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1. Introduction 
 

For the time being, laminated composite plates attract 

more and more attention every day, thanks to their various 

features, strength and good mechanical resistance. 

However, it costs a lot of money in order to determine their 

mechanical and physical characteristics throw various 

experiments, this impediment pushed scientists to adopt 

mathematical solutions to create models that represents the 

real behavior of composite plates, beam and shells (Mahi 

2015, Attia 2018, Bounouara 2016, Zine 2018, Chikh 

2017). The most interesting of these mathematical models 

are those which takes into account the shear effect in term 

of deducing the deformations and stresses such as: The first 

order shear deformation theory introduced by Reissner 

(1945) and Mindlin (1951) takes into account the shear 

effect in deformations and stresses; however, this presented 

a huge deficiency due its linear distribution of the shear 

stresses throw the thickness which requires the introduction 

of the shear correction factors Srivinas (1970), Whitney 

(1973), Bert (1974). In order to remedy this previous 

handicap, a numerous high order shear deformation theories 

has seen the light of day, starting with Librescu (1967), 

Levinson (1980), Bhimaraddi and Stevens (1984), Reddy 

(1984), Ren (1986), Kant and Pandya (1988). The refined 

high order shear deformation theory has appeared to  
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simplify the mathematical formulation by reducing the 

number of unknown functions Adim (2016a), Abdelhak 

(2015), Abdelhak (2016), Daouadji (2015), Nedri (2014), 

Thai (2013), Tlidji (2014), Beldjelili (2016), Tounsi (2013), 

Bouderba (2013), Zidi (2014), Ait Yahia (2015), Boukhari 

(2016), Bellifa (2016), Youcef (2018), Zemri (2015), 

Ahouel (2016), Larbi Chaht (2015), Belkorissat (2015), 

Khetir (2017), Besseghier (2017), Al-Basyouni (2015). The 

most interesting feature of this refined theory is that it does 

not require shear correction factor, and has strong 

similarities with the classical plate theory in some aspects 

such as simplicity and ease of resolving. 

The stretching effect was introduced in the displacement 

field for the purpose of taking into account the deformation 

in the thickness, Bourada (2015), Hebali (2014), Bennoun 

(2016), Bousahla (2014), Draiche (2016), Hamidi (2015), 

Belabed (2014), Abualnour (2018), Benchohra (2018). In 

the literature we can find a numerous research talking about 

the buckling and post-buckling behavior and how to 

analyze this phenomena that touches directly the plate’s 

stability, Bousahla (2016), Bellifa (2017a), El-Haina 

(2017), Menasria (2017), Bouderba (2016), Ait Amar 

(2014), Abdelaziz (2017), Bellifa (2017b), Yazid (2018). 

In this paper, a simple refined theory is used to study the 

buckling behavior of Carbon/Glass hybrid laminated 

composite plates under mechanical load. This theory allows 

for a parabolic distributions of transverse shear stresses 

across the plate thickness and satisfies zero shear stress 

conditions at the top and bottom surfaces of the hybrid plate 

and does not require any shear correction factors. The 
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equilibrium equations are derived from virtual 

displacement’s principle. The critical buckling loads are 

found using the Navier’s solution. For validation purposes, 

the results obtained using the present theory are compared 

with results of other higher-order theories from the 

literature.   

 

 

2. Material properties 
 

In addition of the matrix, most composite structures are 

made of one type of fibers which means that the composite 

properties depend on this particular type of fibers. If this 

fiber presents a handicap like fragility or low strength, the 

all structure will be vulnerable to damage or failure. 

Hybrid composite plates are made of more than one type 

of fibers, generally two types; this promising technology 

provides a various features like reducing manufacturing 

cost or improving a specific quality of one of the fibers such 

as (wear resistance, vibration damping, toughness, strength, 

temperature resistance, Electrical conductivity, etc.). 

In this study a laminated hybrid Carbon/Glass epoxy 

plate is considered, the longitudinal and transversal Young 

moduli are given Vaseliev (2001) by 

1 1 2 2
1 f f f f m mE E V E V E V= + +  (1) 

Where 1E  is longitudinal Young’s modulus. 1
fE , 2

fE  

and mE  are the Young’s moduli of the first type of fibers, 

the second type of fibers and the matrix respectively. 1
fV , 

2
fV  and mV are the volume fraction of the first type of 

fibers, the second type of fibers and the matrix, respectively, 

where 

1 2
f f mV V V 1+ + =  and 1 2

f f fV V V+ =  (2) 

Assuming that 

1
f

f

f

V
w

V
=  (3) 

Where 
fw  is the first fiber percentage over the total 

fiber’s volume fraction. 

By replacing Eq. (3) into Eq. (1) we obtain 

1 2
1 f f f f f m mE V [E w E (1 w )] E V= + − +  (4) 

Using the same approach, the Poisson’s coefficient can 

be calculated by 

1 2
12 f f f f f m mV [ w (1 w )] V =  + − +  (5) 

The shear modulus of the fibers and the matrix are 

expressed in Berthelot (2012) by 

m
m

m

E
G

2 (1 )
=

+
 (6a) 

1
1 f
f 1

f

E
G

2 (1 )
=

+ 
 (6b) 

2
2 f
f 2

f

E
G

2 (1 )
=

+ 
 (6c) 

Where 1
fG , 2

fG  and mG are the shear modulus of the 

first type of fibers, the second type of fibers and the matrix, 

respectively, also the total shear modulus of fibers is given 

by 

1 2
f f f f fG G w G (1 w )= + −  (7) 

The compressibility modulus of the fibers and the 

matrix are given as 

1 2
f f f f

f 1 2
f f

E w E (1 w )
k

3 (1 2 ) 3 (1 2 )

−
= +

−  − 
 (8a) 

m
m

m

E
k

3 (1 2 )
=

− 
 (8b) 

The lateral compressibility modulus of the fibers and the 

matrix are given as 

f
f f

G
K k

3
= +  (9a) 

m
m m

G
K k

3
= +  (9b) 

The shear moduli of the plate are 

f
23 m

m m m
m

f m m m

V
G G 1

G k 7G / 3
V

G G 2k 8G / 3

 
 
 = +

+ 
+ − + 

 
(10a) 

f f m f
12 m

f f m f

G (1 V ) G (1 V )
G G

G (1 V ) G (1 V )

+ + −
=

− + +
 (10b) 

13 12G G=  (10c) 

The lateral compressibility modulus of the plate is given 

as 

f
L m

f

f m f m m m

V
K K

1 V1

k k (G G ) / 3 k (4 / 3)G

= +
−

+
− + − +

 
(11) 

Using equations from (4) to (11), the transversal 

Young’s modulus is given as follows 

2 2
12

L 23 1

2
E

2( )1 1

2K 2G E

=


+ +

 
(12) 

 

 

3. Kinematics 
 

Based on the assumptions made By Daouadji (2017), 

the displacement field can be obtained as 
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b s
0

b s
0

b s

w wz
u(x, y, z) u (x, y) z z sin

x h x

w wz
v(x, y, z) v (x, y) z z sin

y h y

w(x, y, z) w (x, y) w (x, y)

   
= − − −  

   

   
= − − −  

   

= +

 (13) 

Where u and v are the mid-plane displacements of the 

plate in the “ x ” and “ y ” direction, respectively; bw  and 

sw  are the bending and shear components of transverse 

displacement, respectively. 

The strains associated with the displacements in Eq. 

(13) are 

0 b s
x x x x

0 b s
y y y y

0 b s
xy xy xy xy

s
yz yz

s
xz xz

z

z k f  k

z k f  k

z k f  k

g 

g 

0

 =  + +

 =  + +

 =  + +

 = 

 = 

 =

 (14) 

Where 

0 0
x

u

x


 =


,   

2
b b
x 2

w
k

x


= −


,   

2
s s
x 2

w
k

x


= −


,   

0 0
y

v

y


 =


, 0 0 0

xy

u v

y x

 
 = +

 
, 

2
b b
xy

w
k 2

x y


= −

 
, 

2
s s
xy

w
k 2

x y


= −

 
,   

2
b b
y 2

w
k

y


= −


,   

2
s s
y 2

w
k

y


= −


,

s s
yz

w

y


 =


,  s s

xz

w

x


 =


, g(z) 1 f '(z)= −  and   

df (z)
f '(z)

dz
=  

(15) 

 

 

4. Constitutive equations 
 

Since the Hybrid laminated plates is made of several 

orthotropic layers with their material axes oriented 

arbitrarily with respect to the laminate coordinates, the 

constitutive equations of each layer must be transformed to 

the laminate coordinates (x,y,z). The stress-strain relations 

in the laminate coordinates of the kth layer are given as 

(k) (k)(k)
xx 11 12 16

yy 12 22 26

xyxy 16 26 66

44 45 yzyz

45 55 xzxz

Q Q Q 0 0

Q Q Q 0 0

Q Q Q 0 0

0 0 0 Q Q

0 0 0 Q Q

     
         
      =   

    
     

         

 (16) 

Where ijQ are the transformed material constants 

detailed in Adim (2016c). 

5. Governing equations 
 

The strain energy of the hybrid composite plate can be 

written as 

ij ij x x y y xy xy yz yz xz xz
V V

1 1
U dV ( )dV

2 2
=   =   +  +  +  +  

 (17) 

The work done by applied forces can be written as 

2 2 2
0 0 0b s b s b s
x y xy2 2A

(w w ) (w w ) (w w )1
V N N 2N dxdy

2 x yx y

  +  +  +
= + + 

    


 
(18) 

Where
0
xN  , 0

yN  and 0
xyN  are in-plane distributed 

forces. 

Virtual work principle is used here in order to derive the 

equilibrium equations appropriate to the displacement field 

and the constitutive equations. The principle can be stated 

in analytical form as 

U V 0+ =  (19) 

Substituting Eqs. (16) and (18) into Eq. (19) and 

integrating the equation by parts, collecting the coefficients 

of 0u , 0v , bw  and sw , the equilibrium equations for 

the hybrid laminated plate are obtained as follows 

xyx
0

NN
u : 0

x y


 + =

 
 

xy y

0

N N
v : 0

x y

 
 + =

 
 

2 b 2 b2 b
xy yx

b 2 2

M MM
w : 2 N(w) 0

x yx y

 
 + + + =

  
 

2 s 2 s s2 s s
xy y yzx xz

s 2 2

M M QM Q
w : 2 N(w) 0

x y x yx y

   
 + + + + + =

    

 

(20) 

  

Where N(w)  is defined by 

2 2 2
0 0 0b s b s b s
x y xy2 2

(w w ) (w w ) (w w )
N(w) N N 2N

x yx y

 +  +  +
= + +

  

 
(21) 

 

 

6. Exact solution for antisymmetric cross-ply 
laminates 
 

For antisymmetric cross-ply laminates, the following 

plate stiffnesses are identically zero 

s s s s

16 26 16 26 16 26 16 26A A D D D D H H 0= = = = = = = = , 

22 11B B= − , s s

22 11B B= −  

s s s s s

12 26 16 66 12 16 26 66 45B B B B B B B B A 0= = = = = = = = =  

(22) 

The exact solution of Eq. (20) for the antisymmetric 

cross-ply laminated plate under various boundary 

conditions can be constructed according to Adim (2016b). 

The boundary conditions for an arbitrary edge with simply 

supported and clamped edge conditions are: 

• Clamped (C) 
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Table 1 The admissible functions Xm(x) and Yn(y)  

 

Boundary conditions  The functions 
mX (x)  and 

nY (y)  

At  x=0, a At  y=0, b  mX (x)  
nY (y)  

SSSS 
m mX (0) X (0) 0= =  

n nY (0) Y (0) 0= =   

sin( x)  sin( y)  

m mX (a) X (a) 0= =  
n nY (b) Y (b) 0= =   

CSSS 
m mX (0) X (0) 0= =  

n nY (0) Y (0) 0= =  
 

sin( x)[cos( x) 1]  −  sin( y)  

m mX (a) X (a) 0= =  
n nY (b) Y (b) 0= =  

 

CSCS 
m mX (0) X (0) 0= =  

n nY (0) Y (0) 0= =   

sin( x)[cos( x) 1]  −  sin( y)[cos( y) 1]  −  

m mX (a) X (a) 0= =  
n nY (b) Y (b) 0= =   

CCSS 
m mX (0) X (0) 0= =  

n nY (0) Y (0) 0= =   
2sin ( x)  sin( y)  

m mX (a) X (a) 0= =  
n nY (b) Y (b) 0= =   

CCCC 
m mX (0) X (0) 0= =  

n nY (0) Y (0) 0= =   
2sin ( x)  2sin ( y)  

m mX (a) X (a) 0= =  
n nY (b) Y (b) 0= =   

FFCC 
m mX (0) X (0) 0 = =  

n nY (0) Y (0) 0= =
 

 
2 2cos ( x)[sin ( x) 1]  +  2sin ( y)  

m mX (a) X (a) 0 = =  
n nY (b) Y (b) 0= =   

'( )  denotes the derivative with respect to the corresponding 

coordinates. 
 

 

b b s s
0 0 b s

w w w w
u v w w 0

x y x y

   
= = = = = = = =

   
  

at  x 0,a=   and  y 0, b=  

(23) 

• Simply supported (S) 

b s
0 b s

w w
v w w 0

y y

 
= = = = =

 
 at

 x 0,a=  

(24a) 

b s
0 b s

w w
u w w 0

x x

 
= = = = =

 
 at

 y 0,b=   

(24b) 

The boundary conditions in Eq. (23) and (24) are 

satisfied by the following expansions 

0 mn m n

0 mn m n

b bmn m n

s smn m n

u U X (x) Y (y)

v V X (x) Y (y)

w W X (x) Y (y)

w W X (x) Y (y)

=

=

=

=

 (25) 

Where Umn, Vmn, Wbmn and Wsmn unknown parameters 

must be determined. The functions 
mX (x)  and nY (y)  are 

suggested here to satisfy at least the geometric boundary 

conditions given in Eqs. (23) and (24) and represent 

approximate shapes of the deflected surface of the plate. 

These functions, for the different cases of boundary 

conditions, are listed in Table 1, with m

a


 =   and 

n

b


 =

. 

Substituting Eqs. (25) and (22) into Eq. (20), the exact 

solution of antisymmetric cross-ply laminates can be 

determined from equations 

11 12 13 14 mn

21 22 23 24 mn

31 32 33 34 bmn

41 42 43 44 smn

s s s s U 0

s s s s V 0

s s s k s k W 0

s s s k s k W 0

     
     

     =   
 + +    
 

   + +     

 (26) 

Where 

( )
a b

''' ' '' '
11 11 m n 66 m n m n

0 0

s A X Y A X Y X Y dxdy= +   

( )
a b

' '' '
12 12 66 m n m n

0 0

s A A X Y X Y dxdy= +   

( )
a b

'' ' '' '
13 11 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = − + +
    

( )
a b

s '' s s ' '' '
14 11 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = − + +
    

( )
a b

'' ' '
21 12 66 m n m n

0 0

s A A X Y X Y dxdy= +   

( )
a b

''' '' ' '
22 22 m n 66 m n m n

0 0

s A X Y A X Y X Y dxdy= +   

( )
a b

''' '' ' '
23 22 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = − + +
    

(27a) 

( )
a b

s ''' s s '' ' '
24 22 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = − + +
    

( )
a b

'''' '' ''
31 11 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = + +
    

( )
a b

'''' '' ''
32 22 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = + +
    

( )
a b

'''' '' '' ''''
33 11 m n 12 66 m n 22 m n m n

0 0

s D X Y 2 D 2D X Y D X Y X Y dxdy = − + + +
  

 

( )
a b

s '''' s s '' '' s ''''
34 11 m n 12 66 m n 22 m n m n

0 0

s D X Y 2 D 2D X Y D X Y X Y dxdy = − + + +
  

 

( )
a b

s '''' s s '' ''
41 11 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = + +
    

( )
a b

s '''' s s '' ''
42 22 m n 12 66 m n m n

0 0

s B X Y B 2B X Y X Y dxdy = + +
    

( )
a b

s '''' s s '' '' s ''''
43 11 m n 12 66 m n 22 m n m n

0 0

s D X Y 2 D 2D X Y D X Y X Y dxdy = − + + +
  

 

( )
a b

s '''' s s '' '' s '''' s '' s ''
44 11 m n 12 66 m n 22 m n 55 m n 44 m n m n

0 0

s H X Y 2 H 2H X Y H X Y A X Y A X Y X Y dxdy = − + + + − −
  

 

( )
a b

'' ''
cr 1 m n 2 m n m n

0 0

k N X Y X Y X Y dxdy=  +    

(27b) 

0
x 1 crN N=  , 0

y 2 crN N=  , and 0
xyN 0=  (28) 

And 
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Table 2 Dimensionless uniaxial critical buckling load N of 

simply supported antisymmetric cross-ply (0/90)n square 

composite laminates 

Theory 
Number of layers 

2(0 / 90)  
3(0 / 90)  

5(0 / 90)  

Exact Noor (1975) 21.2796 23.6689 24.9636 

Reddy (1984) 22.5790 24.4596 25.4225 

Adim (2016c) 22.5821 24.4605 25.4223 

Present 22.5530 24.4607 25.4354 

FSDT Whitney(1970) 22.8060 24.5777 25.4500 

 
Table 3 The volume fraction Vf effect on the variation of 

critical buckling load N  of a square antisymmetric cross-

ply )90/0(  
hybrid composite laminates 

Fiber’s 

percentages (%) 
 Vf 

Carbon Glass  0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

0 100  4.5340 4.5948 4.6346 4.6549 4.6566 4.6405 4.6068 4.5555 4.4859 

10 90  4.8254 4.9013 4.9503 4.9743 4.9745 4.9520 4.9072 4.8405 4.7514 

20 80  5.1036 5.1947 5.2531 5.2809 5.2798 5.2512 5.1958 5.1143 5.0065 

30 70  5.3731 5.4792 5.5468 5.5783 5.5759 5.5410 5.4757 5.3787 5.2522 

40 60  5.6365 5.7547 5.8340 5.8691 5.8652 5.8241 5.7474 5.6361 5.4907 

50 50  5.8952 6.0308 6.1162 6.1549 6.1493 6.1019 6.0144 5.8881 5.7238 

60 40  6.1503 6.3003 6.3944 6.4364 6.4293 6.3756 6.2773 6.1360 5.9526 

70 30  6.4022 6.5665 6.6692 6.7145 6.7058 6.6457 6.5366 6.3803 6.1780 

80 20  6.6514 6.8298 6.9410 6.9896 6.9791 6.9127 6.7930 6.6218 6.4006 

90 10  6.8982 7.0905 7.2101 7.2618 7.2497 7.1771 7.0467 6.8607 6.6207 

100 0  7.1427 7.3488 7.4766 7.5315 7.5177 7.4389 7.2980 7.0973 6.8386 

 

Table 4 The effect of side to thickness ratio a/h on critical 

buckling load N  of a square antisymmetric cross-ply 

4(0 / 90)  hybrid composite laminates 

Fiber’s percentages 

(%) 
 a/h 

Carbon Glass  5 10 20 50 100 

0 100  3.8508 4.6549 4.9125 4.9899 5.0012 

10 90  4.0741 4.9743 5.2668 5.3551 5.3679 

20 80  4.2865 5.2809 5.6081 5.7072 5.7217 

30 70  4.4899 5.5783 5.9408 6.0510 6.0671 

40 60  4.6859 5.8691 6.2677 6.3893 6.4072 

50 50  4.8759 6.1549 6.5905 6.7240 6.7436 

60 40  5.0604 6.4364 6.9103 7.0561 7.0774 

70 30  5.2310 6.7145 7.2277 7.3862 7.4094 

80 20  5.4152 6.9896 7.5432 7.7148 7.7310 

90 10  5.5862 7.2618 7.8572 8.0423 8.0695 

100 0  5.7534 7.5315 8.1697 8.3689 8.3981 

 
 

7. Numerical results and discussion 
 

In this study, a buckling analysis of a Carbon/Glass 

hybrid laminated composite plate is presented using a 

refined shear deformation theory. The exact solution is used  

Table 5 The stacking effect on the critical buckling load N  

of a square antisymmetric cross-ply n(0 / 90)  hybrid 

composite laminates 

Number of layers a/h 

Fiber’s percentages (%) 

100% Glass 

25% Carbon 

+ 

75% Glass 

50% Carbon 

+ 

50% Glass 

100% Carbon 

 

5 3.8508 4.3892 4.8759 5.7534 

10 4.6549 5.4306 6.1549 7.5315 

20 4.9125 5.7753 6.5905 8.1697 

100 5.0012 5.8952 6.7436 8.3981 

 

5 4.5863 5.7549 6.7016 8.1378 

10 5.8510 7.9322 9.8659 13.3391 

20 6.2864 8.7664 11.1982 15.9098 

100 6.4399 9.0722 11.7051 16.9588 

 

5 4.7311 6.0156 7.0429 8.5763 

10 6.0748 8.3923 10.5378 14.3616 

20 6.5414 9.3187 12.0446 17.3176 

100 6.7064 9.6605 12.6235 18.5429 

 

5 4.7827 6.1087 7.1650 8.734491 

10 6.1534 8.5538 10.7735 14.7198 

20 6.6307 9.5121 12.3409 17.8100 

100 6.7996 9.8664 12.9450 19.0973 

 

5 4.8068 6.1521 7.2220 8.8087 

10 6.1898 8.6287 10.8827 14.8859 

20 6.6720 9.6016 12.4781 18.0379 

100 6.8428 9.9617 13.0938 19.3539 

 

5 4.8199 6.1758 7.2532 8.8492 

10 6.2096 8.6694 10.9421 14.9761 

20 6.6945 9.6503 12.5526 18.1617 

100 6.8663 10.0135 13.1746 19.4933 

 

5 4.8330 6.1994 7.2842 8.8897 

10 6.2294 8.7099 11.0012 15.0659 

20 6.7168 9.6986 12.6268 18.2848 

100 6.8896 10.0649 13.2550 19.6318 

 

5 4.8465 6.2222 7.3143 8.9290 

10 6.2484 8.7490 11.0582 15.1526 

20 6.7384 9.7453 12.6982 18.4036 

100 6.9120 10.1146 13.3325 19.7655 

 

 

here to determine the critical buckling loads. For validation 

purposes, the mechanical characteristics of the composite 

plate used are: Material 1 Noor (1975): E1 = 40E2, G12 = 

G13 = 0,6E2, G23 = 0,5E2, 12 = 0,25. Where, the results 

obtained by the present theory are compared with those of 

the FSDT Whitney (1970), Adim (2016c), Reddy (1984) 

and exact solution of three-dimensional elasticity Noor 

(1975). For convenience, the dimensionless critical 

buckling load is obtained using the following formula 

2

cr 3
2

a
N N

E h

 
=  

 
 

 (29) 

1)90/0(

2)90/0(

3)90/0(

4)90/0(

5)90/0(

6)90/0(

8)90/0(

16)90/0(
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Table 6 The effect of boundary conditions on critical 

buckling load N  of a square antisymmetric cross-ply 

4(0 / 90)  hybrid (Carbon/Glass) composite laminates 

wf (%)  Boundary Conditions 

Carbon Glass  SSSS CSSS CSCS SSCC CCCC FFCC 

0 100  6.1534 8.1311 12.4298 11.0248 16.6528 20.6684 

10 90  7.1338 9.4445 14.3314 12.8132 19.1701 23.6520 

20 80  8.0879 10.6891 16.1094 14.4746 21.4486 26.2999 

30 70  9.0123 11.8652 17.7680 16.0159 23.5123 28.6567 

40 60  9.9072 12.9769 19.3171 17.4482 25.3890 30.7668 

50 50  10.7735 14.0291 20.7668 18.7825 27.1026 32.6672 

60 40  11.6126 15.0263 22.1263 20.0285 28.6740 34.3884 

70 30  12.4256 15.9727 23.4037 21.1947 30.1205 35.9555 

80 20  13.2138 16.8722 24.6066 22.2888 31.4569 37.389 

90 10  13.9781 17.7282 25.7412 23.3173 32.6958 38.7061 

100 0  14.7198 18.5439 26.8136 24.2863 33.8478 39.921 

 

Table 7 The effect of aspect ratio a/b on critical buckling 

load N  of a square antisymmetric cross-ply 
4(0 / 90)  hybrid 

(Carbon/Glass) composite laminates 

Boundary 

conditions 
a/b 

a/h 

5 10 20 50 100 

SSSS 

0.5 3.8921 5.4974 6.1342 6.3402 6.3708 

1 7.1650 10.7735 12.3409 12.8662 12.9450 

2 29.1427 62.2740 87.9580 99.5331 101.4435 

CSSS 

0.5 5.6938 10.4632 13.2945 14.3895 14.5610 

1 7.7946 14.0291 17.6056 18.9648 19.1765 

2 20.8632 45.6012 65.6310 74.9142 76.4621 

CSCS 

0.5 6.1151 11.1783 14.1578 15.3048 15.4843 

1 10.6172 20.7668 27.4670 30.2106 30.6486 

2 36.2542 97.8417 178.8522 234.0374 244.8775 

CCSS 

0.5 6.8096 14.3243 19.9796 22.4813 22.8915 

1 9.4525 18.7825 25.1144 27.7482 28.1708 

2 24.4796 55.0082 81.1177 93.6698 95.7918 

CCCC 

0.5 7.1750 15.1065 21.0857 23.7336 24.1679 

1 12.1511 27.1026 39.7003 45.6956 46.7053 

2 39.5483 114.7997 241.7045 354.2980 379.7374 

FFCC 

0.5 8.2587 19.6771 30.7139 36.5054 37.5187 

1 13.6890 32.6672 51.0765 60.7625 62.4589 

2 43.5974 127.2024 271.4062 402.8444 433.0107 

 

 

Unless cited otherwise the following configurations are 

used: a/h=10, a/b=1, Vf =0.45 

For the parametric study we use a hybrid plate made of 

two types of fibers, the first type of fiber is carbon and the 

second one is glass, and the matrix is made of epoxy, their 

material properties are cited in Berthelot (2012) as follows 

Carbon fiber: 
f fE 380 GPa , 0.33=  =  

Glass fiber: 
f fE 86 GPa , 0.22=  =  

Matrix (Epoxy): 
m mE 3.45GPa , 0.3=  =  

 

Fig. 1 Coordinate system used for a typical laminated 

composite plate, Jian (2004) 
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Fig. 2 The volume fraction Vf effect on the critical buckling 

load N  of a square antisymmetric hybrid composite 

laminates 
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Fig. 3 The stacking effect on the critical buckling load N  

of a square antisymmetric hybrid composite laminates 
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Fig. 4 The boundary conditions effect on the critical 

buckling load N  of a square antisymmetric hybrid 

composite laminates 
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Table 2 shows a simply supported anti-symmetric cross-

ply (0/90)n  square laminated composite plate subjected to 

mechanical load. Where, a comparison between the results 

obtained by the various theories and the three-dimensional 

elasticity solutions given by Noor (1975). It shown from 

this comparison that the present theory is accurate in precise 

in predicting the critical buckling loads face to FSDT 

Whitney (1970), Adim (2016c), Reddy (1984) and exact 

Noor (1975) theories. 

The effect of volume fraction on buckling load of a 

simply supported antisymmetric Carbon/Glass hybrid 

laminated composite plate is presented in Table 3 and in 

Fig. 2. Where the critical buckling load is minimal in the 

case of full Glass fibers (wf=100% Glass) and increase 

gradually according to the fibers percentage wf until 

reaching its maximal value for the case of Carbon fibers (wf 

=100% Carbon), this is due to the high rigidity of carbon 

fibers in comparison with Glass ones. Also, the Critical 

buckling load depend on the volume fraction Vf of the 

fibers into the total volume of the plate, where, this critical 

load increase according to the volume fraction 

augmentation until reaching its peak at Vf =0.45. 

In Tables 4-5 and Fig. 3, the side-to-thickness ratio and 

stacking effects on critical buckling load are presented for a 

Carbon/Glass hybrid square laminated composite plates. 

For all cases of combinations between Carbon and Glass 

fibers, this load increases with the augmentation of stacking 

(number of layers) and the side to thickness ratio a/h, which 

is logic because the ratio a/h indicates that there is a 

condensation of fibers in a small thickness. It is noted that 

for economic and resistance considerations, the best 

stacking is eight layers (0/90)4. 

Table 6 and Fig. 4 shows the influence of the boundary 

conditions on the critical buckling loads, where, this load is 

maximal for the case of free-clamped (FFCC) edges, and 

minimal for the case of simply supported plates. This shows 

that the boundary conditions have a major impact on the 

critical buckling loads of the hybrid composite plates. 

The Table 7 represents the variation of the critical 

buckling load under the aspect ratio a/b and side to 

thickness ratio a/h effects. For all boundary condition cases, 

the critical buckling load changes considerably according to 

the aspect and side to thickness ratios, furthermore, this 

mean that the plate geometry is a primordial parameter that 

we should take in consideration in the modeling hybrid 

composite plates. 

 
 

8. Conclusions 
 

The Buckling behavior of a Carbon /Glass hybrid 

laminated composite plate was successfully investigated 

using a simple and accurate refined shear deformation 

theory. The accuracy and efficiency of the present theory 

has been well demonstrated for buckling behavior of 

antisymmetric cross-ply hybrid composite laminates under 

different boundary conditions.  

The main objective of using the glass and carbon fibers 

in this study is that, the carbon fibers guaranty a very good 

mechanical strength, this strength comes with a major 

impediment which is the expansive cost of this kind of 

fibers, however glass fibers are less expensive with a low 

mechanical strength, this is why glass fibers are widely 

used in most industries (more than 95%). This assembly 

between these two materials allows to associate in a smart 

way between the most interesting and required advantages; 

in one hand, we have the strength provided by the carbon 

fibers, and in the other hand thanks to the glass fibers we 

spend less money, where adding a small amount of glass 

fibers to a carbon fibers based plate allow to reduce 

significantly the manufacturing cost with only sacrificing a 

little in terms of strength. 

It is up to designers and industrials to choose the proper 

percentages and amounts in this combination between these 

two types of fibers to get the maximum benefit of this new 

technology. 
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