test combinations (Section 2.3). A good repeatability 

was experienced. In fact, errors lower than 5.0% were 

obtained between the reciprocal measurements vi (Fig. 4). A 

FE analysis that used 9 beam elements adopting exact shape 

functions describing second-order effects (Bazant and 

Cedolin 1991) was employed to determine the buckling 

loads NcrE in Eq. (6). Fig. 10 shows the errors of 

displacements v3 through the comparison with the 

corresponding analytical values 
( )

I ( / 2)av L  (Eqs. (5(a)-(b)) 

and 
( )

tot ( / 2)xv L  (Eq. (6)) for all thirty-six test cases. 

Specifically, the errors for the compression–softening 

theory were computed using the prestress forces Nx,aver in 

Eq. (6). 

Fig. 10 indicates that the errors between analytical 
( )

tot ( / 2)xv L  and measured displacements v3 were of –3.9% 

and –3.7% for the nine tests when Nx,aver = 1574 kN was 

applied. The remaining errors were lower than 2.5% (in 

absolute value). The scattered values obtained by the 

comparison with the first-order displacements 
( )

I ( / 2)av L  

are clearly depicted. Specifically, the two functions can be 

overlapped through a vertical shift, in fact, they differ of the 

magnification factor. The maximum prestress force Nx,aver = 

1938 kN was 4.3% of NcrE. Consequently, first-order 

displacements 
( )

I ( / 2)av L  were increased by a 

magnification factor of 1 / (1 − 1938 / 47036) = 1.043. The 

magnification factor formula (Eq. (6)) can satisfactorily 

compute the displacements v3. Thus, with small 

magnification factor, the prestress force still seems to be 

considered as an external compressive load (Fig. 6). 

Notably, the cables were always in contact with the 

surrounding metallic duct during testing. 

The aforementioned calibration was also executed by 

adopting the elastic modulus referring to the maximum 

stresses occurred during the three-point bending test, in 

accordance with the identification procedure of the elastic 

modulus Efvt,aver estimated during vibration testing (Section 

2.4). These additional elastic moduli were labeled as Eslt,aver. 

Specifically, the average reference elastic modulus was 

Eslt,ref = 39525 MPa. Fig. 11 shows that the average errors 

between analytical and measured displacements v3 were 

respectively of 9.8% and 5.9% for the first-order and 

compression-softening theory. It is confirmed that the 

correct elastic modulus of static testing on PCI beams is the 

modulus E obtained through compression tests and 

assuming σ2 equal to the 40% of the concrete characteristic 

strength fck in Eq. (1) (Bonopera et al. 2018c). Notably, the 

ratio Eref / Eslt,ref = 37166 / 39525 = 0.94 agrees with the 

ratio between secant and dynamic elastic modulus of 

reinforced concrete beams, where the dynamic modulus is 

determined through transverse vibration tests on the beams 

(Jerath and Shibani 1984). Finally, Fig. 12 displays good 

agreement between the analytical and measured deflection 

shapes of the four prestress forces Nx,aver and corresponding 

maximum loads F applied (Table 1). 

5. Conclusions 
 

A testing program on a large-scale PCI beam with an 

eccentric straight unbonded tendon was conducted to study 

the prestress force influence on the fundamental frequency 

and deflection shape. In these beams, second-order effects 

are usually lower than 10% of NcrE. A range of second-order 

effects lower than 4.5% of NcrE was thus induced in the 

experiments. Notably, this study also enriches the limited 

laboratory testing on large-scale prestressed concrete 

beams. The following conclusions can be drawn within the 

limitations of the research: 

1. It is better to consider the initial elastic modulus of 

concrete Efvt,aver for simulating free vibrations of PCI beams 

because the maximum stress due to vibrations is much 

lower than that by 40% of fck. 

2. The correct elastic modulus for three–point bending 

test on PCI beams is the secant elastic modulus of concrete 

Eaver. 

3. The fundamental frequency is sensitive to the 

variation of the square root of the elastic modulus of 

concrete with time. The small increment of the 

aforementioned parameter was registered in correspondence 

of a variation of the elastic modulus Eaver of 0.8%. No 

variation with time occurred for the elastic modulus Efvt,aver, 

see Table 2. Specifically, with respect to the study of 

Jaiswal (2008), a reliable time-dependent elastic modulus 

evaluation was conducted. 

4. The fundamental frequency is unaffected by the 

prestress force. A variation of the frequency of 1.1% was 

obtained within a variation of the prestress force of 22.9%. 

In previous studies (Kim et al. 2003, Kim et al. 2004, 

Capozucca 2008, Law et al. 2008, Bu and Wang 2011, Xu 

and Sun 2011, Li et al. 2013, Shi et al. 2014), efforts were 

made to use natural frequencies as indicators for predicting 

the prestress loss in concrete members, where second-order 

effects were of approximately 5-6%. Nonetheless, the 

fundamental frequency is confirmed to be an unsuitable 

indicator for prestress loss detection in PCI beams, as 

indicated by the analytical study of Jaiswal (2008). The 

variation of the frequency is caused by the variation of the 

elastic modulus of concrete with time. 

5. The relationship between prestress force and 

fundamental frequency is well described by the first-order 

Euler-Bernoulli beam theory (Young and Budynas 2002), 

considering the variation of the square root of elastic 

modulus of concrete with time. The small increment of the 

experimental fundamental frequency of 1.1% may be 

caused by the increase of the PCI beam’s stiffness based on 

the eccentricity of the tendon (Jaiswal 2008). 

6. Vice versa, the relationship between the prestress 

force and flexural displacements is well described by the 

magnification factor formula of the compression-softening 

theory (Timoshenko and Gere 1961, Bazant and Cedolin 

1991), even considering the variation of the square root of 

the elastic modulus of concrete with time. 
7. Currently, as reported in the literature review by 

Noble et al. (2015), the reduction of fundamental frequency 
seems not to be related to the compression-softening theory. 
Further studies on post-tensioned steel beams will be 
necessary to take into account for the masses at the end 
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constraints of the tested specimens, usually composed of 
load cells and/or loading jacks. 

8. Three-point bending tests on post-tensioned concrete 

specimens under high prestress forces will be conducted to 

verify the influence of micro-crack closure on the increase 

in elastic modulus. 
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