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1. Introduction 
 

Data of various geophysical observations and numerous 

geomechanical, geochemical, petrological, petrophysical, 

etc. laboratory experimental results constitute the initial 

database while constructing the theoretical models of the 

structure and material composition of the Earth. Processing 

and interpretation of all this data set on special programs 

allowed coming to a definite opinion regarding the internal 

structure and distribution of elastic and physical parameters 

of the medium of the Earth’s depths (Dziewonski and 

Anderson 1981, Kennet et al. 1995, Sumita and Bergman 

2 0 0 7 ,  L i t a s o v  a n d  S h a t s k i y  2 0 1 6 , 

www.sciencedirect.com/..., https://ds.iris.edu/...). The 

implementation of integral criteria is considered a measure 

of the reliability of the adopted distributions. The 

distributions of fundamental elastic parameters, density of 

the medium and pressure are carried out in such a way that 

the calculated mass of the simulated composite ball 

corresponds to the known mass of the Earth, the calculated 

inertia regarding the axis of the rotation - to the measured 

moment of inertia of the Earth, the calculated spectrum of 

the periods of free-oscillations - the observed period of the 

Earth's free-oscillations caused by strong earthquakes. 

Some seismotomographic corrections have been made in  
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recent years (Van der Hilst and Karason 1999, Montelli et 

al. 2004, Trampert et al. 2004, Ritsema 2005). The 

implementation of integral criteria is necessary but 

insufficient. A variety of differential criteria have been put 

forward within various disciplines which should be met 

while solving the problem of distribution of the above 

mentioned parameters (Anderson 1995, Anderson 2007). 

Theoretically, differential criteria should play the role of 

sufficient conditions while solving the considered problems. 

There occurred a difficult situation and differences between 

separate scientific opinions. It is assumed that the main 

geospheres: the crust, mantle and inner core of the Earth are 

deformable solids. In this connection, first of all, the 

distribution of elastic and physical parameters of the 

medium along with integral and other differential criteria 

should also correspond to the fundamental requirements of 

the mechanics of a deformable solid body (MDSB) (Lyav 

1935, Eringen and Suhubi 1975, Truesdell 1975). The latest 

results published in (Guliyev 2016, Guliyev 2017a, b, c, 

Guliyev et al. 2017, Khazan 2017) indicate the necessity to 

develop differential criteria that follow from MDSB. It was 

established in these works that the generally accepted 

distribution of pressure and elastic parameters of the 

medium of the internal solid core of the Earth in geophysics 

(Dziewonski and Anderson 1981, 

www.sciencedirect.com/..., https://ds.iris.edu/...) consistent 

with the integral criteria do not meet the requirements of 

MDSB.  

As a usual, elastic parameters of the medium (elasticity 
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moduli, velocities of propagation of elastic waves, etc.) are 

determined in laboratory experiments using specially made, 

pre-undeformed samples. Linear theories of elasticity and 

propagation of elastic waves in the undeformed media 

makes the theoretical basis of the physico-mechanical 

interpretation of experimental data. The parameters 

determined only in such experimental and theoretical 

studies are called elastic. They being the nominal data also 

have a representativeness (i.e., experimentally determined 

data in samples describe the behavior of the material or the 

medium as a whole). The geological medium of the Earth' 

depths is under the influence of geodynamic evolution all 

the time. The experiments related to the physico-

mechanical studies including elastic properties of 

geological media of large (mantle) and super-large (inner 

core) depths on several positions have a particular 

specificity. Great progress has been achieved in the field of 

technique and technology to carry out unique experiments 

(Altshuler et al. 2004, Tateno et al. 2010, Mao et al. 2012b, 

Lu et al. 2013, Litasov and Shatskiy 2016). The 

experiments are transient, and geometric dimensions of the 

tested artificially created samples (these samples are created 

in the experiment (Mao et al. 2004, 2012a, 2012b), their 

representativeness to real conditions on the scales of 

geological objects is hardly attainable) are very small. In 

this connection, experimental technologies allow studying 

only too simplified situations. Therefore, the results have 

limit values essentially. Important frontiers have been 

achieved in the field of theoretical substantiation of 

formulation of experiments and understanding of the 

processed and interpreted experimental data. It is necessary 

to be able to distinguish the effects (complex, even 

immense complexity) of geodynamic (historical and 

modern) impacts in the process of synthesis of data of 

physico-mechanical properties from experimental results. In 

particular, experiments using shock-wave compression are 

conducted on the basis of the rapid kinetics of shear 

deformations of substance (Altshuler et al. 2004). 

Deformations are caused during the experiment to record 

the results of the measurement. Therefore, it is very 

problematic to bring them into correlation with 

deformations occurred in the Earth's long-term natural 

development and can be a source of significant errors in the 

results. Such kind of different ways of appearance of errors 

and uncertainties also exist in other experimental 

technologies of studies of the geological medium under 

high thermobaric conditions. 

Experiments show that the thermobaric impact on the 

nature of the change of the physico-mechanical parameters 

makes a different influence in different levels of 

deformation. This influence for the same medium differs at 

different stages of deformation both quantitatively and 

qualitatively. Moreover, these influences for various media 

(e.g., silicate and basalt glasses, iron alloys, etc.) also differ 

on the character. The determination of any single trends of 

this influence is not succeeded in the experiments. The 

arisen situation is explained for each medium by the 

experimenters in different ways. For example, the behavior 

of physico-mechanical parameters is explained by the 

softening regime in aluminosilicate networks and by 

changes of locally-arranged structures. The peculiarities in 

changes of velocities of pressure and shear waves in these 

media are used as analogs to understand the properties of 

melts in the Earth's interior. The current status of this 

problem can be found in more detail in publications (Karki 

and Stixrude 2010, Sanchez-Valle and Bass 2010, 

Murakami and Bass 2011, Nomura et al. 2011, Sato et al. 

2011, Shen et al. 2011, Kono et al. 2012, Weigel et al. 

2012, Cormier and Cuello 2013, Sakamaki et al. 2013, 

Sanloup et al. 2013, Ghosh et al. 2014, Liu and Lin 2014, 

Prescher et al. 2014, Wang et al. 2014).The situation is also 

analogous relating to the experimental studies of the 

assumed medium of inner core (Bullen 1978, Dziewonski 

and Anderson 1981, Anderson 1995, Deuss 2014, Kennett 

et al. 1995, Anderson 2007, Sumita and Bergman 2007, 

Heiffrich and Kaneshima 2010, Tateno et al. 2010, Mao et 

al. 2012a, Hirose et al. 2013, Ohtani et al. 2013, Badro et 

al. 2014, Chen et al. 2014, Decremps et al. 2014, Li and Fei 

2014, Nimmo 2015, Souriau and Calvet 2015, Antonangeli 

and Ohtani 2015, Prescher et al. 2015, Litasov and Shatskiy 

2016). Therefore, it creates a certain scientific and practical 

interest of development of a single theoretical basis of 

physico-mechanical interpretations of various complexes of 

geophysical data taking into account high thermobaric 

conditions and nonlinearity of deformation. Beginning with 

Murnaghan and Birch’s works, nonlinear theory of 

deformations has been used in a number of the above 

mentioned and other works to describe the results of 

numerous laboratory experimental studies of various 

minerals, rocks and materials, and also in the study of the 

problem of distribution of physico-mechanical parameters 

of the medium of the Earth's depths. Separate forms of 

equations of state for the assumed media of different depths 

of the Earth are proposed. Theories of hyperelastic 

materials (Green’s) (an expression for the potential energy 

of elastic deformation is given) or the theory of the general 

elastic body (Cauchy) of one-to-one correlations connecting 

the components of stress and strain tensors with observance 

of the tensor dimension are used as the initial theoretical 

bases. A complete return of energy is provided at the stage 

of elastic deformation in the first case, and full 

recoverability of the initial geometric shape of the body 

after removal of loads is provided in the second case. The 

processes of deformation are described either by the 

Eulerian or Lagrangian method.  

The characteristics of distribution of parameters of 

pressure, velocities of propagation of elastic waves in 

nonlinearly deformed isotropic media are studied in this 

paper based on the NLA of nonlinear elastodynamics 

related with the above-mentioned. The deformations are 

described by various elastic potentials within the 

Lagrangian method. The application of NLA to the 

considered range of problems has a certain methodological 

advantage in comparison with the direct use of the general 

nonlinear theory, including Birch-Murnaghan’s theory of 

finite deformations (Birch 1952, Bullen 1978, Anderson 

1995), etc. First of all, the nonlinear problem is reduced to 

linear (nonclassical) and well-studied mathematical 

problems. The problems of strength, stability (both on 

geometric shape changes and on “internal” instability) and 
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propagation of elastic waves in elastically deformable solid 

media are studied from a single theoretical base. In the case 

of homogeneous deformed states, simple analytical 

equations are obtained in the structure of which the 

contributions of linear (just these components should be 

named elastic properties of the medium) and nonlinear 

impacts on the quantitative values of parameters of elastic 

properties are distinguished explicitly. On the other hand, it 

is possible to study the above-mentioned problems in 

elastic-plastic and viscoelastic, etc. statements in a similar 

simplicity using the concept of “continuing loading” and a 

quasi-static approach (Guz 1999). Moreover, it is possible 

to determine the areas of applicability (areas in which the 

determination of physico-mechanical properties including 

other parameters is realized within those limits of 

deformations where the initial fundamental restrictions of 

the mechanics of a deformable solid are observed) of the 

obtained results theoretically. It is necessary to conduct 

additional experimental studies to solve this problem in 

case of direct application of general nonlinear theories. 

Such circumstance reduces the generality of theoretical 

results and creates additional channels of inclusion of errors 

and uncertainties into the results. The problem of changing 

the density parameter of isotropic media depending on the 

growth of nonuniform homogeneous deformation is studied 

in (Guliyev 2013, Guliyev and Askerov 2007) within the 

NLA of nonlinear elastodynamics. 

Nonlinear and non-classically linearized deformation 

theory is now widely used in many sections of Earth 

science. Such integration of sciences makes it possible to 

study specific scientific practical problems and to reveal the 

role of deformations in geological, geophysical, 

seismological and mining-mechanical processes 

(Alexandrov et al. 2001, Prodaivoda et al. 2004, Vyzhva et 

al. 2005, Guliyev 2010). 

 
 

2. The principal correlations of the nonclassical-
linearized theory 
 

Problems of the stressed-deformed state related with 

traditional (metallic, composite, glassy, ceramic, wooden, 

etc.) materials, structures and constructions are usually 

studied in the mechanics of deformable solids. Their initial 

non-stressed state is known with sufficient accuracy. The 

scales of the objects under study usually allow carrying out 

direct observation and controlling of ongoing processes. It 

essentially facilitates the acceptance of reasonable 

simplifying assumptions both at the stage of formulation of 

problems, statement of problems and theoretical modeling, 

and at the stage of development of algorithms and solution 

methods. Both exact and approximate methods of solution 

are used; linearization is usually carried out in the vicinity 

of the initially undeformed state. The above-mentioned 

makes the theoretical basis of the classical models of the 

mechanics of deformable solids.  

The situation in geology, geophysics and mining is 

much more complicated. Sedimentary, metamorphic and 

magmatic rocks were formed, evolved, destructed during 

the intervals of time determined in millions and billions of 

years. There is no an unstress state in the entrails of the 

Earth which could be taken in the form of an initial one. 

Rocks are constantly under the influence of a huge amount 

of arbitrarily changing stress of a diverse nature. The nature 

of manifestation and impact of stress is different in various 

situations. Periodicity and duration of their action are 

counted in seconds, hours, days, years, centuries, ages, etc. 

Geological objects on scales are also diverse. Their linear 

dimensions can be measured in millimeters and thousands 

of kilometers. At the same time, many phenomena and 

processes occur at various depths of the Earth's interior 

which are mainly inaccessible for direct observation. 

Naturally, the ability of deformation of various rocks 

significantly differs both in magnitude and in nature, i.e. 

there is a huge diversity in the physical and mechanical 

properties of geomaterials and conditions of deformation. 

Due to these enormous temporal and geometric scales and 

inaccessibility of geological objects, it is not possible to 

directly observe the processes occurring in them and to 

make appropriate simplifications in mathematical problems. 

All these factors and the accumulated experience stipulate 

the use of the nonclassical method of linearization of the 

complete system of equations, correlations, boundary and 

initial conditions of a general physically and geometrically 

nonlinear theory. The essence of this method lies in the fact 

that the linearization is carried out sequentially in a small 

vicinity of the actual (point M in the graph of Fig. 1) in 

other words, really deformed state. At the same time, any 

natural or artificial process is considered in the form of two 

qualitatively different states-undisturbed (which, in its turn, 

consists of the natural and the initial state) and disturbed. It 

is considered that all the values and parameters of the 

process under study are known, or at least methods of their 

determination are known in the undisturbed state. At the 

same time, the values of these parameters can be arbitrary, 

and the problem on their determination is nonlinear. Similar 

values and parameters (including new ones) in the disturbed 

state are unknown. The required parameters, in comparison 

with the undisturbed ones are too small (but not infinitely 

small), which allows carrying out the linearization with a 

sufficient degree of accuracy. The obtained linear 

differential equations with respect to disturbances as 

coefficients contain parameters of linear and nonlinear 

physico-mechanical properties of the medium, force and 

geometric parameters of initially stressed state. The total 

displacement consists of the sum of displacements of the 

initial state and disturbances. The basic systems of the 

classical linear theories, where the linearization is carried 

out in the vicinity of natural undeformed state are written 

with respect to the displacements of the initial state. Only 

parameters characterizing the linear physico-mechanical 

properties of the medium are included in them as 

coefficients. 
Two stages are distinguished in the initial state: natural 

(undeformed) and initially deformed. At the same time, it is 
possible to consider the problems with small linear and 
nonlinear (the point M is too close to the point A in Figure 
1) and large nonlinear deformations (the point M is too far 
from the point A), to correlate all the measured values per 
unit of area or natural, or initially deformed states. It is 
convenient to use the Lagrangian coordinates while 
compiling the basic equations and correlations of the NLA  
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Fig. 1 The method of linearization.  - stress,  - strain, 0 - 

values of deformations in the initially deformed state, * - 

values of deformation in the actual state, 1 - values of 

disturbances of deformations 
 

 

in the indicated two cases, and the Eulerian coordinates are 
used while measuring the values on the area of the 
disturbed state. The reference and the associated coordinate 
systems (Guz 1986, 2004) also differ. All these differences 
relate to mathematical formalizations. Nevertheless, their 
consideration is fundamentally important as it is necessary 
to compare the parameters and values determined and 
modeled under the same conditions and assumptions while 
comparing theoretical results with experimental ones. 

The basic idea of the nonclassical linearization of 

equations and correlations of the nonlinear elastodynamics 

is shown in Fig. 1. In the classical method, the linearization 

is carried out in a small vicinity of the beginning of 

deformation (point A). In the nonclassical-in a small 

vicinity of the actual state (point M). Different variants of 

the theory of initial deformations are considered in studies 

(Guz 1986, 1999, 2004) depending on the value of the 

strain up to the point M. Within the NLA, while 

determining the components (see Eq. (4)), three different 

variants are distinguished (Guz 1986) depending on the 

values of deformations in the initial state: a) the theory of 

large (finite) initial strains (t.o.l.i.s.) ; b) the first variant of 

the theory of small initial strains (shearings and elongations 

are small in comparison with unit) (f.v.o.t.o.s.i.s.); c) the 

second varinat of the theory of small initial strains (in 

addition to the first variant, it is assumed that the 

components of stress and strain tensors are related to 

Hooke’s law) (s.v.o.t.o.s.i.s.). Two cases of representation 

of plane harmonic wave also differ. In the first case, the 

changes of distances between the material particles are not 

taken into account due to the initial deformation and the 

velocity of wave propagation is called the “natural” velocity 

(Thurston and Brugger 1964). In the second case, these 

changes are taken into account and the velocity is called 

“true”. 

Let’s consider an unbounded elastic space subject to 

homogeneous deformation in the Lagrangian coordinate 

system 1

n nx x= coinciding with the Cartesian coordinates in 

the natural state 

( )0 1 ; , 1,2,3m m m mu const m  = − = =  (1) 

where 
0

mu  are the components of vector of displacements 

of initially deformed state, and λm are the coefficients of 

elongation (shortening) along the coordinate axes. The 

components of the Green’s deformation tensor 
0

ji  in the 

case of large and first variant of the theory of small and 

second variant of the theory of small initial deformations 

are accordingly determined in the form (Guz 1986) 

0 22 ( 1)i j i j i  = −  (2) 

0 ( 1)i j i j j  = −  (3) 

where δij-is Kronecker symbol. 

The problems of propagation of elastic waves in the 

deformed bodies are studied in detail (Truesdell 1975, Biot 

1965, Guz 1986, 2004). These studies are also widely 

applied in various fields (Kuliev and Jabbarov 1998, 2000, 

Aleksandrov et al. 2001, Ritsema 2005, Helffrich and 

Kaneshima 2010, Karki and Stixrude 2010, Kono et al. 

2012, Mao et al. 2012b, Ohtani et al. 2013, Decremps et al. 

2014, Liu and Lin 2014, Akbarov 2015, Hadji et al. 2015, 

Li and Tao 2015, Kakar and Kakar 2016, Tao et al. 2016, 

Teachavorasinskun and Pongvithayapanu 2016). In case of 

compressible models of media, the basic systems of 

equations of motion for the theory of large and various 

variants of the theory of small initial deformations in a 

single form take the form (Guz 1986, 2004) 

22

2
0

j

i j

i

uu

x x t


 



 


− =
  

, i j const  = . (4) 

In case of the theory of large initial deformations  

( )( )1i j j ij i ij i j i j ijA                   = + − + +
 

0

i j S   + . (5) 

For the theory of small initial deformations according to 

the first and second variants of the theory 

(1 )( )i j j i j i i j i j i j i jA                    = + − + + 
0

i j    +  
(6) 

(1 )( )i j i j i i j i j i j i jA                = + − + +  

0

i j    +  
(7) 

It is obtained considering the elastic waves propagating 

along the axis according to Eq. (4) in case of the theory of 

large initial deformations (Guz 1986, 2004) 

1

2 4 2 0

1 11 1 11;l xC A S  = +  

2

2 2 2 2 0

1 2 12 1 11;s xC S    = +  

3

2 2 2 2 0

1 3 13 1 11s xC S    = +  

(8) 

In case of the second variant of the theory of small 

initial deformations   

1 2 3

2 2 0 2 2 0 2

1 11 11 1 12 11( ); ( );lx sx sxV A V V       = + = + =  

2 0

1 13 11( )  = +  

(9) 

     

0   
0    

*    

   

* 0      

1 1  

 

0 *;  0 1

1 *;  1 1





*

M

A
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In correlations (5)-(7), the structure of values Aiβ, μij and 
0

S  (or 
0

 ) for each variant of problem statements is 

concretized with the definition of the elasticity correlations 

of nonlinear theory (elastic potentials). Concrete 

expressions of these values for the simplest elastic 

potentials describing compressible and incompressible 

media are given in (Guz 1986, 1999, 2004). In the 

expressions (4)-(9), ui(i=1, 2, 3) are the components of 

disturbance of displacements, 
0

S  are the components of 

stress tensor per unit area in the initially deformed state, 
0

ii  is the component of stress tensor per unit area in the 

natural state, 
0

ii
 
is the density of the medium. It is easy to 

obtain similar equations in the propagation of elastic waves 

along other coordinate axes using cyclic permutations of 

indices in (8) and (9). 

The experimentally observed acoustoelastic effect (of a 

different series of reactions, velocities of the polarized shear 

waves on the actions of initial deformations) in 

comparatively solid compressible media is described using 

elastic potentials in the structure of which along with the 

first two, the third algebraic invariant of Green’s 

deformation tensor is also taken into account. The simplest 

elastic potential corresponding to this requirement is a 

potential of the Murnaghan type. In this connection, the 

results concerning the Murnaghan-type potential is given 

below. 

In this case, for all variants of the theory of initial strains 

(Guz 1986, 2004) 

( )

( )

0 0 0

0 0

2 2

2

i nn ii

i nn ii

A a b

b c

 



   

   

= + + + +

+ + +
 (10) 

( )000

2

1
jjiinnij cb  +++= , 

, , , ,a b c const  =  

(11) 

For the theory of large initial strains  

 

( ) ( )

0 0 0 0 2 0 0

2 2
0 0

2 ( ) 2nn nn nn

nn

S a b

b c

  



    

 

= + + + +

+ +
 (12) 

where λ, μ- are the Lame’s elasticity moduli, a, b, c-are the 

elasticity moduli of the third order.  

There are correlations for the first and the second 

variant of the theory of small initial deformations 

accordingly  

( ) ( ) ( )

0 0 0 0 2 0 0

2 2
0 0 0 2

2 ( ) 2

, 2 1 ,

nn nn nn

nn ij ij j

a b

b c

  



     

    

= + + + +

+ + = −
 (13) 

( ) ( ) ( )

0 0 0 0 2 0 0

2 2
0 0 0

2 ( ) 2

, 1 .

nn nn nn

nn ij ij j

a b

b c

  



     

    

= + + + +

+ + = −
 (14) 

Eqs. (8) and (9) considering the correlations (10)-(14) 

allow studying the behavior of parameters of velocities of 

propagation of elastic waves in isotropic compressible 

comparatively solid media depending on the nature of the 

change of an arbitrary value of homogeneous deformations 

within the theory of large and two variants of the theory of 

small initial deformations. These equations and correlations 

are obtained and applied to solve various concrete problems 

of mechanics in (Guz 1986, 1999, 2004). An additional 

linearization is carried out while studying the concrete 

problems based on practical mechanical considerations in 

the expressions of Eqs. (12)-(14). It is assumed that it is 

possible to accept for all variants of the theory in the linear 

approximation for the purposes of obtaining simple 

analytical and concrete results in the standard problems of 

mechanics in the subsequent calculations 

0

1 k
 



 
= +  

 

 
(15) 

Where the coefficients kα(α=1, 2, 3) are calculated for 

each variant of the theory involving expressions (12)-(14) 

taking into account the following correlations for the theory 

of large, the first and the second variants of small initial 

strains accordingly 

0 0 ;P S   =  ;00

 =P  
0 0P = . (16) 

The given approach means that it is possible to assume 

that in the linear approximation (with respect to the 

parameter 

oP


) for the theory of finite (large) and the first 

variant of initial deformations 

0 2 0 0

0

0

1 2
2 1 ; ,

3 3
i j j j j K

K
 


     



 
= − = − = + 

 

 (17) 

but for the second variant of the theory of small initial 

deformations 

0 0 0

0

0

1 2
1 ; ,

2 3 3
i j j i j K

K
 


     



 
= − = − = + 

 
 (18) 

where K0-is modulus of volumetric compression of linear 

elastic isotropic body.  

Such an approximation, i.e., expression (15) cannot 

always be applied in the problems of geomechanics as the 

smallness of the parameter 


0P
is not always preserved 

(Dziewonski and Anderson 1981, Anderson 1995, Anderson 

2007). Therefore, the Eqs. (8) and (9) will be used later 

considering complete structures of correlations (12)-(14) 

without additional simplifications. 
 

 

3. Nonlinear character of the dependence of the 
basic parameters of the medium on the change of 
strains 
 

The normal components of stress tensor are determined 
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according to Eqs. (12)-(14) within the theory of large and 

small initial strains within the NLA.  

Let’s consider the case of overall strain to achieve 

clarity and simplicity of presentation, moreover, in the 

problems of geomechanics of large depths of overall strain, 

i.e., 
0 0 0
11 22 33 0   = = =

 
is the most important case. At 

the same time, we obtain from the correlation (12)-(14) 

considering (16) to determine the pressure: 

for the theory of large and the first variant of small initially 

deformed states 

( )
1

2
20 0 0 0 0

0

1 2 3 (9 15 ) ;

2
,

3

P K a b c

K

  

 

 = + + + +
 

= +

 (19) 

for the second variant of the theory of small initially 

deformed states  

2

0000 )159(3  cbaKP +++=  (20) 

We obtain in the case of the theory of large and the first 

variant of small initial deformations using the correlation 

(8), (9) and (10)-(14) in case of overall homogeneous 

deformation to determine the dependencies of quasi 

velocities of propagation of elastic waves on deformations 

1

2

2
0 0

3
0

4
0

2 (7 10 6 10 2 )

(33 55 9 10 12 )

(24 40 4 3 2 )

(9 15 ) ,

l xC a b c

a b c

a b c

a b c

    

   

  



= + + + + + + 

 + + + + +

+ + + + + +

+ + +

 
(21) 
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s x sxC C b c
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  
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3

0(18 42 6 )a b c + + + , 

(22) 

in case of the second variant of the theory of small initial 

deformations  

1

2

0

2

0

2 (5 6 6 10 2 )

(21 35 5 7 6 )

l xV a b c

a b c
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(23) 
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s x s xV V b c
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3
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4
0

(3 2 18 33 3 )

(9 15 ) .

a b c

a b c

  



+ + + + + +

+ + +
 

(24) 

Multiplying left and right sides of correlations (21) and 

(23) by ,)2( 1−+   (22) and (24) by 
1−
and considering 

that 

2 2
0 02 ,l SC C    = + =  (25) 

2 2
0 02 ,l SV V    = + =  (26) 

we obtain for the calculation of values of parameters of 

velocities of propagation of elastic pressure and shear 

waves  

1

0

2

1

0

5 3
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(30) 

Where 
0l

C and 
0SC are the velocities of pressure and 

shear waves in the medium without initial deformations 

within the theory of large initial deformations; 
0l

V and 

0SV are just the same within the second variant of the 

theory of small initial deformations. v is Poisson’s ratio of 

the material in correlations (27)-(30). The parameters of 

pressure and shear waves are expressed as 
1

0

2

lx

l

C

C

 
 
 
 

,  

2

0

2

sx

s

C

C

 
 
 
 

 and 1

0

2

lx

l

V

V

 
 
 
 

, 2

0

2

sx

s

V

V

 
 
 
 

 in the text of the 

manuscript within the theory of large, the first variant of the 

theory of small and the second variant of the theory of small 

initial deformations accordingly. 

In case of the quadratic elastic potential, Eqs. (19) and 
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(20) take more simple form accordingly 

( ) ( )
1 1

0 0
2 20 0 0 0

3 2(1 )
1 2 1 2

(1 2 )

P K 
   

  

+
= + = +

−
, (31) 

0 0
0 0

3 2(1 )
,

1 2

P K 
 

  

+
= =

−
 (32) 

and Eqs. (21)-(24) take the following form accordingly 

( ) ( )
1

2 2
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( ) ( )
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2 2 2
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1

2 2
0 02 5 6 7 6lxV        = + + + + + +  

( ) 3
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(35) 
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or 
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  0 02(2 ) 5 2 2(1 )     − + + + + . 

(40) 

The structure of equations for calculations of parameters 

of velocities significantly depends on the shape of elastic 

oscillations (Guz 2004). The changes of distances between 

the fixed points of the medium due to initial deformations 

are taken into account during their modeling in this 

manuscript. 

 

 

4. Initial data for numerical experiments 
 

The structures of Eqs. (31), (32) and (37)-(40) allow 

carrying out calculations for the entire interval of variation 

of the Poisson’s ratio 0<<0.5 in case of using the quadratic 

elastic potential. It follows from the structure of Eqs. (19), 

(20) and (27)-(30) that it is also necessary to have  

Table 1  

Medium 

parameters 

310 a− , 

MPa 

310 ,b−
 

MPa 

310 ,c−  

MPa 

310 ,−  

MPa 

310 ,−  

MPa 
  

Plexiglass 
3,99

0,268

−
 

7,16

3,12

−

−
 

14,4

6,77

−

−
 4,04 1,9 0,3401 

Steel 
325

269

−

−
 

309

214

−

−
 

799

483

−

−
 94,4 79,0 0,2722 

Plagiogranite 
3,87−

−
 

1,99−

−
 

6,24−

−
 39,95 26,63 0,1999 

 

 

information on the elasticity moduli of the second (λ, μ) and 

the third (a, b, c) orders to carry out concrete calculations in 

case of using an elastic potential of the Murnaghan type. 

The necessary data for a number of materials are given 

in Table 1. Data for plexiglas and steel 092c are taken from 

the study (Guz 1986), and data for plagiogranite are taken 

from the study (Prodaivoda et al. 2012). The data relating to 

the t.o.l.i.s. are given in the numerator and the data relating 

to the s.v.o.t.o.s.i.s are given in the denominator. The 

dashes in the column of plagiogranite indicate a lack of data 

for this case. 
 

 

5. Numerical results and their discussions 
 

The graphs of the change of the parameter 0P


 

depending on the value of increase of compression strains 

are given in Fig. 2 while using the quadratic elastic 

potential. The results of Fig. 2(a) relate to the linear 

approximation (Eq. (32) within the s.v.t.s.i.s.). The results 

of Fig. 2(b) relate to the nonlinear solution within the 

t.o.l.i.s. and the f.v.o.t.o.s.i.s. (Eq. (31)). The results related 

to plexiglas, steel 092c and plagiogranite within the 

quadratic elastic potential are shown in Fig. 3. 

The results of nonlinear solutions for plexiglas, steel 

092C and plagiogranite are reflected in Fig.  4 within 

various variants of the theory of initial deformations in case 

of using elastic potential of the Murnagan type. The results 

of the linear approximation are shown in Fig. 3(a).  It 

follows from the comparisons of graphs shown in Fig. 4(a) 

and 4(b) that the results of different variants of the theory of 

initial deformations differ essentially. These differences are 

numbered at times. Comparisons of Figs. 3 and 4 show that 

the results relating to different elastic potentials also differ 

among themselves essentially. For example, the value of the 

parameter 0P


for steel under deformation ε0=−0.3 within 

the elastic potential of the Murnaghan is almost larger 6 

times in comparison with the quadratic elastic potential, 

although such values unlikely have any physical 

significance. The graphs in Figs. 3-5 and in the following 

figures reflect the results of theoretical calculations within 

the mathematical modeling of the process of overall 

deformation of bodies under isotropic approximation. The 

physical interpretation of these results according to 

experimental studies should be carried out within 1
P


  
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and ε0<0.02 applying to standard structural materials. It is 

difficult to put forward similar restrictive conditions applied 

to the geological media of deep horizons of the Earth’s 

interior. If there are any known conditions regarding 

strength, stability, etc. then they must be observed. Such  

 

 

studies are the subject of separate studies and they are not 

considered in this manuscript. The results on clarification 

the nature of quantitative and qualitative effects of linear, 

nonlinear, small and large elastic deformations on elastic 

parameters of the media under study are provided in this  

  
(a) (b) 

Fig. 2 Parameter 
0P


 depending on compression deformation: (а) linear approximation (32), (b) nonlinear solution, Eq. (31) 

  

(a) (b) 

Fig. 3 Parameter 
0P


 depending on compression deformation: (а) linear approximation within the second variant of the 

theory of small initial strains (32), (b) nonlinear solution within the theory of large and the first variant of the theory of small 

initial strains (31). Violet color - plagiogranit, red - plexiglass, green - steel 092С 

  

(a) (b) 

Fig. 4 Parameter 
0P


 depending on compression deformation: (а) nonlinear solution within the second variant of the theory 

of small initial strains (20), (b) nonlinear solution within the theory of large and the first variant of the theory of small initial 

strains (19) 
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Fig. 5 Parameters
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and (39) only considering linear constituents) 
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Fig. 6 Parameters 
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Fig. 7 Parameters
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manuscript. The graphs characterizing the dependences of 

the change of parameters of velocities on the increase of 

values of compression deformation are accordingly shown 

in Figs. 5 and 6 within the linear approximation and 

nonlinear solution. The calculations are carried out for  

 

 

 

different values of Poisson’s ratio v within the quadratic 

elastic potential. It is seen that elastic pressure waves with 

actual velocity cannot propagate in the medium while 

achieving particular values of compression deformation. 

The numerical values of the critical values of compression  

  

(a) (b) 

Fig. 8 Parameters
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V
 (b) depending on compression deformation while using the quadratic elastic 

potential ((38) and (40) considering all constituents) 

  

(a) (b) 

  

(c) (d) 

Fig. 9 Parameter of pressure elastic waves depending on compression deformation: (а) linear approximation, (37) considering 

linear constituents, (b) nonlinear solution within the theory of large and the first variant of small initial strains, (37) 

considering all constituents, (с) linear approximation, (39) considering linear constituents, (d) nonlinear solution within the 

second variant of the theory of small initial strains, (39) considering all constituents 
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Fig. 10 Parameter of shear elastic waves depending on compression deformation: (а) linear approximation, (38) only 

considering linear constituents, (b) nonlinear solution within the theory of large and the first variant of small initial strains, 

(38) considering all constituents, (с) linear approximation, (40) only considering linear constituents, (d) nonlinear solution 

within the second variant of the theory of small initial strains, (40) considering all constituents 
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Fig. 11 Parameter of pressure elastic waves depending on compression deformation: (а) linear approximation, (27) only 

considering linear constituents, (b) nonlinear solution within the theory of large and the first variant of small initial strains, 

(27) considering all constituents, (с) linear approximation, (29) only considering linear constituents, (d) nonlinear solution 

within the second variant of the theory of small initial strains, (29) considering all constituents 
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deformations in linear and nonlinear solutions of t.o.l.i.s. 

and s.v.o.t.o.s.i.s. corresponding to this phenomenon differ 

among themselves. Nevertheless, there are such critical 

values of compression deformations for all values of 

Poisson’s ratio in all variants of the theory. Similar results 

are also obtained for shear waves (Figs. 7 and 8). For 

v=0.45 the parameters of velocities take the critical value at 

ε0≈−0.03 in the considered cases. Therefore, the results are 

not reflected in the figures in the accepted scales relative to 

deformations. 

Graphs of the change of the parameters of pressure and 

shear elastic waves in plexiglass (red), steels 092C (green) 

and plagiogranite (violet) depending on the increase of 

compression deformations are shown in Figs. 9-10. The 

calculations are carried out using the quadratic elastic 

potential. Similar results for these materials calculated 

using the elastic potential of the Murnaghan type are shown 

in Figs. 11-12. Comparisons of the results of Figs. 8-9 with 

Figs. 11-12 show that the results which are obtained 

through involving various elastic potentials differ 

qualitatively and quantitatively. In this case, it is necessary 

to give preference to results corresponding to the potential 

of the Murnaghan type as it is known that (Guz 1986) this 

potential correctly describes the acoustoelastic effect. In 

this example, behaviors of the change of parameters of 

pressure and shear waves fundamentally differ due to the  

 

 

increase of the value of compression deformation within the 

linear and nonlinear approximations. 

It follows from the results of Figs. 5-10 that in case of 

the quadratic elastic potentials, the values of parameters of 

velocities of pressure and shear waves decrease both at 

small (considering both versions) and large initial 

deformations due to the increase of compression 

deformation. Such results don’t coincide with available 

(Guz 1986) experimental data. Similar results obtained 

within the elastic potential of the Murnaghan type for a 

number of materials show a fundamentally different nature 

of the change. The parameters of velocities of pressure and 

shear waves up to the determined value of the compression 

deformations increase within all variants of the theory of 

initial deformations. Further, the parameters of velocities of 

both types of waves continue to increase due to the increase 

of values of compression deformations within the linear 

approximations but they decrease within the nonlinear 

solutions. There are critical values of compression 

deformation for both types of waves within the nonlinear 

solutions. Elastic volume waves with actual velocity cannot 

propagate in the medium while achieving them. Despite the 

quantitative difference in the increase of parameters of 

velocities in the initial stage of increase of values of 

compression deformation, the critical values of compression 

deformations are revealed within the considered variants of 

  
(a) (b) 

 
 

(c) (d) 

Fig. 12 Parameter of shear elastic waves depending on compression deformation: (а) linear approximation, (28) only 

considering linear constituents, (b) nonlinear solution within the theory of large and the first variant of small initial strains, 

(28) considering all constituents, (с) linear approximation, (30) only considering linear constituents, (d) nonlinear solution 

within the second variant of the theory of small initial strains, (30) considering all constituents 
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the theory and at quadratic potential in the further stages of 

deformations (at large deformations).  

Based on the obtained theoretical equations and 

numerical results, the inability to propagate elastic waves 

with real velocity in the deformed media can be explained 

as follows. Dimensions of stresses and the elasticity moduli 

are the same. The quantitative values of velocities of 

propagation of elastic waves are determined in the form of 

certain ratios of the elasticity moduli to the density of the 

medium. In case of the deformed media, ratios of values of 

components of stress tensor to the density cause nonlinear 

actions of the medium by the velocity dimension. The 

levels of normal components of stress tensor reach values 

comparable to values of the elasticity moduli of medium of 

propagation of elastic waves under high and superhigh baric 

conditions. Therefore, depending on the nature of an 

influence and stress level, the parameters of velocity of 

elastic waves can increase, decrease and turn to zero during 

the deformation process. 

 

 

6. Conclusions 
 

The dependences of pressure change and parameters 

characterizing the velocities of pressure and shear elastic 

waves on the increase of compression deformation in elastic 

isotropic media are analyzed within the linear and nonlinear 

approximations of the NLA involving various elastic 

potentials. It is shown that the results of linear and 

nonlinear solutions obtained within various elastic 

potentials differ quantitatively and qualitatively between 

themselves. The consideration of large and nonlinear 

deformations of compression allowed determining their 

critical values while achieving of which elastic pressure and 

shear waves with real velocities cannot propagate in elastic 

isotropic media. These results have important theoretical 

and applied values in the development of structural and 

substantial models of the Earth. 
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