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1. Introduction 
 

Carbon nanotubes (CNTs) have been accepted as an 

excellent candidate for the reinforcement of polymer 

composites due to their high elastic modulus, tensile 

strength and low density. The potential applications of 

polymer/CNTs are found in the field of reinforcing 

c o mp o s i t e s ,  h i g h  p e r fo r ma n c e  s t r u c t u r a l  a n d 

multifunctional composites (Thostenson et al. 2001). To 

enhance multiple properties of materials, the CNTs can be 

potentially incorporated into existing aerospace structural 

composites (Yamamoto et al. 2012). The critical challenge 

of producing polymer/CNTs composites is how to enhance 

dispersion and alignment of CNTs in a polymer matrix. Xie 

(2005) reviewed the available techniques and recent 

progress on dispersion and alignment of CNTs in the 

polymer matrix using ex situ technique, force and magnetic 

fields, electro-spinning and liquid crystalline phase induced 

methods. Material properties of carbon nanotube-reinforced 

composites (CNTRCs) have been examined by many 

investigators. The elastic properties in macro scale of 

CNTRCs through analyzing the elastic deformation of a 

representative volume element subjected to different 

loading conditions were presented by Hu and Fukunaga 

(2005). In actual applications, the CNTRCs can be 

incorporated in the structural elements such as beams,  
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plates and shells. There are a few studies on the mechanical 

behavior of the CNTRC beams in the open literature. For 

example, Yas and Heshmati (2012) presented the dynamic 

response of the nanocomposite beams with randomly 

oriented carbon nanotubes under moving load. Baltacıoglu 

et al. (2010) studied the nonlinear static response of 

laminated composite plates by discrete singular convolution 

method. Li et al. (2010) used a higher-order theory for 

static and dynamic analysis of functionally graded beams. 

For mechanical problems of the CNTRC plates, there are 

some previous reports available in the open literature (Ping 

et al. 2012). Wattanasakulpong and Ungbhakorn (2013) 

studied the bending, buckling and vibration behaviors of 

carbon nanotube-reinforced composite (CNTRC) beams 

where several higher-order shear deformation theories are 

presented and discussed in details. Tounsi et al. (2013) use a 

refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich 

plates. Akgoz et al. (2013) developed the buckling analysis 

of linearly tapered micro-columns based on strain gradient 

elasticity. Bouderba et al. (2013) analyze the 

thermomechanical bending response of FGM thick plates 

resting on Winkler-Pasternak elastic foundations. Wan et al. 

(2013) investigated a size-dependent free vibration analysis 

of composite laminated Timoshenko beam based on new 

modified couple stress theory. Zidi et al. (2014) analyse the 

bending of FGM plates under hygro-thermo-mechanical 

loading using a four variable refined plate theory. Bousahla 

et al. (2014) investigated a novel higher order shear and 

normal deformation theory based on neutral surface 
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position for bending analysis of advanced composite plates. 

Hebali et al. (2014) studied the static and free vibration 

analysis of functionally graded plates using a new quasi-3D 

hyperbolic shear deformation theory. Mahi et al. (2015), 

used a new hyperbolic shear deformation theory for 

bending and free vibration analysis of isotropic, 

functionally graded, sandwich and laminated composite 

plates. Hamidi et al. (2015) proposed a sinusoidal plate 

theory with 5-unknowns and stretching effect for 

thermomechanical bending of functionally graded sandwich 

plates. Zemri et al. (2015) proposed an assessment of a 

refined nonlocal shear deformation theory beam theory for 

a mechanical response of functionally graded nanoscale 

beam theory. Larbi Chaht et al. (2015) studied the bending 

and buckling of functionally graded material (FGM) size-

dependent nanoscale beams including the thickness 

stretching effect. Belabed et al. (2014) used an efficient and 

simple higher order shear and normal deformation theory 

for functionally graded material (FGM) plates. Ait Yahia et 

al. (2015) analyzed the wave propagation in functionally 

graded plates with porosities. Bounouara et al. (2016) used 

a nonlocal zeroth-order shear deformation theory for free 

vibration of functionally graded nanoscale plates resting on 

elastic foundation. Mercan et al. (2016) used the DSC 

method for buckling analysis of boron nitride nanotube 

(BNNT) surrounded by an elastic matrix. Demir et al. 

(2016) studied the determination of critical buckling loads 

of isotropic, FGM and laminated truncated conical panel. 

Bennoun et al. (2016) analyzed the vibration of functionally 

graded sandwich plates using a novel five variable refined 

plate theory. Draiche et al. (2016) used a refined theory 

with stretching effect for the flexure analysis of laminated 

composite plates. Boukhari et al. (2016) used an efficient 

shear deformation theory for wave propagation of 

functionally graded material plates. Akgoz et al. (2016) 

studied the bending analysis of embedded carbon nanotubes 

resting on an elastic foundation using strain gradient theory. 

Ahouel et al. (2016) investigated a size-dependent 

mechanical behavior of functionally graded trigonometric 

shear deformable nanobeams including neutral surface 

position concept. Chikh et al. (2017) studied the thermal 

buckling analysis of cross-ply laminated plates using a 

simplified HSDT. Klouche et al. (2017), investigated an 

original single variable shear deformation theory for 

buckling analysis of thick isotropic plates. Shokravi and 

Jalili (2017) analyze the vibration and stability of embedded 

cylindrical shell conveying fluid mixed by nanoparticles 

subjected to harmonic temperature distribution. Abdelhak 

and Hadji (2016) used using a refined shear deformation 

theory for buckling response of functionally graded 

sandwich plates. Ait Amar Meziane et al. (2014) proposed 

an efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under 

various boundary conditions. Attia et al. (2015) developed 

the free vibration analysis of functionally graded plates with 

temperature-dependent properties using various four 

variable refined plate theories. Al-Basyouni et al. (2015) 

investigated size dependent bending and vibration analysis 

of functionally graded micro beams based on modified 

couple stress theory and neutral surface position. Bourada et 

al. (2015) used a new simple shear and normal 

deformations theory for functionally graded beams. 

Bousahla et al. (2016) investigated the thermal stability of 

plates with functionally graded coefficient of thermal 

expansion. Houari et al. (2016) developed a new simple 

three-unknown sinusoidal shear deformation theory for 

functionally graded plates. Civalek et al. (2016) used a 

simple mathematical model of microtubules surrounded by 

an elastic matrix by nonlocal finite element method. 

Beldjelili et al. (2016) studied the hygro-thermo-mechanical 

bending of S-FGM plates resting on variable elastic 

foundations using a four-variable trigonometric plate 

theory. Bouderba et al. (2016) studied the thermal stability 

of functionally graded sandwich plates using a simple shear 

deformation theory. Abdelaziz et al. (2017) studied the 

bending, buckling and free vibration of FGM sandwich 

plates with various boundary conditions using an efficient 

hyperbolic shear deformation theory. Bellifa et al. (2016) 

studied the bending and free vibration analysis of 

functionally graded plates using a simple shear deformation 

theory and the concept the neutral surface position. Bellifa 

et al. (2017a) used a nonlocal zeroth-order shear 

deformation theory for nonlinear postbuckling of 

nanobeams. Bellifa et al. (2017b) used an efficient and 

simple four variable refined plate theory for buckling 

analysis of functionally graded plates. El-Haina et al. 

(2017) used a simple analytical approach for thermal 

buckling of thick functionally graded sandwich plates. 

Menasria et al. (2017) analyze the thermal stability of FG 

sandwich plates using a new and simple HSDT. Belkorissat 

et al. (2015) developed a new nonlocal refined four variable 

model for the vibration properties of functionally graded 

nano-plate. Khetir et al. (2017) developed a new nonlocal 

trigonometric shear deformation theory for thermal 

buckling analysis of embedded nanosize FG plates. 

Besseghier et al. (2017) studied the free vibration analysis 

of embedded nanosize FG plates using a new nonlocal 

trigonometric shear deformation theory. Mouffoki et al. 

(2017) studied the vibration analysis of nonlocal advanced 

nanobeams in hygro-thermal environment using a new two-

unknown trigonometric shear deformation beam theory. 

Zidi et al. (2017) used a novel simple two-unknown 

hyperbolic shear deformation theory for functionally graded 

beams. Yazid et al. (2018) used a novel nonlocal refined 

plate theory for stability response of orthotropic single-layer 

graphene sheet resting on elastic medium. Youcef et al. 

(2018) analysis the dynamic of nanoscale beams including 

surface stress effects. Fang et al. (2018) developed the size-

dependent three-dimensional free vibration of rotating 

functionally graded microbeams based on a modified 

couple stress theory. Attia et al. (2018) analyze the 

thermoelastic of FGM plates resting on variable elastic 

foundations using a refined four variable plate theory. Zine 

et al. (2018) developed a novel higher-order shear 

deformation theory for bending and free vibration analysis 

of isotropic and multilayered plates and shells. Abualnour et 

al. (2018) analyze the free vibration of advanced composite 

plates using a novel quasi-3D trigonometric plate theory. 

Benchohra et al. (2018) used a new quasi-3D sinusoidal 

shear deformation theory for functionally graded plates. 
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Bouafia et al. (2017) used a nonlocal quasi-3D theory for 

bending and free flexural vibration behaviors of 

functionally graded nanobeams. Lee et al. (2017) studied 

the free vibration analysis of functionally graded Bernoulli-

Euler beams using an exact transfer matrix expression. 

Tohidi and Hosseini (2017) studied the dynamic stability of 

FG-CNT-reinforced viscoelastic micro cylindrical shells 

resting on nonhomogeneous orthotropic viscoelastic 

medium subjected to harmonic temperature distribution and 

2D magnetic field. Altekin (2017) developed the free 

transverse vibration of shear deformable super-elliptical 

plates. Pradhan and Chakraverty (2015) studied the free 

vibration of functionally graded thin elliptic plates with 

various edge supports. Tagrara et al. (2015) studied the 

bending, buckling and vibration responses of functionally 

graded carbon nanotube-reinforced composite beams. 

Ghaitani et al. (2017) analyze the frequency and critical 

fluid velocity of pipes reinforced with FG-CNTs conveying 

internal flows. Tounsi et al. (2016) used an efficient and 

simple shear deformation theory for free vibration of 

functionally graded rectangular plates on Winkler-Pasternak 

elastic foundations. Kheroubi et al. (2016) used a new 

refined nonlocal beam theory accounting for effect of 

thickness stretching in nanoscale beams. Odunayo et al. 

(2016) analyze the dynamic of a transversely isotropic non-

classical thin plate. Recently, Fahsi et al. (2017) used a new 

quasi-3D HSDT for buckling and vibration of FG plate. 

Mohammadimehr et al. (2018) studied the buckling and 

vibration analyses of MGSGT double-bonded micro 

composite sandwich SSDT plates reinforced by CNTs and 

BNNTs with isotropic foam & flexible transversely 

orthotropic cores. Dihaj et al. (2018) analyze the free 

vibration analysis of chiral double-walled carbon nanotube 

embedded in an elastic medium using non-local elasticity 

theory and Euler Bernoulli beam model. 

This study deals with free vibrations analysis with 

stretching effect of nanocomposite beams reinforced by 

single-walled carbon nanotubes (SWCNTs) resting on an 

elastic foundation. The single-walled carbon nanotubes 

(SWCNTs) are aligned and distributed in polymeric matrix 

with different patterns of reinforcement. The material 

properties of the CNTRC beams are estimated by using the 

rule of mixture. The significant feature of this model is that, 

in addition to including the shear deformation effect and 

stretching effect it deals with only 4 unknowns without 

including a shear correction factor. The governing equations 

are derived through using Hamilton’s principle and then 

solved by using the Navier solution. New solutions of 

frequencies based on the present shear deformation theory 

with stretching effect are presented and discussed in details. 

Several aspects of spring constants, thickness ratios, 

stretching effect, CNT volume fractions, types of CNT 

distribution, etc., which have considerable impact on the 

analytical solutions, are also investigated. 
 

 

2. Material properties of CNTRC beams 
 

The uniform distribution (UD) and functionally graded 

distributions (FG-V, FG-O> and FG-X) of carbon 

nanotubes in the thickness direction of the composite beams 

(z axis direction) are shown in Fig. 1. In this figure the 

density of CNTs within the area is constant and the volume 

fraction varies through the thickness of the beam. We used 

an embedded carbon nanotube in a polymer matrix. Thus 

there is no abrupt interface between the CNT and polymer 

matrix in the entire region of the beam. It is assumed the 

CNTRC beams are made of a mixture of SWCNTs and an 

isotropic matrix. The rule of mixture is employed to 

estimate the effective material properties of CNTRC beams. 

According to rule of mixture model the effective Young’s 

modulus and shear modulus of CNTRC beams can be 

expressed as Shen (2009). 
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where 
cntE11 ;

cntE22 and 
cntG12  are the Young’s modulus and 

shear modulus of SWCNT, respectively and Ep and Gp are 

the corresponding material properties of the polymer 

matrix.  Also, Vcnt and Vp are the volume fractions for 

carbon nanotube and the polymer matrix, respectively, with 

the relation of 1=+ Pcnt VV . To introduce the size-

dependent material properties of SWCNT, the CNT 

efficiency parameters, i  (i = 1, 2, 3), are considered. 

They can be obtained from matching the elastic moduli of 

CNTRCs estimated by the MD simulation with the 

numerical results determined by the rule of mixture (Han 

and Elliott 2007). By employing the same rule, Poisson’s 

ratio (v) and mass density (ρ) of the CNTRC beams are 

expressed as 

p
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where 
cnt , 

p  and 
cnt , 

p  are the Poisson’s ratios 

and densities of the CNT and polymer matrix respectively. 

For different patterns of carbon nanotube reinforcement 

distributed within the cross sections of the beams as shown 

in Fig. 1(b), the continuous mathematical functions 

employing for introducing the distributions of material 

constituents are expressed below  
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Fig. 1 Geometry of a CNTRC beam on elastic foundation 

(a); and cross sections of different patterns of reinforcement 

(b) 
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where 
*

cntV   is the considered volume fraction of CNTs, 

which can be determined from the following equation 
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where Wcnt is the mass fraction of CNTs. From Eq. (3), it 

can be seen that the O-, X-and V-Beams are some types of 

functionally graded beams in which their material 

constituents are varied continuously within their 

thicknesses; while, the UD-Beam has uniformly distributed 

CNT reinforcement. In this work, the CNT efficiency 

parameters ( )i  associated with the considered volume 

fraction 
*

cntV  are : 2833.11 =  and 

0556.132 ==  for the case of 12.0* =cntV  ; 

3414.11 =  and 7101.132 ==  for the case of 

17.0* =cntV  ; 3228.11 =  and 7380.132 ==  

for the case of 28.0* =cntV  (Yas and Samadi 2012). 

 

 

3. Equations of motion 
 

3.1 Kinematics and constitutive equations 
 

Consider a shear deformation beam theory, the 

displacement field consisting of the axial displacement, u , 

and the transverse displacement, w , can be written in the 

following forms  

x

w
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where 0u  is the axial displacement, bw  and sw  are the 

bending and shear components of transverse displacement 

along the mid-plane of the beam. The additional 

displacement 
z  accounts for the effect of normal stress is 

included and ( )zg  is given as follows 

( ) ( )zfzg '1−=  (6a) 

In this work, the shape function ( )zf  is chosen based 

on a trigonometric function as (Tounsi et al. 2013) 
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Clearly, the displacement field in Eq. (5) contains only 

four unknowns ( )zsb wwu ,,,0 . The strains associated 

with the displacements in Eq. (5) are 
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It can be seen from Eq. (7c) that the transverse shears 

strain  xz  is equal to zero at the top ( )2/hz =   and 

bottom ( )2/hz −=  surfaces of the beam, thus satisfying 

the zero transverse shear stress conditions. 

By assuming that the material of CNTRC beam obeys 

Hooke’s law, the stresses in the beam become 

zxx zQzQ   )( )( 1311 +=  (8a) 
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3.2 Governing equations          
 

Hamilton’s principle is employed herein to determine 

the equations of motion as follows    
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where t is the time; 
1t  and 

2t  are the initial and end time, 

respectively; U   is the virtual variation of the strain 

energy; efU is the potential energy of the foundation; and 

T  is the virtual variation of the kinetic energy. The 

variation of the strain energy of the beam can be stated as 

 

dx
dx

d

dx

wd
Q

dx

wd
M

dx

wd
MN

dx

ud
N

dzdxU

s

xz

s

s

b

bz

L

x

L h

h

xzxzzzxx

])[

(

2

2

2

2

0

0

0

2/

2/










++−

−=

++=



 
−

 (10) 

where xN , 
b

xM , 
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resultants defined by  
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Also, the potential energy of the foundation is expressed 

as 

( ) ( )
( )

( ) dxww
x

ww
KwwwwKU

L

sb
sb

ssbsbwef  







+



+
−++=

0

2

2

  
(12) 

where wK  and sK  are the Winkler and shearing layer 

spring constants which can be determined from 
2

110 / LAK ww =  and 110AK ss =   in which w  

and s  are the corresponding spring constant factors. It is 

also defined that 110A  is the extension stiffness or the 

value of 
11A  of a homogeneous beam made of pure matrix 

material. If the foundation is modelled as the linear Winkler 

foundation, the coefficient sK  in Eq. (12) is zero.  

The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; and ( iI ,

iJ  , iK ) are mass inertias defined as  
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Substituting the expressions for U , efU , and T  

from Eqs. (10), (12), (24), and (13) into Eq. (9) and 

integrating by parts, and collecting the coefficients of 0u , 

bw , sw  and 
z , the following equations of motion 

of the FG beam are obtained 
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Eq. (12) can be expressed in terms of displacements (

zsb wwu ,,,0 ) by using Eqs. (5), (7), (8) and (11) as 

follows 
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where 
11A , 

11D , etc., are the beam stiffness, defined by 
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4. Analytical solution 
 

The equations of motion admit the Navier solutions for 

simply supported beams. The boundary conditions for 

simply supported and clamped edge condition are  

0=== zsb ww   at Lx ,0=  (18) 

The following representation for the displacement 

quantities, that satisfy the above boundary conditions, is 

appropriate in the case of our problem  
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where mU , bmW ,  smW  and zmW  are arbitrary 

parameters to be determined,   is the eigenfrequency 

associated with m th eigenmode, and Lm / = .  

Substituting the expressions of 0u , bw , sw , 
z  

from Eq. (19) into the equations of motion of Eq. (16), the 

analytical solutions can be obtained from the following 

equations 
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and  

 

(22) 
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Fig. 2 Effect of Winkler modulus parameter on the 

fundamental frequencies of CNTRC beams ( 10/ =hL ;

0=s ; 12.0* =cntV ) 

 
 
5. Results and discussion 
 

In this section, numerical results of vibration behavior 

of CNTRC beams are presented and discussed. The 

effective material characteristics of CNTRC beams at 

ambient temperature employed throughout this work are 

given as follows. Poly methyl methacrylate (PMMA) is 

utilized as the matrix and its material properties are: 

3.0=p ;  
3/1190 mkgp = a n d  GPaE p 5.2= . 

For reinforcement material, the armchair (10, 10) SWCNTs 

is chosen with the following properties (Tagrara et al. 2015, 

Y a s  a n d  S a m a d i  2 0 1 2 ) :  ;19.0=cnt   

 

 

;/1400 3mkgcnt = ;60011 GPaE cnt =

GPaE cnt 1022 =  and GPaGcnt 2.1712 = . 

For convenience, the following nondimensionalization 

is employed 

110

00

A

I
L =  (23) 

where 110A  and 00I  are 
11A  and 0I  of beam made of 

pure matrix material, respectively. 

 

5.1 Results for vibration analysis of CRTRC beams 
 

In order to prove the validity of the present formulation 

in the case of vibration analysis with 0z , the 

computed frequencies of CNTRC beams are numerically 

compared with those of Wattanasakulpong and Ungbhakorn 

(2013), Yas and Samadi (2012) and Tagrara et al. (2015) in 

Table 1. It can be observed that our results with ( )0z  

are in an excellent agreement to those predicted using the 

higher order shear deformation theory of Wattanasakulpong 

and Ungbhakorn (2013) and Tagrara et al. (2015) with  
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Fig. 3 Dimensionless fundamental frequencies of X-Beam 

on elastic foundation with various spring constant factors (

10/ =hL ; 12.0* =cntV ) 
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Fig. 4 Dimensionless fundamental frequencies of X Beam 

on elastic foundation with various thickness ratios (

1.0=w ; 02.0=s ) 

 

Table 1 Comparison of fundamental frequencies for 

CNTRC beam with and without elastic foundation (

,15/ =hL  12.0* =cntV ). 

Source 
,0=w  0=s  ,1.0=w  02.0=s

 

UD O X V UD O X V 

FSDBT  

(Wattanasakulpong 

and Ungbhakorn 

2013) 

0.9976 0.7628 1.1485 0.8592 1.1339 0.9339 1.2688 1.0142 

TSDBT 

(Wattanasakulpong 

and Ungbhakorn 

2013) 

0.9749 0.7446 1.1163 0.8443 1.1140 0.9192 1.2397 1.0016 

Yas and Samadi 

(2012) 
0.9753 0.7527 1.1150 0.9453 1.1144 0.9258 1.2386 1.0883 

Tagrara et al. 

(2015) 
0.9749 0.7446 1.1163 0.8442 1.1140 0.9192 1.2397 1.0015 

Present ( 0z ) 0.9458 0.7189 1.0882 0.8258 1.0885 0.8982 1.2144 0.9859 

 

 
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( )0=z  . However, the small difference found between 

the results is due to that the theories presented by 

Wattanasakulpong and Ungbhakorn (2013) and Tagrara et 

al. (2015) ignore the thickness stretching effect. 

Fig. 2 illustrate the variation of the fundamental 

frequency parameter ( ) with stretching effect of different 

types of CNTRC beams with Winkler modulus parameter. It 

can be deduced from Fig. 2 that frequency of the X-Beam 

are higher than those of beams with other CNTs 

distributions. The effects of Pasternak shear modulus and 

CNT volume fractions on frequency parameter of the X-

Beam are showns in Figs. 3 and 4, respectively. It can be 

deduced from Fig. 3 that the frequencies increase almost 

linearly as the increase of the spring constant factors. It is 

seen that frequencies increase linearly as the spring constant 

factors increase. In addition, the increase of CNT volume 

fractions conducts to an increase of frequencies. It is seen 

that the increase of thickness ratios leads to a decrease of 

frequencies, especially in the range of hL /  = 10 to 30.  

 

 

6. Conclusions 
 

In this paper, based on the refined beam theory, the free 

vibration with stretching effect of nanocomposite beams 

reinforced by single-walled carbon nanotubes resting on an 

elastic foundation have been studied. The equations of 

motion have been determined through the Hamilton’s 

principle. The material properties have been estimated 

though the rule of mixture. The numerical results reveal that 

the distribution of CNT, foundation stiffness, stretching 

effect and volume fraction of CNT have significant effects 

on the natural frequencies of the CNTRC beams. The 

obtained results show the beams with FG-X distribution 

have higher fundamental frequency in comparison with 

other distributions. Increase in the spring constant factors of 

the elastic foundation results in increase of the frequency of 

the beam. The frequencies increase almost linearly as the 

increase of the spring constant factors. It is seen that 

frequencies increase linearly as the spring constant factors 

increase. In addition, the increase of CNT volume fractions 

conducts to an increase of frequencies. For the effect of 

thickness ratio, it is revealed that the frequencies of 

CNTRC beams decrease as the increase of the thickness 

ratios. 
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CC 

 

 

Nomenclature 
 

,11

cntE ,22

cntE pE  elastic moduli for CNT and matrix 

,11E 22E  elastic moduli for a nanocomposite 

,12

cntG pG  
shear modulus for carbon nanotube 

and matrix 

cntV  , pV  
volume fractions of carbon 

nanotube and matrix 

cntW  mass fraction of carbon nanotube 

i  
carbon nanotube efficiency 

parameters 

u , w  
axial displacement and transverse 

deflection 

0u , bw
 sw  

axial displacement, the bending 

and shear components of 

transverse displacement along the 

mid-plane of the beam 

L , b
 

h  
length, width and height of the 

beam 

,x xz  normal stress and shear stress 
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11A , 11B , 11D , 55A  beam stiffness components. 

0I , 1I , 2I , 0J , 1J , 

2J , 0K , 2K  

inertia term 

wK , sK , w , s  
Winkler and shearing layer spring 

constants and the corresponding 

spring constant factors 

  dimensionless natural frequency 
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