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1. Introduction 
 

Owing to geological activities and engineering 

construction, there are widespread unloading rock slopes 

around the world. Many slopes are a result of human 

activities. In the event of failures and landslides, lives and 

property may be lost. Therefore, it is necessary to study the 

slope stability in order to convey it to the relevant personnel 

to take appropriate measures over time using limited 

monitoring and investigation data (Nieuwenhuis et al. 1991, 

Su et al. 2016, Chen et al. 2016, Yang et al. 2017a, Zhang 

et al. 2017). In recent years, in order to analyze and predict 

the rock slope behavior, many scholars have focused on 

mechanical models and intelligent mathematical models. 

Mechanical models probe the rock slope stability by 

combining a theoretical analysis and field tests. Lim et al. 

used the finite-element upper- and lower-bound limit 

analysis methods to investigate the three-dimensional (3D) 

slope stability (Lim et al. 2015). Johari and Javadi used the 

jointly distributed random variables method for a 

probabilistic analysis and reliability assessment of the 

stability of infinite slopes without seepage (Johari et al. 

2012). Jackson et al. (2004) presented a methodology for 

mapping the theoretical factor of safety under earthquake  
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loading using a conservative infinite slope model (Jackson 

et al. 2004). Hugues et al. (2014) presented a stability 

analysis of long and steep vegetated and barren slopes 

under saturated and seismic conditions and also evaluated 

the effectiveness of the infinite slope equation for these 

slopes (Hugues et al. 2014). However, such approaches 

based on a mechanical model can be complex and time-

consuming and have two disadvantages: (a) failure to assess 

the slope stability in the absence of the geometry and soil 

properties pertaining to the formulation and (b) difficulty in 

representing practical conditions influenced by prior user 

assumptions (Cao et al. 2002, Ramin et al. 2017). 

Intelligent mathematical models analyze and forecast the 

slope behavior on the basis of the related monitoring and 

survey data. Taha et al. applied particle swarm optimization 

to calculate the minimum reliability index and critical 

probabilistic failure surface to evaluate the reliability of 

earth slopes and locate the critical probabilistic slip surface 

(Taha et al. 2014). Choobbasti et al. (2009) developed 

artificial neural network (ANN) systems consisting of 

multilayer perceptron networks to predict the slope stability 

in a specified location using several important parameters 

(Choobbasti et al. 2009). Kaunda et al. (2009) applied a 

back propagation neural network (BPNN) to three common 

challenges in engineering geology (Choobbasti et al. 2009, 

Tsai et al. 2017). Chok et al. (2016) investigated the 

feasibility of using ANNs to develop a random finite-

element model to generate possible solutions and to 
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comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-

unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more 
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establish a large database (Kaunda et al. 2009). Suman et 

al. (2016) attempted to provide prediction model equations 

that can be used to predict the factor of safety of a slope by 

using artificial intelligence techniques (Chok et al. 2016). 

Such approaches based on intelligent mathematical models 

are referenced in this paper because they have simple 

operations and the following two advantages: (a) the ability 

to map complicated functional relationships between 

dependent and independent variables with few prior 

assumptions and control parameters and (b) the clear 

functional relations between the inputs and the outputs, 

implying a mathematical formulation of fundamental laws 

(Cao et al. 2002, Yang et al. 2017b). 

The slope is divided into natural slope and artificial 

slope. The natural slope is gradually stabilized by 

weathering after unloading. The artificial slope is stabilized 

by reinforcement measures after cutting and excavating. For 

the unloading rock slope resulted from cut and excavation, 

it characterized by complex stress condition, sensitivity of 

disturbance and high deformation requirement. Unloading 

rock slope is a special and dangerous structural system, 

thus, it is extremely important to carry out research and 

analysis of its safety state. 

At present, many scholars have extensively investigated 

the stability of an unloading rock slope over time and 

obtained an identified value rather than a range through 

such evaluations. The slope deformation properties change 

with the stress field under strong unloading so that the slope 

displacement monitoring data show obvious characteristics 

of nonlinear and nonstationary waves; thus, the prediction 

of the range of variation would be a much better fit in 

practice. BPNNs can acquire the characteristics and 

regularity of a historical sequence and predict the trend of 

the sequence. However, in a BPNN model, the initial 

weights and thresholds are randomly generated, and the 

lack of a basis can affect the sequence fitting. Genetic 

algorithms (GAs) follow the law of the survival of the 

fittest and choose an evolved individual as the optimal 

solution, such that it can overcome the shortcomings of 

BPNNs and improve the stability of the model. On this 

basis, to obtain the range of variation in a sequence over 

some time period, fuzzy information granulation (FIG) 

(Suman et al. 2016, Won et al. 2005, Li et al. 2009), which 

can partition the sequence and extract the characteristic 

parameters of every partition, is proposed and combined 

with a GA and BPNN. The FIG-GA-BPNN model can take 

full advantage of FIG for partition and information 

extraction, the GA for parameter optimization, and the 

BPNN for trend forecasting and finally predict the range of 

variation in the sequence. The FIG-GA-BPNN model is 

applied to predict the rock slope displacement sequence, 

and its accuracy is tested and verified. 

 

 

2. GA-BPNN model for time-series fitting 
 

2.1 Modeling principles of the BPNN model 
  

The BPNN model is based on the back propagation 

algorithm, which is a type of gradient descent algorithm and 

is a supervised learning algorithm (Yu et al. 2013, Moon et 

al. 2010). A BPNN includes an input layer, an output layer, 

and a hidden layer. The learning process is divided into two 

phases. In the first phase, called the forward propagation 

stage, the input signal is processed from the input layer to 

the hidden layer and then to the output layer. The degree of 

activation of every neuron is determined by the input, an 

activation function, and a threshold. In the second phase, 

called the backward propagation stage, the output error is 

calculated and is propagated backward, and the weights and 

thresholds are corrected constantly so that the objective 

function of the error is minimized. 
 

2.1.1 Forward propagation of information   
The number of training samples is k; every training 

sample is composed of the input layer node set and the 

output layer node set. Here, P = [p1, p2, …, pl] is the input 

layer node set, S = [s1, s2, …, sm] is the hidden layer node 

set, and A = [a1, a2, …, an] is the input layer node set. The 

training samples are known, and random numbers are used 

as the initial weights and thresholds; therefore, the value of 

the i-th node in the hidden layer is 

1 1 1

,

1

( )
l

i j i j si

j

s f p w b
=

=  +  (1) 

where
1

,k iw  is the connection weight between the i-th node 

of the input layer and the kth node of the hidden layer, f1 is 

the excitation function of the hidden layer, and 
1

sib  is the 

threshold of the kth neurons in the hidden layer, where 
1

,i jw   and 
1

sib  are in the range from –1 to 1. 

The value of the j-th node in the input layer is 

2 2 2

,

1
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m

i j i j ai

j

a f s w b
=
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where f2 is the excitation function of the output layer, 2

,i jw  

is the connection weight between the j-th neuron of the 

hidden layer and the i-th neuron of the output layer, and 
2

aib  is the threshold of the i-th neuron in the output layer, 

where 2

,i jw  and 
2

aib  are in the range from –1 to 1. 

 

2.1.2 Backward propagation of error k samples are 
trained 

The k input layer node sets of samples, which are l-

dimensional vectors, are forward propagated to the hidden 

layer and then to the output layer to obtain the actual output 

values A. The actual output A and the expected output T are 

compared to calculate the root mean square error RMSE. 

If RMSE does not meet the requirements, the process enters 

the backward propagation stage. The error signal is returned 

layer-by-layer with the formation of the gradient structure 

according to the previous path of a forward propagation 

stage. RMSE is allocated to all neurons in each layer to 

obtain RMSEj (j = 1, 2, 3) of each layer. RMSEj is 

considered as the basis for modifying the weights and 

threshold. Two phases are repeated until RMSE converges 

to the specified value.  

For the above process, the BPNN can realize a nonlinear 
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mapping from the input space to the output space. However, 

the initial weights, the initial thresholds, and the number of 

hidden layer nodes need to be determined, which is vital to 

the accuracy of the predicted results. The determination of 

the number of hidden layer nodes is often based on 

experience and experiments. In this study, the optimal 

number of hidden layer nodes is selected on the basis of a 

trial method in which the simulation error of the training 

samples is continuously improved through continuous 

testing and a continuous change in the number of hidden 

layer nodes. The optimization of the initial weights and 

thresholds is achieved by the GA and is described as 

follows. 
 

2.2 Improved BPNN model based on a GA 
   

A GA is a heuristic algorithm for solving the fast 

searching problem of optimal values. A GA pursues the 

production of new individuals better than existing 

individuals, which is the evolvability of the population 

(Jiang et al. 2014, Hu et al. 2015, Yang et al. 2015). First, 

this algorithm generates a set of populations, and the 

individuals in the populations are coded by two-

dimensional coding. Then, the output values of each 

individual are calculated using the BPNN model, and the 

fitness values of all individuals are obtained. Furthermore, a 

search for evolving the current populations is implemented 

on the basis of selection, crossover, and mutation. The 

evolutionary principle is that a higher individual 

adaptability results in a higher probability of inheritance to 

the next generation. Multiple iterations are carried out until 

the expected error is reached. Finally, the fitness functions 

of each generation are obtained to obtain the optimal 

solution. 

The individuals are composed of the weights and 

thresholds, and the individual length is  

( 1)l s t= +  (3) 

where t is the number of hidden layer nodes, and s is the 

number of output layer nodes. 

The operation is based on the roulette rule, in which the 

next-generation population is selected on the basis of the 

proportion of fitness. The cross operation is based on the 

real-coded crossover rule. The mutation operation involves 

the random selection of a new individual from a specified 

range to replace the original individual according to some 

probability. 

The fitness function is the basis of an evolutionary 

search. The fitness function adopted in this study is 

1
( ( ))

n

i ii
F d abs o y

=
= −  (4) 

where n is the number of output layer nodes, oi is the 

predicted value of the i-th node, yi is the expected value of 

the i-th node, and d is the coefficient. 

There are two termination conditions. The first is based 

on the fitness value. If the fitness value of an individual 

meets the expected value, the individual is the optimal 

individual. The other is based on the degree of convergence 

of the individual fitness value in the optimization process. 

Here, c is a specified value, and if the individuals in c  
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Fig. 1 Flow diagram of the GA–BPNN model 

 

 

successive generations have not changed, the calculation is 

terminated, and the optimal individual is selected as the 

final optimal individual. When the iteration result meets one 

of the above two conditions, the iteration can be stopped, 

and the solution corresponding to the optimal individual is 

output as the optimal solution. 

The basic steps of the GA–BPNN model are 

summarized in Fig. 1. 

 

2.3 Time-series fitting based on the GA-BPNN model 
 

A time series contains the information of the relevant 

influencing factors, and the GA-BPNN model can fit the 

earlier values of the time series to predict the later values. 

To make full use of the latest information and improve 

the prediction accuracy, the rolling prediction method is 

used in the GA-BPNN model. For every example, its input 

layer node set is composed of the first l measured values, 

and the output layer node set of every example is composed 

of the latter n measured values. The time series consisting 

of p measured values can be divided into p – l – n + 1 

trained examples. The prediction function is obtained by 

using the GA-BPNN model to train these examples. Then, 

the obtained prediction function predicts the future time 

series  1 2, ,...,p l p l po o o− + − +  using the input layer node 

set  1 2 1, ,...,p p p ny y y+ + + − , and after obtaining the 

following n measured values, the model trains the measured 

time series  1 2, ,...,n p l n p l n py y y+ − + + − + +  to predict the 

time value  1 2 2 1, ,...,p n p n p no o o+ + + + + −  and so forth.   

When the GA-BPNN model is established, the trial 
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method is used to optimize the numbers of training steps, 

predicted steps, and hidden layer nodes. The steps are as 

follows. 

Step 1. Establish the training samples and predicted 

samples according to all of the combinations of the different 

numbers of trained steps and predicted steps. 

Determine the historical step h, predict the number of 

steps p, and establish the training time series and tested time 

series. 

Step 2. Set the range of the number of hidden layer 

nodes and establish the GA-BPNN model on the basis of 

any value within the range. 

Step 3. Calculate the fitness value. 

Step 4. Compare the fitness values of the different 

combinations; the combination corresponding to the 

optimal fitness value is the optimal solution.  

Step 5. Establish the optimal GA-BPNN model to train 

the historic time series to predict the trend of the time 

series.  

Step 6. During rolling prediction, determine whether it 

is necessary to produce a new rule when adding a new data. 

According to the Eq. (4), the predicted value of the new 

data is calculated by the existing rule to obtain the current 

prediction error RMSEi, which need to compare with 

critical error RMSEI. If RMSEi≥RMSEc, it shows that the 

previous rule can represent the new data. If 

RMSEi<RMSEc, it shows that the previous rule cannot 

represent the new rule and a new rule should be produced 

by returning to Step 2. 

 
 

3. FIG-GA-BPNN model 
 

3.1 Modeling principles of the FIG model 
 

Professor L. A. Zadeh proposed the problem of FIG, 

which studies the performance characteristics of 

information partitions that are combinations of successive 

information granules. The displacement time series is 

extracted from the monitoring data at periodic intervals; 

thus, every element of the series is an information granule. 

In the process of slope creep, continuous information may 

contain redundant features; however, intermittent 

information may contain incomplete information. Thus, it is 

feasible to establish FIG, which can effectively extract the 

characteristics from intermittent information and the 

eliminate redundant features from continuous information 

(Shu et al. 2016, Ren et al. 2014, Yu et al. 2009, Ozer et al. 

2011). 

FIG mainly includes two steps: partitioning of a time 

series and fuzzifying the information of every part. In 

partitioning, the time series is divided into finite 

subsequence partitions. In the fuzzifying of information, the 

information of each subsequence part is fuzzified using a 

mathematical method so that the information of the 

subsequence parts can be described. The core of FIG is to 

construct a fuzzy granule P based on the time series 

Y = {y1, y2, ..., yn} or to establish a fuzzy concept G (a fuzzy 

set taking Y as the domain) that can reasonably describe Y. 

Here, P is determined by determining G; thus, the essence 

of the fuzzy process is the determination of the membership 

function A of G. First, the basic form of the fuzzy granule is 

determined; then, the specific membership function is 

determined. There are some types of commonly used forms 

of the membership function: triangular, ladder, Gaussian, 

parabolic, and so on. 

Based on the fuzzy clustering algorithm of the 

displacement sequence, it is feasible to identity the 

characteristics of displacement and divide the displacement 

cluster. Thus, it is realized to make the fast modelling and 

accurate prediction for displacement on the basis of the 

consistency and historical feature of displacement. 

To achieve good results and simplify the process, this 

study uses the ladder form of the membership function A 

that can be expressed as 

1

1

1 2 1 2
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,
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where x is the variables in the domain, and up, r1, r2, and 

low are the four characteristic parameters of the 

subsequence part. 

There are two basic ideas for fuzzifying information. 

First, the characteristic parameters can reasonably represent 

the original data. Second, the characteristic parameters have 

some particularity. To meet and balance the two ideas, A 

can be expressed as follows 

( )

( ( ))

A

x X

A

A
A

A

M A x

N measure supp A

M
Q

N




=


=


 =



 

(6) 

where MA meets the first basic idea, and NA meets the 

second basic idea. 

The steps for determining the four characteristic 

parameters are as follows.  

Step 1. Determine r1 and r2. 

In accordance with the small to large law, the time series 

Y = {y1, y2, …, yn} is sorted to obtain the new sequence 

Z = {z1 ,z2, …, zn}. When n is an even number, r1 = zn/2, and 

r2 = z(n+2)/2. When n is an odd number, r = r1 = r2 = z(n+1)/2. 

Step 2. Determine low as follows 

1

1

( )
( )

x r and x X
A x

Maximize Q a
r low

   
 =

−


 (7) 

Step 3. Determine up as follows 

2

2

( )
( )

x r and x X
A x

Maximize Q b
up r

   
 =

−


 (8) 
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3.2 Time-series fluctuation-range prediction model 
based on the FIG-GA-BPNN model 
   

Owing to the prominent advantages of FIG in granule-

based information processing, this paper presents a time-

series fluctuation-range prediction model based on the FIG-

GA-BPNN model. The steps are as follows. 

Step 1. Determine the partition size to partition the 

sample data and process it using FIG. 

Step 2. Establish the GA-BPNN model for the time 

sequences that are combinations of the characteristic 

parameters of each subsequence part. 

Step 3. Use the prediction models to predict the 

characteristic parameters of the next part. 

Step 4. Analyze the predicted result. 

 
 

4. Case study 
 

The total reservoir capacity of a large hydropower 

station is 2.710×108 m3, the normal water level is 900.000 

m, the dead water level is 860.000 m, the retaining building 

is a concrete-faced rock-filled dam, and the maximum dam 

height is 115 m. There is a larger unloading area in the left 

bank from 865 to 960 m in height, which has an area of 

about 17380 m2.  

During the construction, the slope is treated in 

accordance with the principle of “cutting crest, reduce 

middle and supporting foot”. The slope is excavated above 

the height of 925 m, is reinforced by the combination with 

anchorage pile, anchor cable, anchor and drainage system at 

the height of 905-935 m and is confined by concrete and 

anchor cable below the height of 905 m. In addition, 

integrate rock is retained and the concrete cover is laid on 

the toe slab.  

The strong-unloading rock slope was unstable, and 

several landsides occurred during construction. In January 

2006, modification of the magnitude of the excavation slope 

and reinforcing and supporting measures comprising a 

combination of a slope to attach concrete, an anchor, and a 

pretensioned cable were completed. Then, the slope 

stability analysis results basically met the design 

requirements, and evident deformation was not found by 

site reconnaissance. However, taking into account the 

strong-unloading effect on the slope stability and 

considering that the strong-unloading slope is located in the 

abutment and the intake of the conduit system, the slope 

would cause a profound impact if it crashed. It is still 

necessary to improve the deformation monitoring of the 

slope, and the slope is displaced until slip occurs, which is a 

continuous and lengthy process. For this reason, the 

deformation of the slope is monitored, and data are 

regularly collected on the left bank of the unloading rock 

slope. The process from slipping to failure is continuous 

and long. In practical engineering, a multipoint 

displacement meter is arranged to monitor the deformation 

of the slope over a long time, and the monitoring data are 

collected regularly. The slope system is shown in Fig. 2. 

The initial impoundment process of the reservoir is as 

follows. Closure began in February 2005. Impounding of 

the reservoir started in October 2007. The first generating  

 

Fig. 2 Slope system 

 

Table 1 Simulation performance indexes 

Index Calculation formula 

Root mean 

square error 
 

2
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Mean absolute value 

of prediction error 
1

1 s

i i

i

MAVPE o y
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= −
 

Maximum absolute value 

of prediction error 
max( )i iMAXAVPE o y= −

 

 

 

unit of power went online in April 2008. During this period, 

the water levels were lower than the dead water level and 

were lower than the strong-unloading area. Thus, the 

fluctuation in the reservoir level did not affect the 

deformation of the slope. The deformation of the slope is 

basically caused by aging so that the tendency of the 

variation in the displacement can be predicted by a fitted 

historical time series. The monitoring data of the C2-XH-

M-02 displacement monitoring point are used in this study. 

This study utilizes 78 measured values collected once about 

every 10 days from January 22, 2006 to March 22, 2008. 

Thirty-six values collected earlier are taken as training 

samples, and 42 values collected later are used for 

comparison with the predicted values to evaluate the 

prediction performance of the model.  

To confirm the accuracy of the model presented in this 

paper, the five indexes in Table 1 are used to analyze the 

predicted result. 
 

4.1 Comparison between the GA-BPNN and BPNN 
models 
   

To reinforce the arguments presented in this paper, the 

BPNN and GA-BPNN models are established to 

demonstrate the superiority of the GA-BPNN model over 

the BPNN model. 

109109



 

Meng Yang et al. 

 

35 40 45 50 55 60 65 70 75 80
-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

D
is

p
la

ce
m

en
t 

(m
m

)

Time Step

 Measured Value

 GA-BP

 BP

 

Fig. 3 Predicted values obtained by different models and the 

actual values 

 

Table 2 Comparison of the simulated performance of two 

prediction models 

Model 
Performance index 

RMSE MAPE NMSE MAVPE MAXAVPE 

BPNN model 0.1269 0.0255 0.0495 0.0845 
0.52 
78 

GA–BPNN model 0.0627 0.0139 0.0121 0.0499 
0.12 

05 

 
 

For the GA, according to experience, the number of 

populations is set to 20, the number of maximum genetic 

algebras is set to 100, the crossover probability is set to 0.7, 

the mutation probability is set to 0.01, and the generation 

gap is set to 0.95. For the BPNN, according to the trial 

method, the numbers of input layer nodes, hidden layer 

nodes, and output layer nodes are 6, 14, and 1, respectively. 

On the basis of the above preset parameter values, the GA–

BPNN and BPNN models are established. It is found that 

the fitness values of the BPNN model have leveled off 

before 100 iterations; however, the fitness values of the 

GA-BPNN model have leveled off before 50 iterations. The 

final fitness values of the GA-BPNN model are better than 

those of the BPNN model.  

The results predicted by the two models are presented in 

Fig. 3 and Table 2. 

The results in Fig. 3 show that the predicted values of 

GA-BP model are closer to measured values than BP model. 

The results in Table 2 show that, the values of RMSE, 

MAPE, NMSE, MAVPE and MAXAVPE of the GA-BPNN 

model is reduced by -50.6%, -45.5%, -75.6%, -40.9% 

and -77.2% respectively by comparing the BPNN model. 

The predicted results show that the optimization of the 

initial weights and thresholds has a major influence on the 

prediction accuracy of the model. The GA-BPNN model is 

superior for the prediction of a time series to the BPNN 

model. 
 

4.2 Prediction performance analysis of the GA-BPNN 
model 
   

Displacement slippage is a continuous process. In 

practical engineering, iterative multistep prediction without  
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Fig. 4 Predicted values obtained by different multistep 

prediction models and the actual values 
 

Table 3 Comparison of the simulated performance of 

different multistep prediction models 

Number of 

prediction 

steps 

Index 

RMSE MAPE NMSE MAVPE MAXAVPE 

1 0.0627 0.0139 0.0121 0.0499 0.1205 

2 0.0771 0.0170 0.0183 0.0629 0.1477 

3 0.0897 0.0210 0.0248 0.0754 0.1875 

4 0.1464 0.0288 0.0660 0.1052 0.4832 

 

 

changing the model is necessary to arrange the management 

and maintenance of the slope earlier. Iterative multistep 

prediction means that a later value is predicted by adding 

the first predicted value.  

Denoting the number of prediction steps by L and the 

number of values that need to be predicted by K, the 

number of established prediction models is /K L   . The 

results for different iterative multistep predictions are 

presented in Fig. 4 and Table 3. 

The results in Fig. 4 show that predicted results show 

that the predicted curve is close to the actual curve. 

However, as the number of prediction steps increases, errors 

accumulate. The results in Table 3 show that by comparing 

the one-step prediction, the values of RMSE, MAPE, NMSE, 

MAVPE and MAXAVPE of two-step prediction is increased 

by 23.0%, 22.3%, 51.2%, 26.1% and 22.6% 

respectively; the values of RMSE, MAPE, NMSE, MAVPE 

and MAXAVPE of three-step prediction is increased by 

43.1%, 51.1%, 105.0%, 51.1%, and 55.6% 

respectively; the values of RMSE, MAPE, NMSE, MAVPE 

and MAXAVPE of three-step prediction is increased by 

133.5%, 107.2%, 445.5%, 110.8%, 301.0% respectively.  

It is obvious that the errors of the iterative four-step 

prediction model are greater than the other models, and the 

prediction accuracy is difficult to guarantee. To obtain the 

ideal result, the number of prediction steps should not 

exceed 3. 
 

4.3 Analysis of the FIG-GA-BPNN model 
   

For the above process of modeling forecasting, the  
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Fig. 5 Characteristic parameters of all partitions based on 

FIG 

 

Table 4 Mean error comparison between the actual and 

predicted values 

Time series 
Index 

RMSE MAPE NMSE MAVPE MAXAVPE 

LOW 0.0481 0.0065 0.0218 0.0239 0.1521 

R 0.0387 0.0053 0.0139 0.0178 0.1319 

UP 0.0470 0.0073 0.0212 0.0245 0.1215 

 

 

variation in the displacement has a periodic feature where 

the displacement rapidly increases in steps and slowly 

increases or fluctuates within a phase. Thus, the prediction 

of the range of variation of a time series is in greater 

agreement with the actual conditions. Considering the 

above predicted results, the division of a time series into 

partitions every three consecutive data points in the FIG-

GA-BPNN model is most suitable. 

According to FIG theory, the 78 measured displacement 

values are divided into 28 partitions, and the characteristic 

parameters of all partitions are obtained. The characteristic 

parameters of all partitions form the characteristic-

parameter time sequences LOW, R, and UP, where 

LOW = [low1, low2, …, low28], R = [r1, r2, …, r28], and 

UP = [up1, up2, …, up28]. The characteristic parameters of 

the first 12 partitions are taken as training samples. The 

characteristic parameters are shown in Figure 5. 

The characteristic parameters of the latter 16 partitions 

are used for comparison with the predicted values to 

evaluate the prediction performance of the FIG-GA-BPNN 

model. The predicted results for LOW, R, and UP are 

presented in Fig. 6 and Table 4. 

The predicted results show that the displacement values 

increase in steps and become increasingly gentle. It follows 

that the position where the displacement monitoring point is 

placed is stable. In addition, post in-site monitoring verifies 

the predicted results that the deformation of the slope tends 

to level off and the rock mass tends to be stable. Comparing 

the measured and predicted values, the results show that the 

values of MAVPE for LOW, R, and UP are 0.0239, 0.0178, 

and 0.0245, respectively. These values of MAVPE are far  
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(a) LOW 
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(b) R 
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(c) UP 

Fig. 6 Predicted and actual values of the characteristic 

parameters in partitions 

 

 

lower than the average of the measured values. Moreover, 

other prediction performance indices indirectly indicate that 

the predicted results are in accordance with the actual 

accident situation. On the basis of the above analysis, the 

results predicted by the FIG-GA-BPNN model meet 

engineering requirements. It is further verified that the FIG-

GA-BPNN model has a forward effect on the prediction of 

the displacement of a strong-unloading rock slope and can 

be applied to engineering. 

For the BPNN model, the value of RMSE is 0.1269, the 

value of MAPE is 0.0255, the value of NMSE is 0.0495, the 

value of MAVPE is 0.0845, and the value of MAXAVPE is 

0.5278. For the GA-BPNN model, the value of RMSE is 

0.0627 decreasing by 50%, the value of MAPE is 0.0139 

decreasing by 45%, the value of NMSE is 0.0121 
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decreasing by 76%, the value of MAVPE is 0.0499 

decreasing by 41%, and the value of MAXAVPE is 0.1205 

decreasing by 77%. The prediction results show that the 

optimization of initial weights and thresholds has a great 

influence on the prediction accuracy of the model. GA-

BPNN model is superior in prediction of a time series to the 

BPNN model. 

 

 

5. Conclusions 
 

This study presents the FIG-GA-BPNN model to predict 

the range of variation in the strong-unloading rock slope on 

the basis of monitoring data. The following conclusions 

were found. 

(a)The GA-BPNN model was established by combining 

the properties of a BPNN to fit a time series and the 

properties of a GA to optimize the initial weights and initial 

thresholds of the BPNN. When using the GA-BPNN model 

to fit a time series, the optimal numbers of hidden layer 

nodes, input layer nodes, and output layer nodes are 

determined by a trial method based on the prediction error. 

The GA-BPNN model can retain the ability to learn using 

training samples and avoid the random selection of the 

initial parameters, which makes the GA-BPNN model an 

invaluable tool in time-variant problems such as creeping 

landslides or earth slumps. 

(b)The FIG model can partition a time series and extract 

the characteristic parameters from every partition, and the 

GA-BPNN model can fit any nonlinear function. 

Combining the advantages of these two models, the FIG-

GA-BPNN model can effectively predict the range of 

fluctuation in the time series. 

(c)A practical case shows that the FIG-GA-BPNN 

model can extract the evolution information of the slope 

from the displacement time series to predict the future range 

of variation in the displacement of the slope by continuous 

iteration.  

(d)The FIG-GA-BPNN model provides a basis for 

evaluating the slope stability and has contributed to the 

prediction and warning of slope disasters. This model can 

be applied to the field of slope displacement prediction and 

provide new ideas for other areas of forecasting modeling. 
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