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1. Introduction 
 

Sandwich structures are composed of three different 

homogeneous layers bonded together in order to get more 

enhanced mechanical and thermal properties, namely, a core 

layer covered by two face sheets.  However, a sudden 

change in material properties occurs at the interfaces of the 

sandwich plate. To overcome this problem, Zenkour (2005) 

introduced an FGM sandwich plates. He assumed that the 

core layer is composed of a fully homogeneous ceramic 

while the face layers are made of FGMs in which the 

material properties vary through the thickness only with 

regard to a power law distribution as a function of the 

volume fractions of the constituents. In this study, the top 

and bottom surfaces of the sandwich plate are assumed to 

be full metal material. The material properties of the face 

sheets are smoothly graded in the thickness direction from 

the top and bottom surfaces (fully metal) to the interfaces, 

which are fully ceramic material. Another type of FGM 

sandwich plates are developed by using an FGM core and 

homogeneous face sheets (Anderson 2003, Kirugulige et al. 

2005, Fard 2014). 

Anderson (2003) introduced an analytical 3-D solution 

for an FGM sandwich plate which is subjected to transverse  
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loading by a rigid sphere and obtained the stresses and 

displacements with varying the core stiffness. In this 

investigation, the sandwich plate is composed of orthotropic 

face layers with an isotropic FGM core, in which the 

properties vary exponentially in the z-axis direction. The 

main equations are deduced by employing Reissner 

functional. Thermo-elastic analysis of a sandwich plate 

made of orthotropic stiff face sheets bonded to a soft FGM 

core has been presented by Das et al. (2006). Kashtalyan 

and Menshykova (2009) introduced 3-D elasticity analysis 

for static bending of sandwich plates with FGM core 

subjected to transverse loading. Free vibration of sandwich 

cylindrical plates with FG core based on power-law 

distribution has been investigated by Aragh et al. (2011) 

using the differential quadrature method to solve the 

governing differential equations. Dozio (2013) presented an 

advanced 2-D Ritz-based models to study the natural 

frequencies of sandwich panels with FGM core. Alibeigloo 

and Liew (2014) developed an exact 3-D solution for free 

vibration of sandwich cylindrical panels with FGM core. 

Zenkour and Alghamdi (2008) studied the thermoelastic 

bending analysis FG sandwich plates. Zenkour (2007) 

studied the bending response of the rotating FG annular 

disk with rigid casing. Cheng and Batra (2000) investigated 

the buckling and natural frequency of an FG plate by 

employing the third-order plate theory.  

In addition, several studies have been devoted to 

investigate the behavior of the sandwich plates with FGM 

face sheets (Tounsi et al. 2016, Bouderba et al. 2016, 

Cunedioglu 2015). Zenkour (2005) illustrated the static 
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bending, mechanical buckling and natural frequency of 

several types of FGM sandwich plates. He derived the 

equations of motions based on Hamilton’s principle and 

obtained the analytical solution using Navier’s method. 

Based on Ritz method and Chebhyshev polynomial series, 

Li et al. (2008) solved the three-dimensional motion 

equations to obtain the frequencies of simply supported and 

clamped FGM sandwich plates. The stresses, deflection, 

and vibration of FGM sandwich plates have been illustrated 

by Natarajan and Manickam (2012) using higher-order 

zigzag theory. Based on the exponential distribution law 

developed by Sobhy (2013). For the material properties of 

the sandwich plates, the buckling and free vibration of 

FGM sandwich panels were investigated by Sobhy (2013), 

Meziane et al. (2014) and Sofiyev (2014). The bending 

analysis of FGM viscoelastic sandwich structures resting on 

Winkler-Pasternak elastic foundations was presented by 

Zenkour et al. (2010) and Zenkour and Sobhy (2012). Chen 

et al. (2017) investigated the thermal influence on the 

vibration and stability of FGM sandwich plates with FG 

face sheets. Meksi et al. (2017) proposed a new shear 

deformation plate theory to investigate the various behavior 

of FGM sandwich plates. Radwan (2017) illustrated the 

nonlinear hygrothermal effects on the buckling of the FGM 

plates resting on elastic foundations. Li et al. (2018) 

investigated the thermomechanical effects on the bending of 

FGM sandwich plates with both FG face sheets and FG 

core.   

In the past few decades, a significant number of 

different plate theories have been developed to analyze 

FGMs and represent the kinematics of deformation. The 

classical plate theory (CPT) is the most well-known and 

widely used one in this context. It considers an extension of 

the Kirchhoff-Love assumptions for the isotropic plate. 

Moreover, it is convenient to analyze thin plates, where 

straight lines or planes normal to the neutral plate axis will 

remain straight and normal after deformation. However, it is 

not convenient for the moderately thick and thick plates, 

where the shear effects should be considered. In other 

words, this CPT neglects the effect of transverse shear 

deformation (1945). Consequently, the first order shear 

deformation theory (FSDT) has been developed to consider 

the transvers shear effects while shear correction factors 

(SCFs) should be added to compute the shear energy 

accurately. SCFs are based on the boundary conditions, 

geometries, and the material properties of the problem 

handled (2003). 

In order to eliminate the use of the SCFs, higher-order 

shear deformation theories (HSDTs) were devised using 

various shape functions. The aforementioned three theories 

which are the classical plate theory (CPT), the first order 

shear deformation, and the higher order shear deformation 

theory (HSDT) were all applied on isotropic, classical and 

advanced composite beams, plates and shells. Zenkour 

(2009a) has also introduced the sinusoidal shear 

deformation plate theory (SPT) using trigonometric terms 

for the displacements. In his study, the shear stresses are 

distributed through the thickness of the plate as a cosine 

function, and they vanish at the top and bottom surface of 

the plate. Moreover, there is no need for a correction factor 

in the sinusoidal theory. The sinusoidal theory and some 

other higher order theories have been employed by Arefi 

and Zenkour (2016, 2017a, b, c, d, e, f, g, h, i, j), Zenkour 

and Arefi (2017) and Arefi et al. (2018) to illustrate the 

various behaviors of the FG nano/microscale plates and 

beams and also FG piezoelectric nanoplates. Carrera (2002) 

and Carrera and Ciuffreda (2005) presented a unified 

formulation for various higher order shear deformation 

plate theories. Sobhy and Radwan (2017) presented a new 

quasi-3D nonlocal hyperbolic plate theory to study the 

vibration and buckling of FGM nanoplates. Bouafia et al. 

(2017) introduced a nonlocal quasi-3D theory to illustrate 

the bending and free vibration of nanobeams. 

Several higher-order plate theories namely Reddy 

(1984), Touratier (1991), Soldatos (1992), Karama et al. 

(2003) and Aydogdu (2009) have been arisen to overcome 

the inadequacy of the CPT and FSDT. However, the higher-

order plate theories contain at least five unknown functions, 

thus five governing equations are obtained. Despite the 

effectiveness and accuracy of the higher-order plate 

theories, many researchers devoted their efforts to improve 

these theories by reducing the number of unknowns and 

then reducing the mathematical processing. A two-unknown 

shear deformation plate theory was developed by Shimpi 

(2003) for homogeneous plates containing only two 

unknown functions. For heterogeneous plates and based on 

the assumptions of Shimpi’s theory, many authors say 

Tounsi et al. (2013) and Thai and Vo (2013) extended this 

theory to contain four functions. Recently, Sobhy (2016) 

has successfully reformulated Shimpi’s theory by 

introducing a four-unknown shear deformation plate theory 

with a new shape function, which is initially applied to the 

buckling and vibration of FGM sandwich plates. It reveals 

that this theory is more reliable and highly accurate than 

many other shear deformation plate theories. 
This work aims to introduce a new shear and normal 

deformations five-variable plate theory that is employed 
here to analyze the bending behavior of FGM sandwich 
plate. The present plate is assumed to be resting on two-
parameter elastic foundations and subjected to transverse 
mechanical, thermal and moisture loads at the top surface of 
the plate. The FGM sandwich plate is made of a fully 
ceramic core layer integrated by metal/ceramic FGM layers. 
Utilizing the principle of virtual displacements, the 
governing equations of the static response of non-
homogeneous composite plates are derived containing the 
elastic foundation interaction. In accordance with the 
suggested theory, five differential equations are obtained. 
These equations are then solved for simply supported FGM 
sandwich plate based on Navier type solution. Numerical 
results for the bending of several types of symmetric FGM 
sandwich plates are presented. The validity of the present 
solution is demonstrated by comparison with solutions 
available in the literature. The influences of the 
inhomogeneity parameter, aspect ratio, thickness ratio and 
the foundation parameters on the deflection and stresses are 
investigated. 
 
 

2. Mathematical model 
 

Assume a rectangular sandwich plate composed of three  
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Fig. 1 Configuration and coordinate system for an FGM 

sandwich plate resting on Pasternak foundation 

 

 

elastic layers that are made of functionally graded material 

of length a, width b and thickness h, reference to a 

rectangular coordinates (x,y,z) as shown in Fig. 1. Material 

properties at a point in the plate are commonly assumed to 

be given by the rule of mixture (Zenkour 2005, 2009a, b 

and Houari et al. 2013). 

𝑃(𝑛)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(𝑛),       𝑛 = 1,2,3, (1) 

where P represents the material properties such as Young’s 

modulus 𝐸 , thermal expansion coefficient 𝛼 , moisture 

expansion coefficient 𝜂  and mass density 𝜌 , while 

Poisson’s ratio 𝜈 is taken a constant value. The subscripts 

𝑚  and 𝑐  stand for metal and ceramic materials. The 

volume fraction of the layer 𝑛 is 𝑉(𝑛) that is given as a 

simple power law through the thickness. It reads (Zenkour 

2005, 2009b) 

𝑉(1) = (
𝑧 − ℎ0
ℎ1 − ℎ0

)
𝑘

,         ℎ0 ≤ 𝑧 ≤ ℎ1, 

𝑉(2) = 1,                             ℎ1 ≤ 𝑧 ≤ ℎ2, 

𝑉(3) = (
𝑧 − ℎ3
ℎ2 − ℎ3

)
𝑘

,           ℎ2 ≤ 𝑧 ≤ ℎ3, 

(2) 

where k is the power law index, 0 ≤ 𝑘 < ∞. Note that, 

when 𝑘 = 0, the plate is composed of a homogeneous 

ceramic material. While, when 𝑘 trendsinfinity, one obtain a 

metal-ceramic-metal sandwich plate. The sandwich plate is 

assumed to be resting on two layers of foundations. The 

first layer consists of a set of springs that are connected in 

parallel (see, Fig. 1). While, the second represents a shear 

layer. The interaction between the sandwich plate and 

Pasternak foundation can be given as (Abazid and Sobhy 

2018 and Sobhy 2017) 

𝑅 = ,𝐾𝑒𝑢3 − 𝐾𝑠∇
2𝑢3-𝑧=−ℎ

2

, (3) 

where 𝑅 represents the foundation reaction force per unit 

area; 𝐾𝑒  is springs coefficients, while 𝐾𝑠  is shear layer 

coefficients the function 𝑢3 is the transverse displacement. 

The displacement components 𝑢1, 𝑢2 and 𝑢3 in the 𝑥, 𝑦 

and 𝑧 directions, respectively, at any point in the plate, can 

be written as 

𝑢1 = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝛷(𝑧)
  𝜕𝑤𝑠
𝜕𝑥

, 

𝑢2 = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− 𝛷(𝑧)
𝜕𝑤𝑠
𝜕𝑦

, 

𝑢3 = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) + 𝑤𝑠𝑡(𝑥, 𝑦, 𝑧), 

(4) 

where  𝛷(𝑧) = 𝑧 − 𝜑(𝑧), 𝑤𝑠𝑡(𝑥, 𝑦, 𝑧) = 𝑔(𝑧)𝜓𝑧(𝑥, 𝑦). 
The additional displacement 𝜓𝑧  accounting for the 

effect of normal stress is included and 𝑔(𝑧) is defined as 

follows 

𝑔(𝑧) = 𝜑′(𝑧), 
in which the shape function 𝜑(𝑧) is given for the present 

theory as 𝜑(𝑧) = 𝑧/(1 + 4𝑧2/ℎ2 ) , while for the third-

order plate theory (TPT) (Reddy 1984), it is expressed as 

𝜑(𝑧) = 𝑧 − 4𝑧3/3ℎ2,  and for the sinusoidal plate theory 

(SPT) (Touratier 1991), it is defined as 𝜑(𝑧) =
ℎ

𝜋
sin .

𝑧𝜋

ℎ
/. 

The strain components which are related to the 

displacements given in Eq. (4), can be expressed as 

{

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦
} = {

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝛷(𝑧) {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
}, 

2
𝜀𝑦𝑧
𝜀𝑥𝑧
3 = 𝑔(𝑧) {

𝜀𝑦𝑧
0

𝜀𝑥𝑧
0
} , 𝜀

𝑧
= 𝑔′(𝑧)𝜀𝑧

0, 

(5) 

where 

𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

,        𝜀𝑦
0 =

𝜕𝑣0
𝜕𝑦

,          𝜀𝑥𝑦
0 =

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
 , 

𝑘𝑥
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑥2

,      𝑘𝑦
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑦2

,        𝑘𝑥𝑦
𝑏 = −2

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

, 

𝑘𝑥
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑥2

,      𝑘𝑦
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑦2

,        𝑘𝑥𝑦
𝑠 = −2

𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

, 

𝜀𝑦𝑧 
0 =

𝜕𝑤𝑠
𝜕𝑦

+
𝜕𝜓𝑧
𝜕𝑦

,       𝜀𝑥𝑧
0 =

𝜕𝑤𝑠
𝜕𝑥

+
𝜕𝜓𝑧
𝜕𝑥

, 𝜀𝑧
0 = 𝜓𝑧 , 

𝑔′(𝑧) =
d𝑔(𝑧)

d𝑧
. 

(6) 

The stress-strain relations for a linear elastic sandwich 

plate are expressed as 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

(𝑛)

=

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐22 𝑐23 0 0 0
𝑐13 𝑐23 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 
(𝑛)

 (7) 

y 

x 

a

b 

Metal 

x 

z 

  Ke 

Ks  

Ceramic   

FGM  

FGM  

Metal 

h 

h3 

h0 

h1 

h2 
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×

{
  
 

  
 
𝜀𝑥 − 𝛼

(𝑛)𝛥𝑇 − 𝜂(𝑛)𝛥𝐻

𝜀𝑦 − 𝛼
(𝑛)𝛥𝑇 − 𝜂(𝑛)𝛥𝐻

𝜀𝑧 − 𝛼
(𝑛)𝛥𝑇 − 𝜂(𝑛)𝛥𝐻
𝜀𝑦𝑧
𝜀𝑥𝑧
𝜀𝑥𝑦 }

  
 

  
 

, 

where 

𝑐11 = 𝑐22 = 𝑐33 =
(1 − 𝑣)𝐸(𝑧)

(1 + 𝑣)(1 − 2𝑣)
  ,      

𝑐12 = 𝑐13 = 𝑐23 =
𝑣𝐸(𝑧)

(1 + 𝑣)(1 − 2𝑣)
 , 

𝑐44 = 𝑐55 = 𝑐66 =
𝐸(𝑧)

2(1 + 𝑣)
. 

(8) 

 

 

3. Governing equations 
 

The principle of virtual displacements in this case can 

be expressed as (Arefi and Zenkour 2018) 

 

(9) 

where Ω is the top surface, ℎ𝑛 and ℎ𝑛−1 (𝑛 = 1,2,3) are 
the top and bottom 𝑧-coordinates of the 𝑛th layer. By 
substituting Eq. (5) into Eq. (9), the principle of virtual 
displacements can be rewritten as 

∫ (𝑁𝑥𝛿𝜀𝑥
0 + 𝑁𝑦𝛿𝜀𝑦

0 +𝑁𝑧𝛿𝜀𝑧
0 + 𝑁𝑥𝑦𝛿𝜀𝑥𝑦

0 +𝑀𝑥
𝑏𝛿𝑘𝑥

𝑏

Ω

+𝑀𝑦
𝑏𝛿𝑘𝑦

𝑏 +𝑀𝑥𝑦
𝑏 𝛿𝑘𝑥𝑦

𝑏 +𝑀𝑥
𝑠𝛿𝑘𝑥

𝑠

+𝑀𝑦
𝑠𝛿𝑘𝑦

𝑠 +𝑀𝑥𝑦
𝑠 𝛿𝑘𝑥𝑦

𝑠 + 𝑅𝑥𝑧
𝑠 𝛿𝜀𝑥𝑧

0

+ 𝑅𝑦𝑧
𝑠 𝛿𝜀𝑦𝑧

0 )dΩd𝑧

+ ∫(𝑅 − 𝑞) 𝛿𝑢3|𝑧=−ℎ/2dΩ

Ω

= 0, 

(10) 

where 

{

𝑁𝑥𝑥 ,   𝑁𝑦𝑦 ,   𝑁𝑥𝑦

𝑀𝑥𝑥
𝑏 ,   𝑀𝑦𝑦

𝑏 ,   𝑀𝑥𝑦
𝑏

𝑀𝑥𝑥
𝑠 ,    𝑀𝑦𝑦

𝑠 ,   𝑀𝑥𝑦
𝑠

}

= ∑ ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑥𝑦)
(𝑛)

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

{
1
𝑧

𝛷(𝑧)
} 𝑑𝑧, 

(𝑅𝑥𝑧
𝑠 , 𝑅𝑦𝑧

𝑠 ) = ∑∫ (𝜎𝑥𝑧 , 𝜎𝑦𝑧)
(𝑛)
𝑔(𝑧)𝑑𝑧,

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 

𝑁𝑧 = ∑∫ 𝜎𝑧
(𝑛)𝑔′(𝑧)𝑑𝑧.

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 

(11) 

Integrating Eq. (10) by parts and setting the coefficients 

𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤𝑏,𝛿𝑤𝑠  and 𝛿𝜓𝑧  equal to zero, separately, 

yields the governing equations as 

𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0, 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 0, 

𝜕2𝑀𝑥𝑥
𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝑏

𝜕𝑦2
+ 𝑞 − 𝑅 = 0 , 

𝜕2𝑀𝑥𝑥
𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝑠

𝜕𝑦2
+
𝜕𝑅𝑥𝑧

𝑠

𝜕𝑥
+
𝜕𝑅𝑦𝑧

𝑠

𝜕𝑦
+ 𝑞 − 𝑅

= 0, 

𝜕𝑅𝑥𝑧
𝑠

𝜕𝑥
+
𝜕𝑅𝑦𝑧

𝑠

𝜕𝑦
− 𝑁𝑧 = 0. 

(12) 

By incorporating Eq. (7) into Eq. (11), the stress 

resultants of the FGM sandwich plate can be related to the 

total strains as 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 𝐵 𝐵𝑠

𝐵 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠

] {
𝜀
𝑘𝑏

𝑘𝑠
} + {

𝐹
𝐹𝑠

𝑄
} 𝜀𝑧

0 − {
𝑁𝑇

𝑀𝑏𝑇

𝑀𝑠𝑇

}

− {
𝑁𝐻

𝑀𝑏𝐻

𝑀𝑠𝐻

}, 

(𝑅𝑦𝑧
𝑠 , 𝑅𝑥𝑧

𝑠 ) = 𝐴44
𝑠 (𝜀𝑦𝑧

0 , 𝜀𝑥𝑧
0 ), 

𝑁𝑧 = 𝑄𝑠𝜓𝑧 + 𝐹𝑥𝑥(𝜀𝑥
0 + 𝜀𝑦

0) + 𝐹𝑥𝑥
𝑠 (𝑘𝑥

𝑏 + 𝑘𝑦
𝑏)

+ 𝑄𝑥𝑥(𝑘𝑥
𝑠 + 𝑘𝑦

𝑠) − 𝑁𝑧
𝑇 −𝑁𝑧

𝐻 , 

(13) 

where 

𝑁 = {𝑁𝑥𝑥 , 𝑁𝑦𝑦 , 𝑁𝑥𝑦}
𝑡
, 𝑀𝑏 = {𝑀𝑥𝑥

𝑏 , 𝑀𝑦𝑦
𝑏 , 𝑀𝑥𝑦

𝑏 }
𝑡 
, 

𝑀𝑠 = {𝑀𝑥𝑥
𝑠 , 𝑀𝑦𝑦

𝑠 , 𝑀𝑥𝑦
𝑠 }

𝑡
, 

(14a) 

𝑁𝑇 = {𝑁𝑥𝑥
𝑇 , 𝑁𝑦𝑦

𝑇 , 0}
𝑡
, 𝑀𝑏𝑇 = {𝑀𝑥𝑥

𝑏𝑇 , 𝑀𝑦𝑦
𝑏𝑇 , 0}

𝑡 
, 𝑀𝑠𝑇

= {𝑀𝑥𝑥
𝑠𝑇 , 𝑀𝑦𝑦

𝑠𝑇 , 0}
𝑡
, 

(14b) 

𝜀 = {𝜀𝑥
0, 𝜀𝑦

0, 𝜀𝑥𝑦
0 }

𝑡
, 𝑘𝑏 = {𝑘𝑥

𝑏 , 𝑘𝑦
𝑏, 𝑘𝑥𝑦

𝑏 }
𝑡 
, 𝑘𝑠

= {𝑘𝑥
𝑠 , 𝑘𝑦

𝑠 , 𝑘𝑥𝑦
𝑠 }

𝑡
, 

(14c) 

𝐹 = {𝐹𝑥𝑥 , 𝐹𝑦𝑦, 0}
𝑡
 , 𝐹𝑠 = {𝐹𝑥𝑥

𝑠 , 𝐹𝑦𝑦
𝑠 , 0}

𝑡
, 𝑄

= {𝑄𝑥𝑥 , 𝑄𝑦𝑦 , 0}
𝑡
, 

(14d) 

𝐴 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] , 𝐵 = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

], 

𝐷 = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

], 

(14e) 

𝐵𝑠 = [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
] , 𝐷𝑠 = [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
], 

𝐻𝑠 = [

𝐻11
𝑠 𝐻12

𝑠 0

𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠
], 

(14f) 

where the plate stiffness 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝑒𝑡𝑐. are given by 
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{

𝐴11, 𝐵11, 𝐷11,
𝐴12, 𝐵12, 𝐷12,
𝐴66, 𝐵66, 𝐷66 ,

𝐵11
𝑠 , 𝐷11

𝑠 , 𝐻11
𝑠

𝐵12
𝑠 , 𝐷12

𝑠 , 𝐻12
𝑠

𝐵66
𝑠 , 𝐷66

𝑠 , 𝐻66
𝑠
}

= ∑∫ 𝑐11
(𝑛)(1, 𝑧, 𝑧2, 𝛷(𝑧), 𝑧𝛷(𝑧), 𝛷2(𝑧))

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 

× {

1
𝜈

1 − 𝜈

2

}d𝑧, 

(15a) 

(𝐴22, 𝐵22, 𝐷22, 𝐵22
𝑠 , 𝐷22

𝑠 , 𝐻22
𝑠 )

= (𝐴11, 𝐵11, 𝐷11, 𝐵11
𝑠 , 𝐷11

𝑠 , 𝐻11
𝑠 ), (15b) 

𝐴44
𝑠 = 𝐴55

𝑠 = ∑∫
𝐸(𝑛)(𝑧)

2(1 + 𝑣 )
,𝑔(𝑧)-2d𝑧 ,

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (15c) 

*𝐹𝑥𝑥 , 𝐹𝑥𝑥
𝑠 , 𝑄𝑥𝑥 , 𝑄

𝑠+

= ∑∫
𝑣𝐸(𝑛)𝑔′(𝑧)

1 − 𝑣2
{1, 𝑧, 𝛷(𝑧),

𝑔′(𝑧)

𝑣
} d𝑧 ,

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 

𝐹𝑦𝑦 = 𝐹𝑥𝑥, 𝐹𝑦𝑦
𝑠 = 𝐹𝑥𝑥

𝑠 , 𝑄𝑦𝑦 = 𝑄𝑥𝑥 . 

(15d) 

The stress and moment resultants 𝑁𝑥𝑥
Θ = 𝑁𝑦𝑦

Θ , 𝑀𝑥𝑥
𝑏Θ =

𝑀𝑦𝑦
𝑏Θ, and   𝑀𝑥𝑥

𝑠Θ = 𝑀𝑦𝑦
𝑠Θ  and 𝑁𝑧

Θ, Θ = 𝑇,𝐻) due to thermal 

and humidity loadings are expressed by 

{
 
 

 
 𝑁𝑥𝑥

𝑇

𝑀𝑥𝑥
𝑏𝑇

𝑀𝑥𝑥
𝑠𝑇

𝑁𝑧
𝑇
}
 
 

 
 

=∑∫
𝐸(𝑛)(𝑧)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

(1

+ 2𝑣)𝛼(𝑛)(𝑧)∆𝑇 {

1
𝑧

𝛷(𝑧)

𝑔′(𝑧)

} d𝑧, 

(16) 

{
 
 

 
 𝑁𝑥𝑥

𝐻

𝑀𝑥𝑥
𝑏𝐻

𝑀𝑥𝑥
𝑠𝐻

𝑁𝑧
𝐻
}
 
 

 
 

=∑∫
𝐸(𝑛)(𝑧)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

(1

+ 2𝑣)𝜂(𝑛)(𝑧)∆𝐻 {

1
𝑧

𝛷(𝑧)

𝑔′(𝑧)

}d𝑧. 

(17) 

The applied temperature 𝑇(𝑥, 𝑦, 𝑧, 𝑡) and the moisture 

concentration 𝐻(𝑥, 𝑦, 𝑧, 𝑡) are assumed to be nonlinearly 

distributed through the thickness as (Zenkour 2004) 

Θ(𝑥, 𝑦, 𝑧, 𝑡) = Θ1(𝑥, 𝑦, 𝑡) +
𝑧

ℎ
Θ2(𝑥, 𝑦, 𝑡)

+
𝜑(𝑧)

ℎ
Θ3(𝑥, 𝑦, 𝑡), 

Θ = 𝑇,𝐻. 

(18) 

4. Exact solution for FGM sandwich plates 
 

In this section, we obtain the exact solution for the 

bending of rectangular FGM sandwich plates when the four 

edges are all simply supported. To solve the governing 

partial differential Eqs. (12), the boundary conditions at the 

side edges, for the present four-unknown plate theory, are 

given as 

𝑣0 = 𝑤𝑏 = 𝑤𝑠 =
𝜕𝑤𝑏
𝜕𝑦

=
𝜕𝑤𝑠
𝜕𝑦

= 𝜓𝑧 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥
𝑏

= 𝑀𝑥𝑥
𝑠 = 0,   at   𝑥 = 0, 𝑎, 

(19a) 

𝑢0 = 𝑤𝑏 = 𝑤𝑠 =
𝜕𝑤𝑏
𝜕𝑥

=
𝜕𝑤𝑠
𝜕𝑥

= 𝜓𝑧 = 𝑁𝑦𝑦 = 𝑀𝑦𝑦
𝑏

= 𝑀𝑦𝑦
𝑠 = 0,   at   𝑦 = 0, 𝑏. 

(19b) 

To satisfy the above boundary conditions, Navier 

method assumed that the displacement components are 

given in the form of double trigonometric series as 

{
 
 

 
 
𝑢0
𝑣0
𝑤𝑏
𝑤𝑠
𝜓𝑧}
 
 

 
 

=

{
 
 

 
 
𝑈𝑚𝑟 cos(𝜃𝑥) sin(𝜗𝑦)

𝑉𝑚𝑟 sin(𝜃𝑥) cos(𝜗𝑦)

𝑊𝑚𝑟𝑏 sin(𝜃𝑥) sin(𝜗𝑦)

𝑊𝑚𝑟𝑠 sin(𝜃𝑥) sin(𝜗𝑦)

𝑍𝑚𝑟 sin(𝜃𝑥) sin (𝜗𝑦) }
 
 

 
 

, (20) 

where 𝑈𝑚𝑟 , 𝑉𝑚𝑟  ,𝑊𝑚𝑟𝑏 𝑊𝑚𝑟𝑠,  and 𝑍𝑚𝑟  are arbitrary 

parameters; 𝜃 =
𝑚𝜋

𝑎
 and   𝜗 =

𝑟𝜋

𝑏
. Further, according to 

Navier solution, the transverse mechanical and 

hygrothermal loads are given in the following form 

{
  
 

  
 
𝑞
𝑇1
𝑇2
𝑇3
𝐻1
𝐻2
𝐻3}
  
 

  
 

=

{
  
 

  
 
𝑞0
𝑡1
𝑡2
𝑡3
𝑐1
𝑐2
𝑐3}
  
 

  
 

sin(𝜃𝑥) sin(𝜗𝑦), (21) 

where 𝑞0, 𝑡1, 𝑡2, 𝑡3, 𝑐1, 𝑐2 and 𝑐3 are constants. 

Incorporating Eqs. (20) and (21) into Eq. (12) with the 

help of Eqs. (13) and (14) yields the following operator 

equation, 

,𝑃-*∆+ = *𝐿+, (22) 

where *∆+ = *𝑈𝑚𝑟 , 𝑉𝑚𝑟 ,𝑊𝑚𝑟𝑏 ,𝑊𝑚𝑟𝑠 , 𝑍𝑚𝑟+
𝑡  and the 

elements 𝑃𝑖𝑗  and 𝐿𝑖 are expressed as 

𝑃11 = 𝜃
2𝐴11 + 𝜗

2𝐴66, 

𝑃12 = 𝜃𝜗(𝐴12 + 𝐴66), 

𝑃13 = −𝜃(𝜃2𝐵11 + 𝜗
2𝐵12 + 2𝜗

2𝐵66), 

𝑃14 = −𝜃(𝜃
2𝐵11

𝑠 + 𝜗2𝐵12
𝑠 + 2𝜗2𝐵66

𝑠 , 

𝑃15 = −𝐹1𝜃, 

𝑃22 = 𝜃2𝐴66 + 𝜗
2𝐴11, 

𝑃23 = −𝜗(𝜃2𝐵12 + 2𝜃
2𝐵66 + 𝜗

2𝐵11), 

𝑃24 = −𝜗(𝜃2𝐵12
𝑠 + 2𝜃2𝐵66

𝑠 + 𝜗2𝐵11
𝑠 ), 

(23) 
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𝑃25 = −𝐹1𝜗, 

𝑃33 = 𝐾1 − (−𝜃
2 − 𝜗2)𝐾2 + 𝐷11𝜃

4 + 2𝐷12𝜃
2𝜗2

+ 4𝐷66𝜃
2𝜗2 + 𝐷11𝜗

4, 

𝑃34 = 𝐾1 − (−𝜃
2 − 𝜗2)𝐾2 + 𝐷11

𝑠 𝜃4 + 2𝐷12
𝑠 𝜃2𝜗2

+ 4𝐷66
𝑠 𝜃2𝜗2 + 𝐷11

𝑠 𝜗4, 

𝑃35 = 𝐹𝑠(𝜃
2 + 𝜗2), 

𝑃44 = 𝐾1 − (𝜃
2 − 𝜗2)𝐾2 + 𝐻11

𝑠 𝜃4 + 𝐻12
𝑠 𝜃2𝜗2

+ 4𝐻66
𝑠 𝜃2𝜗2 + 𝐻11

𝑠 𝜗4 + 𝜃2𝐴44
𝑠

+ 𝜗2𝐴44
𝑠 , 

𝑃45 = (𝜃2 + 𝜗2)(𝑄1 + 𝐴44
𝑠 ), 

𝑃55 = 𝜃
2𝐴44

𝑠 + 𝜗2𝐴44
𝑠 + 𝑄𝑠, 

𝐿1 = −𝜃(𝐴1𝑡1 + 𝐴2𝑡2 + 𝐴3𝑡3 +𝐻1𝑐1 +𝐻2𝑐2 +𝐻3𝑐3, 

𝐿2 = −𝜗(𝐴1𝑡1 + 𝐴2𝑡2 + 𝐴3𝑡3 + 𝐻1𝑐1 + 𝐻2𝑐2 + 𝐻3𝑐3, 

𝐿3 = 𝐵1𝑡1(𝜃
2 + 𝜗2) + 𝐵2𝑡2(𝜃

2 + 𝜗2)
+ 𝐵3𝑡3(𝜃

2 + 𝜗2) + 𝐼1𝑐1(𝜃
2 + 𝜗2)

+ 𝐼2𝑐2(𝜃
2 + 𝜗2) + 𝐼3𝑐3(𝜃

2 + 𝜗2)
+ 𝑞0, 

𝐿4 = 𝐷1𝑡1(𝜃
2 + 𝜗2) + 𝐷2𝑡2(𝜃

2 + 𝜗2)
+ 𝐷3𝑡3(𝜃

2 + 𝜗2) + 𝐽1𝑐1(𝜃
2 + 𝜗2)

+ 𝐽2𝑐2(𝜃
2 + 𝜗2) + 𝐽𝑐3(𝜃

2 + 𝜗2)
+ 𝑞0, 

𝐿5 = 𝑂1𝑐1 + 𝑂2𝑐2 + 𝑂3𝑐3 + 𝑋1𝑡1 + 𝑋2𝑡2 + 𝑋3𝑡3, 

(24) 

where 

*𝐴1, 𝐴2, 𝐵2+

= ∑∫
𝐸(𝑛)(1 + 2𝑣)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

𝛼(𝑛) {1,
𝑧

ℎ
,
𝑧2

ℎ
} d𝑧,

𝐵1 = ℎ𝐴2, 

*𝐴3, 𝐵3+ = ∑∫
𝐸(𝑛)(1 + 2𝑣)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

𝛼(𝑛)𝜑(𝑧) {
1

ℎ
,
𝑧

ℎ
} d𝑧, 

{
𝐷1, 𝐷2, 𝐷3
𝑋1, 𝑋2, 𝑋3

}

= ∑∫
𝐸(𝑛)(1 + 2𝑣)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

𝛼(𝑛) {1,
𝑧

ℎ
,
𝜑(𝑧)

ℎ
} {
𝛷(𝑧)

𝑔′(𝑧)
} d𝑧, 

(25) 

*𝐻1, 𝐻2, 𝐼2+

= ∑∫
𝐸(𝑛)(1 + 2𝑣)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

𝜂(𝑛) {1,
𝑧

ℎ
,
𝑧2

ℎ
} d𝑧,

𝐼1 = ℎ𝐻2 , 

*𝐻3, 𝐼3+ = ∑∫
𝐸(𝑛)(1 + 2𝑣)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

𝜂(𝑛)𝜑(𝑧) {
1

ℎ
,
𝑧

ℎ
} d𝑧, 

{
𝐽1, 𝐽2, 𝐽3
𝑂1, 𝑂2, 𝑂3

}

= ∑∫
𝐸(𝑛)(1 + 2𝑣)

1 − 𝑣2

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

𝜂(𝑛) {1,
𝑧

ℎ
,
𝜑(𝑧)

ℎ
} {
𝛷(𝑧)

𝑔′(𝑧)
} d𝑧. 

(26) 

Table 1 Comparison of non-dimensional deflection  
ℎ

𝛼0𝑡2𝑎
2 𝑢3(

𝑎

2
,
𝑏

2
) of titanium/zirconia FGM sandwich plate 

under thermal load (𝑡2 = 100 
oC , 𝜈 = 0.3,

𝑎

𝑏
= 1,

𝑎

ℎ
= 10,

𝑘𝑒 = 𝑘𝑠 = 𝑡3 = 𝑐1 = 𝑐2 = 𝑐3 = 0) 

𝑘 Source 

Face-core-face 

1-0-1 1-1-1 1-2-1 2-1-2 

0 

Zenkour and Alghamdi (2008) 

TPT 

SPT 

Present 

0.480262 

0.477885 

0.482292 

0.576119 

0.480262 

0.477885 

0.482292 

0.576119 

0.480262 

0.477885 

0.482292 

0.576119 

0.480262 

0.477885 

0.482292 

0.576119 

1 

Zenkour and Alghamdi (2008) 

TPT 

SPT 

Present 

0.636891 

0.634039 

0.645297 

0.780718 

0.606256 

0.603656 

0.616924 

0.749624 

0.582302 

0.579865 

0.593640 

0.719987 

0.621067 

0.618348 

0.630778 

0.765562 

2 

Zenkour and Alghamdi (2008) 

TPT 

SPT 

Present 

0.671486 

0.668372 

0.678375 

0.820709 

0.639325 

0.636549 

0.650411 

0.793941 

0.609829 

0.607301 

0.622721 

0.758666 

0.665115 

0.653171 

0.665261 

0.809802 

3 

Zenkour and Alghamdi (2008) 

TPT 

SPT 

Present 

0.683560 

0.680313 

0.689084 

0.832159 

0.653638 

0.650751 

0.664265 

0.812675 

0.622420 

0.619826 

0.635690 

0.776493 

0.670253 

0.667176 

0.678352 

0.826263 

x 

Zenkour and Alghamdi (2008) 

TPT 

SPT 

Present 

0.688795 

0.685476 

0.693445 

0.835712 

0.661260 

0.658302 

0.671371 

0.822310 

0.629487 

0.626846 

0.642819 

0.786525 

0.677303 

0.674147 

0.684557 

0.833574 

 

 

By solving the system of algebraic Eqs. (22), one can 

easily obtain the functions 𝑈𝑚𝑟 , 𝑉𝑚𝑟  ,𝑊𝑚𝑟𝑏 ,𝑊𝑚𝑟𝑠and 𝑍𝑚𝑟  

in terms of the hygrothermal and foundation parameters. In 

addition, the stresses 𝜎𝑥, 𝜎𝑦 , 𝜎𝑧 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧  and 𝜏𝑥𝑧  can be 

expressed in terms of 𝑈𝑚𝑟 , 𝑉𝑚𝑟  ,𝑊𝑚𝑟𝑏,𝑊𝑚𝑟𝑠 and 𝑍𝑚𝑟  as 

𝜎𝑥
(𝑛 ) =

𝐸(𝑛)

(1 + 𝑣)(−1 + 2𝑣)
0−𝑈𝑚𝑟𝜃– 𝑣𝑈𝑚𝑟𝜃 + 𝑣𝑉𝑚𝑟𝜗

+ (𝑊𝑚𝑟𝑏𝑧 +𝑊𝑚𝑟𝑠𝛷)((𝑣+1)𝜃
2

+ 𝜗2𝑣)

+ (1 + 𝜈)𝛼(𝑛) .𝑡1 +
𝑧

ℎ
𝑡2 +

𝜑

ℎ
𝑡3/

+ (1 + 𝜈)𝜂(𝑛) .𝑐1 +
𝑧

ℎ
𝑐2 +

𝜑

ℎ
𝑐3/

+ 𝛷′′𝑍𝑚𝑟1 sin(𝜃𝑥) sin(𝜗𝑦), 

(27a) 

𝜎𝑦
(𝑛 ) =

𝐸(𝑛)

(1 + 𝑣)(−1 + 2𝑣)
0−𝑉𝑚𝑟𝜗– 𝑣𝑈𝑚𝑟𝜃 + 𝑣𝑉𝑚𝑟𝜗

+ (𝑊𝑚𝑟𝑏𝑧 +𝑊𝑚𝑟𝑠𝛷)((𝑣+1)𝜃
2

+ 𝜗2𝑣)

− (1 + 𝜈)𝛼(𝑛) .𝑡1 +
𝑧

ℎ
𝑡2 +

𝜑

ℎ
𝑡3/

− (1 + 𝜈)𝜂(𝑛) .𝑐1 +
𝑧

ℎ
𝑐2 +

𝜑

ℎ
𝑐3/

+ 𝛷′′𝑍𝑚𝑟1 sin(𝜃𝑥) sin(𝜗𝑦), 

(27b) 

  𝜎𝑧
(𝑛 ) =

𝐸(𝑛)

(1 + 𝑣)(−1 + 2𝑣)
0– 𝑣𝑈𝑚𝑟𝜃 + 𝑣𝑉𝑚𝑟𝜗

+ (𝑊𝑚𝑟𝑏𝑧 +𝑊𝑚𝑟𝑠𝛷)((𝑣+1)𝜃
2

+ 𝜗2𝑣)   

− (1 + 𝜈)𝛼(𝑛) .𝑡1 +
𝑧

ℎ
𝑡2 +

𝜑

ℎ
𝑡3/

− (1 + 𝜈)𝜂(𝑛) .𝑐1 +
𝑧

ℎ
𝑐2 +

𝜑

ℎ
𝑐3/

+ (1 − 𝑣)𝛷′′𝑍𝑚𝑟1 sin(𝜃𝑥) sin(𝜗𝑦), 

(27c) 
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Table 2 Non-dimensional deflection 𝑢̅3 of (1-1-1) FGM 

sandwich plate under thermal and hygrothermal loads 

(𝑧 = 0, 𝑘 = 1,
𝑎

𝑏
= 1) 

a/h ks ke 

Thermal (𝑐1 = 𝑐2 = 𝑐3 = 0) Hygrothermal (𝑡2 = 100
oC) 

𝑡3 = 100 𝑡3 = 200 𝑡3 = 300 𝑐3 = 0.01 𝑐3 = 0.02 𝑐3 = 0.03 

10 

0 

0 

100 

200 

6.36750 

4.51813 

3.48717 

8.39558 

5.95424 

4.59327 

10.42365 

7.39035 

5.69938 

14.86371 

10.54644 

8.13969 

23.35991 

16.57475 

12.79222 

31.85611 

22.60306 

17.44475 

10 

0 

100 

200 

3.50823 

2.84388 

2.38415 

4.62107 

3.74407 

3.13719 

5.73392 

4.64427 

3.89023 

8.18886 

6.63797 

5.56476 

12.86949 

10.43205 

8.74536 

17.55012 

14.22614 

11.92597 

20 

0 

100 

200 

2.39434 

2.05477 

1.79541 

3.15064 

2.70238 

2.36000 

3.90694 

3.34999 

2.92459 

5.58853 

4.79583 

4.19037 

8.78273 

7.53690 

6.58533 

11.97692 

10.27796 

8.98029 

20 

0 

0 

100 

200 

6.38156 

4.58589 

3.57540 

8.41901 

6.04932 

4.71581 

10.4564 

7.51275 

5.85621 

14.89827 

10.70606 

8.34695 

23.41497 

16.82624 

13.11850 

31.93168 

22.94641 

17.89004 

10 

0 

100 

200 

3.59611 

2.94142 

2.48669 

4.74314 

3.87916 

3.27908 

5.89016 

4.81690 

4.07146 

8.39530 

6.86684 

5.80525 

13.19449 

10.79227 

9.12380 

17.99368 

14.71770 

12.44235 

20 

0 

100 

200 

2.49678 

2.16005 

1.90235 

3.29239 

2.84802 

2.50793 

4.08800 

3.53598 

3.11352 

5.82880 

5.04266 

4.44103 

9.16081 

7.92527 

6.97970 

12.49283 

10.80788 

9.51838 

30 

0 

0 

100 

200 

6.38415 

4.59846 

3.59184 

8.42333 

6.06695 

4.73863 

10.46251 

7.53545 

5.88541 

14.90462 

10.73568 

8.38557 

23.42510 

16.87289 

13.17930 

31.94557 

23.01011 

17.97303 

10 

0 

100 

200 

3.61248 

2.95964 

2.50589 

4.76587 

3.90438 

3.30563 

5.91925 

4.84913 

4.10536 

8.43376 

6.90961 

5.85028 

13.25505 

10.85958 

9.19466 

18.07633 

14.80956 

12.53904 

20 

0 

100 

200 

2.51596 

2.17979 

1.92243 

3.31891 

2.87531 

2.53569 

4.12186 

3.57082 

3.14895 

5.87378 

5.08895 

4.48808 

9.23160 

7.99810 

7.05374 

12.58942 

10.90725 

9.61940 

 

Table 3 Non-dimensional in-plane normal stress 𝜎1of (1-1-

1) FGM sandwich plate under thermal and hygrothermal 

loads (𝑧 =
ℎ

2
, 𝑘 = 1,

𝑎

𝑏
= 1,

𝑎

ℎ
= 10) 

a/h ks ke 

Thermal (𝑐1 = 𝑐2 = 𝑐3 = 0) Hygrothermal (𝑡2 = 100
oC) 

𝑡3 = 100 𝑡3 = 200 𝑡3 = 300 𝑐3 = 0.01 𝑐3 = 0.02 𝑐3 = 0.03 

10 

0 

0 

100 

200 

2.32667 

3.55404 

4.23826 

2.68792 

4.30815 

5.21138 

3.04916 

5.06226 

6.18450 

4.23915 

7.10437 

8.70165 

6.15162 

10.65471 

13.16505 

8.06410 

14.20504 

17.62844 

10 

0 

100 

200 

4.22428 

4.66519 

4.97029 

5.19293 

5.77497 

6.17773 

6.16158 

6.88475 

7.38517 

8.66903 

9.69830 

10.41055 

13.11377 

14.73141 

15.85081 

17.55852 

19.76453 

21.29108 

20 

0 

100 

200 

4.96353 

5.18889 

5.36102 

6.16881 

6.46630 

6.69353 

7.37409 

7.74372 

8.02604 

10.39477 

10.92086 

11.32269 

15.82602 

16.65283 

17.28436 

21.25726 

22.38481 

23.24602 

20 

0 

0 

100 

200 

0.58355 

0.88891 

1.06075 

0.67460 

1.07758 

1.30435 

0.76565 

1.26624 

1.54794 

1.06415 

1.77706 

2.17823 

1.54476 

2.66520 

3.29572 

2.02536 

3.55335 

4.41320 

10 

0 

100 

200 

1.05723 

1.16856 

1.24589 

1.29970 

1.44662 

1.54867 

1.54217 

1.72468 

1.85145 

2.17001 

2.42993 

2.61046 

3.28280 

3.69130 

3.97504 

4.39558 

4.95268 

5.33961 

20 

0 

100 

200 

1.24417 

1.30143 

1.34526 

1.54640 

1.62197 

1.67980 

1.84864 

1.94251 

2.01435 

2.60646 

2.74014 

2.84245 

3.96874 

4.17885 

4.33965 

5.33103 

5.61756 

5.83685 

30 

0 

0 

100 

200 

0.25951 

0.39510 

0.47154 

0.30003 

0.47896 

0.57983 

0.34056 

0.56283 

0.68812 

0.68712 

1.18466 

1.46513 

0.68712 

1.18466 

1.46513 

0.90093 

1.57943 

1.96192 

10 

0 

100 

200 

0.46997 

0.51954 

0.55400 

0.57776 

0.64318 

0.68864 

0.68555 

0.76681 

0.82329 

1.45937 

1.64127 

1.76770 

1.45937 

1.64127 

1.76770 

1.95408 

2.20214 

2.37455 

20 

0 

100 

200 

0.55323 

0.57876 

0.59830 

0.68763 

0.72132 

0.74711 

0.82203 

0.86388 

0.89591 

1.76489 

1.85856 

1.93026 

1.76489 

1.85856 

1.93026 

2.37072 

2.49845 

2.59625 

 
 

𝜎𝑥𝑦 =
𝐸(𝑛)

2(1 + 𝑣)
[𝛷′𝑍𝑚𝑟 +𝑊𝑚𝑟𝑠

−
𝛷′

ℎ
𝑊𝑚𝑟𝑠] 𝑠𝑖𝑛(𝜃𝑥) 𝑠𝑖 𝑛(𝜗𝑦), 

(27d) 

𝜎𝑦𝑧 =
𝐸(𝑛)

2(1 + 𝑣)
[𝛷′𝑍𝑚𝑟 +𝑊𝑚𝑟𝑠

−
𝛷′

ℎ
𝑊𝑚𝑟𝑠] 𝑐𝑜𝑠(𝜃𝑥) 𝑠𝑖 𝑛(𝜗𝑦), 

(27e) 

𝜎𝑥𝑧 =
𝐸(𝑛)

2(1 + 𝑣)
,2𝑊𝑚𝑟𝑏𝑧𝜃𝜗 + 2𝛷𝑊𝑚𝑟𝑠𝜃𝜗 − 𝑈𝑚𝑟𝜗

− 𝑉𝑚𝑟𝜃- 𝑐𝑜𝑠(𝜃𝑥) 𝑐𝑜𝑠(𝜗𝑦). 
(27f) 

Table 4 Non-dimensional transverse normal stress 𝜎3 of 

(1-1-1) FGM sandwich plate under thermal and 

hygrothermal loads (𝑧 =
ℎ

2
, 𝑘 = 1,

𝑎

𝑏
= 1,

𝑎

ℎ
= 10) 

a/h ks ke 

Thermal (𝑐1 = 𝑐2 = 𝑐3 = 0) Hygrothermal (𝑡2 = 100
oC) 

𝑡3 = 100 𝑡3 = 200 𝑡3 = 300 𝑐3 = 0.01 𝑐3 = 0.02 𝑐3 = 0.03 

10 

0 

0 

100 

200 

3.48645 

4.19345 

4.58758 

4.16816 

5.10146 

5.62175 

4.84987 

6.00948 

6.65592 

6.94225 

8.59270 

9.51278 

10.39805 

12.99196 

14.43799 

13.85385 

17.39122 

19.36320 

10 

0 

100 

200 

4.57952 

4.83350 

5.00925 

5.61112 

5.94639 

6.17840 

6.64272 

7.05928 

7.34754 

9.49399 

10.08688 

10.49716 

14.40845 

15.34026 

15.98507 

19.32292 

20.59364 

21.47298 

20 

0 

100 

200 

5.00536 

5.13517 

5.23432 

6.17326 

6.34462 

6.47551 

7.34116 

7.55407 

7.71670 

10.48807 

10.79111 

11.02257 

15.97079 

16.44706 

16.81083 

21.45350 

22.10300 

22.59909 

20 

0 

0 

100 

200 

0.87315 

1.04797 

1.14635 

1.04413 

1.27484 

1.40467 

1.21511 

1.50170 

1.66298 

1.73911 

2.14725 

2.37693 

2.60507 

3.24653 

3.60751 

3.47104 

4.34581 

4.83809 

10 

0 

100 

200 

1.14433 

1.20807 

1.25234 

1.40200 

1.48612 

1.54454 

1.65968 

1.76417 

1.83674 

2.37222 

2.52103 

2.62438 

3.60011 

3.83398 

3.99642 

4.82800 

5.14694 

5.36846 

20 

0 

100 

200 

1.25136 

1.28414 

1.30923 

1.54325 

1.58651 

1.61962 

1.83513 

1.88887 

1.93000 

2.62209 

2.69862 

2.75720 

3.99282 

4.11310 

4.20516 

5.36354 

5.52759 

5.65313 

30 

0 

0 

100 

200 

0.38819 

0.46573 

0.50944 

0.46423 

0.56655 

0.62423 

0.54027 

0.66737 

0.73902 

0.77323 

0.95426 

1.05630 

1.15827 

1.44278 

1.60317 

1.54330 

1.93131 

2.15003 

10 

0 

100 

200 

0.50855 

0.53689 

0.55660 

0.62305 

0.66045 

0.68645 

0.73755 

0.78402 

0.81631 

1.05421 

1.12040 

1.16640 

1.59988 

1.70390 

1.77619 

2.14555 

2.28740 

2.38599 

20 

0 

100 

200 

0.55616 

0.57076 

0.58193 

0.68588 

0.70514 

0.719892 

0.81560 

0.83952 

0.85784 

1.16537 

1.19945 

1.22555 

1.77459 

1.82815 

1.86916 

2.38380 

2.45685 

2.51277 

 
Table 5 Non-dimensional transverse shear stress 𝜎5 of (1-

1-1) FGM sandwich plate under thermal and hygrothermal 

loads (𝑧 = 0, 𝑘 = 1,
𝑎

𝑏
= 1,

𝑎

ℎ
= 10) 

a/h ks ke 

Thermal (𝑐2 = 0) Hygrothermal (𝑡2 = 100
oC) 

𝑡2 = 100 𝑡2 = 200 𝑡2 = 300 𝑐2 = 0.01 𝑐2 = 0.02 𝑐2 = 0.03 

10 

0 

0 

100 

200 

-0.28339 

1.30615 

2.19227 

-0.30166 

1.79668 

2.96644 

-0.31993 

2.28720 

3.74061 

-0.61105 

3.09966 

5.16828 

-0.93871 

4.89318 

8.14429 

1.26637 

6.68670 

11.12030 

10 

0 

100 

200 

2.17417 

2.74518 

3.14032 

2.94255 

3.69633 

4.21795 

3.71092 

4.64749 

5.29558 

5.12603 

6.45903 

7.38146 

8.07788 

10.17288 

11.62260 

11.02974 

13.88672 

15.86374 

20 

0 

100 

200 

3.13157 

3.42343 

3.64635 

4.20640 

4.59168 

4.88595 

5.28123 

5.75993 

6.12556 

7.36103 

8.04236 

8.56276 

11.59049 

12.66129 

13.47916 

15.81994 

17.28022 

18.39557 

20 

0 

0 

100 

200 

-0.07124 

0.32571 

0.54909 

-0.07597 

0.44787 

0.74266 

-0.08070 

0.57004 

0.93623 

-0.15368 

0.77305 

1.29456 

-0.23612 

1.22039 

2.04003 

-0.31856 

1.66773 

2.78550 

10 

0 

100 

200 

0.54451 

0.68924 

0.78976 

0.73662 

0.92761 

1.06027 

0.92873 

1.16599 

1.33077 

1.28387 

1.62175 

1.85643 

2.02323 

2.55427 

2.92310 

2.76259 

3.48678 

3.98978 

20 

0 

100 

200 

0.78753 

0.86197 

0.91893 

1.05732 

1.15556 

1.23074 

1.32712 

1.44915 

1.54254 

1.85122 

2.02501 

2.15801 

2.91492 

3.18805 

3.39708 

3.97862 

4.35110 

4.63616 

30 

0 

0 

100 

200 

-0.03169 

0.14469 

0.24412 

-0.03381 

0.19894 

0.33015 

-0.03592 

0.25320 

0.41618 

-0.06837 

0.34342 

0.57555 

-0.10506 

0.54215 

0.90699 

-0.14174 

0.74088 

1.23843 

10 

0 

100 

200 

0.24208 

0.30656 

0.35138 

0.32746 

0.41256 

0.47170 

0.41284 

0.51855 

0.59202 

0.57079 

0.72135 

0.82599 

0.89951 

1.13613 

1.30059 

1.22823 

1.55091 

1.77519 

20 

0 

100 

200 

0.35039 

0.38360 

0.40902 

0.47039 

0.51421 

0.54775 

0.59038 

0.64482 

0.68649 

0.82366 

0.90119 

0.96054 

1.29694 

1.41878 

1.51206 

1.77021 

1.93637 

2.06358 

 
 
5. Numerical results 
 

In this section, the effects of the temperature, humidity 

and elastic foundation parameters on the deflection and 

stresses of simply supported FGM sandwich plates resting 

on Pasternak foundations are discussed. The analysis is 

carried out for the following data (unless otherwise stated) 
𝑏

𝑎
= 1,

𝑎

ℎ
= 10, 𝑘𝑒 = 50, 𝑘𝑠 = 5, 𝑞0 = 1, 𝑡1 = 0, 𝑡2 = 𝑡3 =

100  
o

C ,  𝑐1 = 0, 𝑐2 = 𝑐3 = 0.01 %, 𝑇0 = 𝐻0 = 0, 𝑘 =
1, ℎ = 0.005 m. Note that, the deflection 𝑢3 is calculated 

at 𝑥 = 𝑎/2 and 𝑦 = 𝑏/2, while the in-plane normal stress 

𝜎𝑥  a t  𝑥 = 𝑎/2 ,  𝑦 = 𝑏/2  a n d  𝑧 = ℎ/2 ,  a l s o ,  t h e  
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(a) (b) 

  
(c) (d) 

Fig. 2 Non-dimensional deflection 𝑢̅3 of (a) 2-1-2, (b) 1-1-1, (c) 1-2-1 and (d) 1-3-1 FGM sandwich plates versus the side-

to-thickness ratio 
𝑎

ℎ
 for various values of the power law index 𝑘 

  
(a) (b) 

  

(c) (d) 

Fig. 3 Non-dimensional in-plane normal stress 𝜎1 of (a) 2-1-2, (b) 1-1-1, (c) 1-2-1 and (d) 1-3-1 FGM sandwich plates 

versus the side-to-thickness ratio 
𝑎

ℎ
 for various values of the power law index 𝑘 
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(a) (b) 

  
(c) (d) 

Fig. 4 Non-dimensional transverse normal stress 𝜎3 of (a) 2-1-2, (b) 1-1-1, (c) 1-2-1 and (d) 1-3-1 FGM sandwich plates 

versus the side-to-thickness ratio 
𝑎

ℎ
 for various values of the power law index 𝑘 

 

  

(a) (b) 

  
(c) (d) 

Fig. 5 Non-dimensional transverse shear stress 𝜎5 of (a) 2-1-2, (b) 1-1-1, (c) 1-2-1 and (d) 1-3-1 FGM sandwich plates 

versus the side-to-thickness ratio 
𝑎

ℎ
 for various values of the power law index 𝑘 
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(a) (b) 

  
(c) (d) 

Fig. 6 Non-dimensional (a) deflection 𝑢̅3, (b) in-plane normal stress 𝜎1, (c) transverse normal stress 𝜎3 and (d) transverse 

shear stress 𝜎5 of (1-1-1) FGM sandwich plates versus the aspect ratio 
𝑏

𝑎
 for various values of the temperature 𝑡3 

  
(a) (b) 

  
(c) (d) 

Fig. 7 Non-dimensional (a) deflection 𝑢̅3, (b) in-plane normal stress 𝜎1, (c) transverse normal stress 𝜎3 and (d) transverse 

shear stress 𝜎5 of (1-1-1) FGM sandwich plates versus the side-to-thickness ratio 
𝑎

ℎ
 for various values of the moisture 

concentration 𝑐3 
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(a) (b) 

 

 

(c) (d) 

Fig. 8 Non-dimensional (a) deflection 𝑢̅3, (b) in-plane normal stress 𝜎1, (c) transverse normal stress 𝜎3 and (d) transverse 

shear stress 𝜎5 of (1-1-1) FGM sandwich plates subjected to hygrothermal loads versus the shear layer stiffness 𝑘𝑠 for 

various values of the springs stiffness 𝑘𝑒 

 

 

 

(a) (b) 

  
(c) (d) 

Fig. 9(a) deflection 𝑢3, (b) in-plane normal stress 𝜎𝑥, (c) transverse normal stress 𝜎𝑧 and (d) transverse shear stress 𝜎𝑥𝑧 of 

(1-1-1) FGM sandwich plates without hygrothermal conditions versus the shear layer stiffness 𝑘𝑠 for various values of the 

springs stiffness 𝑘𝑒 
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transverse shear stress 𝜎𝑥𝑧  at 𝑥 = 0, 𝑦 = 𝑏/2 and 𝑧 =
0. 

The present FGM sandwich plates are composed of 

Titanium (metal) and Zirconia (ceramic) materials. The 

material properties of Titanium are: 𝐸𝑚 = 66.2 𝐸0 , 

,𝛼𝑚 = 10.3 𝛼0 , 𝜂𝑚 = 0.44 (wt.% H2O)
−1  and 𝜈 = 0.3 . 

While, the properties of Zirconia are: 𝐸𝑐 = 117.0 𝐸0, 𝛼𝑐 =
7.11 𝛼0 , 𝜂𝑐 = 0.001 (wt.% H2O)

−1  and 𝜈 = 0.3 ; in 

which 𝐸0 = 109 Pa and 𝛼0 = 10
−6 (1/o

C).  

The following non-dimensional parameters are used in 

the present study 

𝑢̅3 =
ℎ𝑢3
𝑎2𝛼0𝑡2

, 𝜎1 = −
ℎ2𝜎𝑥

10𝑎2𝐸0𝛼0𝑡2
, 

𝜎3 = −
ℎ2𝜎𝑧

10𝑎2𝐸0𝛼0𝑡2
, 𝜎5 = −

ℎ𝜎𝑥𝑧
10𝑎𝐸0𝛼0𝑡2

, 

𝑘𝑒 =
𝐾𝑒𝑎

4

𝐷𝑐
,     𝑘𝑠 =

𝐾𝑠𝑎
2

𝐷𝑐
,       𝐷𝑐 =

𝐸𝑐ℎ
3

12(1 − 𝜈2)
 

(28) 

Table 1 contains a comparison example for 

titanium/zirconia FGM sandwich plates under linear 

distributed thermal loading ( 𝑡2 = 100 o
C). For different 

values of the power law index 𝑘 and various types of the 

sandwich plates, the non-dimensional deflection 
ℎ𝑢3

𝛼0𝑡2𝑎
2 

presented by the present refined plate theory (RPT) is 

compared with that predicted by Zenkour and Alghamdi 

(2008) using the SPT. The results of proposed theory agree 

well with those of Zenkour and Alghamdi (2008). Next, 

parametric studies are introduced in tabular form (see, 

Tables 2-5) and graphical form (see, Figs. 2-9) to 

investigate the effects of various parameters, such as the 

power law index, elastic foundation stiffness, temperature, 

humidity, core thickness, side-to-thickness ratio and plate 

aspect ratio, on the deflection and stresses of 

titanium/zirconia FGM sandwich plates. Tables 2-5 show 

the variation of the deflection 𝑢̅3, longitudinal stress 𝜎1 

transverse normal stress 𝜎3, and transverse shear stress 𝜎5 

of (1-1-1) sandwich plate under thermal and hygrothermal 

loads for different values of the elastic springs stiffness 𝑘𝑒 

and shear layer stiffness 𝑘𝑠. It can be seen that the results 

of the FGM sandwich plate under hygrothermal load are 

greater than those of the plate under thermal load. 

Moreover, the elevated temperature and moisture 

concentration lead to weaken the structure of the plate, 

subsequently, the deflection and stresses increase with 

increasing the temperature or/and moisture. Further, with 

increasing the Pasternak foundation coefficients (𝑘𝑒  and 𝑘𝑠) 
the central deflection 𝑢̅3  decreases while the stresses 

𝜎1, 𝜎3 and 𝜎5 increase. Figs. 2-5 display, respectively, the 

effect of the power law index 𝑘 on the central deflection 

𝑢̅3, longitudinal stress 𝜎1, transverse normal stress 𝜎3 and 

transverse shear stress 𝜎5  of various types of FGM 

sandwich plates. The deflection is plotted versus the side-

to-thickness ratio varying from 4 to 20. It is clear that, for 

all types of sandwich plates, the deflection is increasing as 

the ratio 
𝑎

ℎ
 is increasing. While, the stresses decrease as the 

ratio 
𝑎

ℎ
 increases. Obviously, Figs. 2-5 reveal the sensitivity 

of the deflection and stresses to the variation of the 

parameter 𝑘 . The central deflection and the transverse 

shear stress 𝜎5  increase whereas the normal stresses 𝜎1 

and 𝜎3 decrease as the power law index 𝑘 increases.  

The variations of central deflection 𝑢̅3 , longitudinal 

stress 𝜎1, transverse normal stress 𝜎3 and transverse shear 

stress 𝜎5 of (1-1-1) FGM sandwich plate against the plate 

aspect ratio 
𝑏

𝑎
 for different values of the temperature 

parameter 𝑡3  are investigated in Figs. 6a,b,c and d, 

respectively. It can be noted that the deflection and the 

normal stresses monotonically increase with the increase of 

the ratio 
𝑏

𝑎
 and the temperature parameter 𝑡3. Whereas, the 

shear stress 𝜎5 increases to reach its maximum and then 

decreases as the ratio 
𝑏

𝑎
 increases.  

In Fig. 7, the influences of the moisture concentration 

𝑐3 and side-to-thickness ratio 
𝑎

ℎ
 on the deflection 𝑢̅3 and 

stresses 𝜎1, 𝜎3 and 𝜎5 are illustrated. Similar to the effect 

of the temperature on the results, the deflection and the 

stresses 𝜎1, 𝜎3  and 𝜎5  are increasing as the moisture 

increases.  

The effects of the Pasternak foundation parameters 

(𝑘𝑒  and 𝑘𝑠) individually on the deflection and stresses of 

the (1-1-1) FGM sandwich plate subjected to hygrothermal 

loads and without hygrothermal conditions are presented in 

Figs. 8 and 9, respectively. As it is shown in Fig. 8 and 

according to Tables 2-5, with considering the hygrothermal 

environment, the increase in the stiffness of the foundations 

leads to a decrement in the deflection and increments in the 

stresses. However, with ignoring the hygrothermal 

environment, the behavior of the stresses is reversed, i.e., 

the stresses have the same sense of the deflection with the 

variation of the elastic foundation parameters as shown in 

Fig. 9. Further, it is noticed that the effects of the variation 

of springs stiffness on the results are more significant for 

small values of the shear layer parameter.  

 

 

5. Conclusions 
 

The static bending of various types of FGM sandwich 

plates resting on two-parameter elastic foundations in 

hygrothermal environment is investigated. The present 

theory takes into account both shear and normal strains 

effects. Thus, it predicts results more accurate than the shear 

deformation plate theories. The results obtained by the 

shear and normal deformation theory are compared with 

those available in the literature and also with those obtained 

by other shear deformation theories. According to the 

comparison example, the present results are agreed well 

with the published ones. Numerical results show that the 

deflection and stresses are very sensitive to the variation of 

the power law index and the core thickness. With the 

increase of the power law index, the deflection and 

transverse shear stress are monotonically increasing, while 

the normal stresses decrease. The same behavior can be 

observed with the variation of the core thickness. An 

increment occurs in the deflection and normal stresses as 

the aspect ration increases. The deflection and stresses 

increase as the temperature and moisture increase. A 
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decrement occurs in the deflection with the increase of the 

foundation stiffness whereas the stresses have a contrast 

response when the hygrothermal conditions are taken into 

account and have the same response when the hygrothermal 

environment is ignored. Moreover, for the small values of 

the shear layer stiffness, the effect of the springs stiffness is 

more pronounced. 
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