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1. Introduction 
 

Tubes are widely encountered in the nature and 

engineering applications. For example, bamboo and straw 

are the stems of some plants which can be understood as a 

representative of tubes (Zhang and Fu 2013), animal’s 

vessels and tracheae can also be regarded as tubes (Fu et al. 

2015, Zhong et al. 2016, She et al. 2017a, b). In addition, in 

practical project application, tubes play an important role of 

conveying a variety of fluids or gas, which is always round 

in cross-section. Most of tubes in engineering are made by 

metals (such as steel, iron and copper), plastic and rubber. 

Due to superior performance of health, environmental 

protection, low cost, tubes have applied in many disciplines 

such as spaceflight, petrochemical engineering, mine and 

nuclear industry. On the other hand, functionally graded 

materials (FGM) is a new non-uniform composite materials. 

Many researches for FGM structures can be found in 

references (e.g., Kiani 2016, Sun et al. 2016, She et al. 

2017, Kiani et al. 2010a, b, Wattanasakulpong et al. 2011, 

Tossapanon and Wattanasakulpong 2016, Wu et al. 2016, 

Shvartsman and Majak 2016, Hadji et al. 2016, Hadji et al. 

2017, Hadji et al. 2016, Hadji and Bedia 2015, Mouaici et 

al. 2016, Ebrahimi and Javari 2016, Ebrahimi and Habibi 

2016, Ebrahimi and Zia 2015, Lal et al. 2016, Heydari et al. 

2016, Gan 2016, Rajasekaran and Khaniki 2017, Tuna and  
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Kirca 2016, Nejad and Hadi 2016a, b, Nejad et al. 2016, 

Şimşek  2016, Huang et al. 2017, Nejad et al. 2017, Ji et 

al. 2017, Song et al. 2017, Wang et al. 2016, Zhu et al. 

2017, Bousahla et al. 2016, Bouderba et al. 2016, Amar et 

al. 2017, Zouatnia et al. 2017, Zhao et al. 2016, Tu et al. 

2017, El-Haina et al. 2017, Barati 2017a, b, Ebrahimi and 

Barati 2016, Ebrahimi et al. 2016, Shahverdi and Barati 

2017, Elmossouess et al. 2017, Zidi et al. 2017, Ebrahimi 

and Daman 2017a, b, Ebrahimi et al. 2017, Ebrahimi et al. 

2017, Karami et al. 2018, Karami et al. 2017, Chikh et al. 

2016, Dai and Dai 2014, 2015, 2016, 2017). 

Recently, Zhang and Fu (2013) advanced a refined 

beam theory for analysis of tubes. Compared to the 

Timoshenko beam theory, the number of unknowns are the 

same and no correction factors are required. Based on this 

model, Fu et al. (2015), She et al. (2017a), She et al. (2017) 

analyzed the thermal buckling and post-buckling of FGM 

tubes. Besides, a set of studies performed by Dehrouyeh-

Semnani and his partners (Dehrouyeh-Semnani 2017, 

Dehrouyeh-Semnani 2018, Dehrouyeh-Semnani et al. 2017) 

are devoted to the thermal buckling and snap-through 

buckling of functionally graded beams or nanobeams.  

However, previous works (Zhang and Fu 2013, Fu et al. 

2015, Zhong et al. 2016, She et al. 2017a) only have 

focused on thermal buckling analysis of FGM tubes without 

any elastic foundation. This paper considers the effects of 

the elastic foundations and intends to study the nonlinear 

thermal stability of FGM tubes.  

The novel contributions in this study may be 

summarized as follows: 

(i) A higher-order shear deformation theory for tubes is 

used to formulate the mechanical model, and the nonlinear 

strain-displacement relationships is also considered.  
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Fig. 1 An FGM tube with simply supported ends 

 

 

 (ii) To solve this problem, a two-step perturbation 

method is employed to obtain the expression of thermal 

post-buckling load-deflection relationship, and the solutions 

of Euler and Timoshenko beam models are also presented.   

(iii) The effects of transverse shear deformation, volume 

fraction index and foundation stiffness on the thermal post-

buckling response are discussed in detail. 

 

 

2. Theoretical formulations 
 

Consider an FGM tube with length 𝐿, inner radius 𝑅𝑖 

and outer radius 𝑅0. The tube is referred to a coordinate 

system (𝑥, 𝑦, 𝑧), and the corresponding displacements are 

designated by 𝑢1 ,  𝑢2 ,  𝑢3 . 𝜑 is the rotation, 𝑤  is 

deflection, as shown in Fig. 1. The tube rests on a two-

parameter elastic foundation, according to Shen (2013), the 

load-displacement relationship of the elastic foundations 

can be expressed by p = 𝑘1𝑤 − 𝑘2(𝑑2𝑤 𝑑2𝑥⁄ ) . Assuming 

that the effective properties 𝑃𝑓  are exponential function 

(𝑃𝑓 = 𝑃𝑓(𝑟)) in the radial direction. According to the tube 

model, the displacement fields have the form (Zhang and 

Fu 2013, Fu et al. 2015, Zhong et al. 2016, She et al. 2018) 

( ) ( ) ( ) ( ) ( )1 , , , ,
dw

u x y z u x f y z g y z x
dx

= + +  (1a) 

( )2 , , 0u x y z =  (1b) 

( ) ( )3 , ,u x y z w x=  (1c) 

in which 

( ) ( )( )
1

22 2 2 2

0

2

0, 3i if y z Rz R R Rr r
−

−= − +  (2a) 

( ) ( )( )
1

2 2 2

0 0

2 22 3, i iz z r rg y z R R R R
−

− += + −  (2b) 

In Eq. (2), sin , cosz r y r = = , it should be 

pointed out that, if taking ( , ) 0f y z = , Eq. (1) will have the 

same forms of Timoshenko beam, if taking ( , )f y z z= − , 

Eq. (1) will have the same forms of Euler beam.   

Considering nonlinear strain-displacement relationships, the 

normal strain εxx and shear stress strains γxy, γxz are (She et 

al. 2017a) 

2

(0) (1) (2)31 1

2
xx x x x

dudu
f g

dx dx
   

 
= + = + + 

 
 (3a) 

(0)

xy xz

f

y
 


=


 (3b) 

(0)1xz xz

f

z
 

 
= + 

 
 (3c) 

in which 

2

(0) 1

2
x

du dw

dx dx


 
= +  

 
 (4a) 

2
(1)

2x

d w

dx
 =  (4b) 

(2)

x

d

dx


 =  (4c) 

(0)

xz

dw

dx
 

 
= + 
 

 (4d) 

The constitutive relations can be expressed as 

( ) ( ), ,xx f xxE r T r T T  =  −     (5a) 

( ),xy f xyG r T =  (5b) 

( ),xz f xzG r T =  (5c) 

where Ef (r, T) is Young’s modulus, Gf (r, T) the shear 

modulus, and νf (r, T) is Poisson ratio, T is the 

temperature rise, TN   is the thermal force. 

The stress resultants and couples can be defined by 

(0)

0

T

x xx x
A

N dA A N = = −  (6a) 

(1) (2)

1 2x xx x x
A

M f dA A A  = = +  (6b) 

(1) (2)

2 3x xx x x
A

P gdA A A  = = +  (6c) 

(0)

41xy xz xz
A

f f
Q dA A

y z
  
   

= + + =  
  

  (6d) 

in which 

( )0 ,f
A

A E r T dA=   (7a) 

( ) 2

1 ,f
A

A E r T f dA=   (7b) 
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( )( )2

2 ,f
A

A E r T zf f dA= +  (7c) 

( )( )2 2

3 , 2f
A

A E r T z zf f dA= + +  (7d) 

( )

( )

2 2

4

,
2 1

2 1 ,

f

A
f

E r T f f f
A dA

y z zr T

       
= + + +     

   +         
  (7e) 

( ) ( ), ,T

f f
A

N E r T r T TdA=   (7f) 

The total energy can be expressed as  

( )
2

21 2

1

2

2 2

xx xx xy xy xz xz xx f T

k k dw
w

dx

       


  = + + − 
 

 
+ +  

 


 (8) 

By integrating Eq. (8), one can obtain the following 

governing equations 

: 0xdN
u

dx
 =  (9a) 

2 2 2

1 22 2 2
: 0x

x

d M d w dQ d w
w N k w k

dx dx dx dx


 
− − + − = 

 
 (9b) 

: 0xdP
Q

dx
 − =  (9c) 

Eq. (9a) implies, for immovable supports, 

2

0

2

0

1

2

2

T

x

T

L

du dw
N A N

dx dx

A dw
dx N

L dx

  
= + −  

   

 
= − 

 


 

(10) 

Substituting Eqs. (3), (5), (6) and (10) back into Eq. (9) 

leads to the following governing equations 

4 3 2 2

1 2 44 3 2 2

2

1 2 2
0

x

d w d d w d w d
A A N A

dx dx dx dx dx

d w
k w k

dx

  
+ − − + 

 

 
+ − = 
 

 
(11a) 

3 2

2 3 43 2
0

d w d dw
A A A

dx dx dx




 
+ − + = 

 
 (11b) 

2

0

2

T

x
L

A dw
N dx N

L dx

 
= − 

 
  (11c) 

If we introduce 

x

L


 =  (12a) 

w
W

L
=  (12b) 




 =  (12c) 

2

0
0 2

A L

D



=  (12d) 

1
1

A

D
 =  (12e) 

2
2

A

D
 =  (12f) 

3
3

A

D
 =  (12g) 

2

4
4 2

A L

D



=  (12h) 

( )
4 4

1 1 1 4
, ,

m

L L
K K k

D E I

 
=  

 
 (12i) 

( )
4 4

2 2 2 4
, ,

m

L L
K K k

D E I

 
=  

 

 (12j) 

2

2

T

x
T

A L

D



=  (12k) 

T T =   (12l) 

in which Em denotes Young’s modulus of metal at 300K, 

and 

( )2

f
A

D z E r dz=   (13a) 

( ) ( )T

x f f
A

A r E r dz=   (13b) 

2

A
I z dz=   (13c) 

The introduction of the dimensionless quantities in Eq. 

(12) enables Eq. (11) to be rewritten as 

24 3 2

0
1 24 3 20

2 2

42 2

2

1 2
2

2

0

T T

d W d dW d W
d

d d d d

d W d W d

d d d

d W
K W K

d


  

   

  
  



  
+ −   

   

 
+ − + 

 

 
+ − = 
 



 (14a) 
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3 2

2 3 43 2
0

d W d dW

d d d
  

  

 
+ − + = 

 
 (14b) 

 

 

3. Solution methodology 
 

The solution of Eq. (14) will be solved by the 

perturbation method (Shen 2013, 2014, She et al. 2017, She 

et al. 2017a, b, c), and the displacements and thermal 

loading are to assume that 

( ) ( )
1

, k

T k

k

     
=

=  (15a) 

( ) ( )
1

, k

k

k

W w   
=

=  (15b) 

( ) ( )
1

, k

k

k

    
=

 =  
(15c) 

Substituting Eq. (15) into Eq. (14), a series of 

perturbation equations can be obtained. The first-order 

equation is 

( ) ( )
4 3 2

01 1 1 1
1 24 3 2

2

1 1
4 2

2

1
1 21 2

:

0

T T

d w d d w
O

d d d

d w d

d d

d w
K w K

d


    

  




 



+ +

 
− + 

 

 
+ − = 
 

 (16a) 

3 2

1 1 1
2 3 4 13 2

0
d w d dw

d d d


   

  

 
+ − + = 

 
 (16b) 

We assume the solution of the Eq. (16) for simply 

supported ends, are 

( )(1)

1 10 sinw A m=  (17a) 

( )(1)

1 10 cosB m =  (17b) 

Putting Eq. (17) into Eq. (16) leads to 

4 (1) 3 (1) (0) 2 (1) 2 (1)

1 10 2 10 10 4 10

(1) (1) 2 (1)
1 24 10 10 10 0

T Tm A m B m A m A

mB K A m K A

    



+ − +

+ + + =
 (18) 

( )3 (1) 2 (1) (1) (1)

2 10 3 10 4 10 10 0m A m B mA B  − − − + =  (19) 

Then, we can obtain 

2
1 2(0)

4 2

22

2 32 4
1 2 42 2

3 4 3 4

T

T

T

m K K

m m

mm

m m




  
  

    

 
= + 

 

 −+
+ − − 

+ + 

 
(20) 

The third-order equation is 

( ) ( )

( )

4 3 2
03 3 3 3

1 24 3 2

2 2

3 3 3
1 24 32 2

22 2
2 01 1 1

2 20

:

2

T T

T T

d w d d w
O

d d d

d w d d w
K w K

d d d

d w dw d w
d

d d d




    

  




  

 
  

  

+ +

   
− + + −   

   

 
= − +  

 


 (21a) 

3 2

3 3 3
2 3 4 33 2

0
d w d dw

d d d


   

  

 
+ − + = 

 
 (21b) 

We assume the solution of the Eq. (21), is 

( ) ( )(3)

3 30 sin 3w A m =  (22a) 

( ) ( )(3)

3 30 cos 3B m  =  (22b) 

Substituting Eq. (22) into Eq. (21) leads to 

( )

( )

( )

( )

( ) ( )

( )

2
4 4 (3)2 4

1 2 302

3 4

4 (3)2 3
4 302

3 4

2 (0) (3)

30

2 (3)
1 2 30

2
3

4 (1)0
10

2 (2) (1)

10

9
81 81 sin 3

9

81 sin 3
9

9 sin 3

9 sin 3

sin
4

sin

T T

T T

m
m m A m

m

m A m
m

m A m

K m K A m

m A m

m A m

 
  

 

 
 

 

  



 


  

  +
−  

+   

  −
−   

+   

−

 + +
 

= −

+

 (23a) 

( )3 (3) 2 (3) (3) (3)

2 30 3 30 4 30 3027 9 3 0m A m B mA B  − − − + =  (23b) 

From Eq. (23), obtains 

( ) ( )( )
2 2

1(2) 2

0 10
4

T

T

m
A  


=  (24a) 

(3)

30 0A =  (24b) 

As a result, the asymptotic solutions can be obtained as 

( ) ( ) ( ) ( )

( ) ( )

(1) (3) 4

10 30

(1) 4

10

, sin sin 3

sin

W A m A m O

A m O

    

 

= + +

= +

 (25) 

( ) ( ) ( ) ( )

( )
( ) ( )

(1) (3) 4

10 30

(1) 2

10 2 4 4

2

3 4

, cos cos 3

cos

B m B m O

mA m
m O

m

    

 
 

 

 = + +

+
= − +

+

 (26) 
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( )

( ) ( )( ) ( )

(0) (2) 4

22

2 32 4
1 2 42 2

3 4 3 4

2
1 2

4 2

2 2
12 4

0 10
4

T T T

T

T

T

O

mm

m m

m K K

m m

m
A O

   

  
  

    



  


= + +

 −+
= − − 

+ + 

 
+ + 

 

+ +

 (27) 

Taking ( )2m  =    in Eq. (25), we obtain 

( )
( ) ( )

( ) ( )

(1) (3)

10 302

4 (1) 4

10

sin 2 sin 3 2mx m
W W A A

O A O


 

 

=
= = +

+ = +
 (28) 

Combining Eqs. (28), (27) and (12b), the thermal post-

buckling load-deflection relationship for present model can 

be obtained as 

( )

( )

2
1 2

4 2

2

2
2

0

22

2 32 4
1 2 42 2

3 4 3 4

2
2

0

4

4

T

T

m

T

T

T

m K K

m m
W

m

mm

m m

m




 


  
  

    

 


 
− + 

 
=

 −+
− − − 

+ + 
+

 
(29) 

As indicated by references (Shen 2013, Shen and Wang 

2014, Shen 2014), the critical buckling loads can be 

obtained by setting 0mW = , thus, the critical buckling 

temperature is given by ∆𝑇𝑐𝑟(present) = 𝑚2

𝛶𝑇
(𝐾̅1

𝑚4 + 𝐾̅2
𝑚2 +

𝛶1 − 𝛶2
𝑚2𝛶2+𝛶4
𝑚2𝛶3+𝛶4

− 𝛶4
𝛶2−𝛶3

𝑚2𝛶3+𝛶4
) for the present model. For 

Timoshenko beam, ∆𝑇𝑐𝑟(Timoshenko) = 𝑚2

𝛶𝑇
(𝐾̅1

𝑚4 + 𝐾̅2
𝑚2 +

𝛶3𝛶4𝜅𝑠
𝑚2𝛶3+𝜅𝑠𝛶4

), the exact value of the shear correction factor 

𝜅𝑠 can be obtained from She et al. (2017a). For Euler beam, 

∆𝑇𝑐𝑟(Euler) = 𝑚2

𝛶𝑇
(𝐾̅1

𝑚4 + 𝐾̅2
𝑚2 + 𝛶1), In the following analysis 

m=1. 

 

 
4. Results and discussions 

 
The following example of comparison are shown to 

verify the correctness and reliability of the research content, 

taking Ri = 0, for the tube without any foundation, the 

corresponding dimensionless buckling load ( )2

TN L EI

for the present model, Timoshenko beam theory and Euler 

beam model are denoted by 
P

crP ,
T

crP and 
E

crP , and 

Table 1 Comparisons of buckling loads for a simply 

supported homogeneous columns without any foundation 

Source L/R HSDT 
Timoshenko 

Euler 
𝜅1 𝜅2 

Huang and Li (2010) 5 7.5956 7.6538 7.7266 9.8996 

Present 5 7.6010 7.6538 7.7266 9.8996 

Huang and Li (2010) 10 9.1824 9.2035 9.2296 9.8996 

Present 10 9.1828 9.2035 9.2296 9.8996 

Huang and Li (2010) 15 9.5519 9.5620 9.5745 9.8996 

Present 15 9.5520 9.5620 9.5745 9.8996 

Huang and Li (2010) 20 9.6883 9.6942 9.7014 9.8996 

Present 20 9.6884 9.6942 9.7014 9.8996 

Huang and Li (2010) 25 9.7528 9.7566 9.7613 9.8996 

Present 25 9.7528 9.7566 9.7613 9.8996 

 

Table 2 Material properties for Si3N4 (υ=0.24) and SUS304 

(υ=0.3262), from Fu et al. (2015), Reddy and Chin (1998) 

Materials Proprieties P0 P-1 P1 P2 P3 

Si3N4 
𝐸𝑐(Pa) 348.43e+9 0.0 -3.070e-4 2.160e-7 -8.964e-11 

α𝑐 (1/K) 5.8723e-6 0.0 9.095e-4 0.0 0.0 

SUS304 
𝐸𝑚(Pa) 201.04e+9 0.0 3.079e-4 -6.543e-7 0.0 

α𝑚 (1/K) 12.33e-6 0.0 8.086e-4 0.0 0.0 

 

 

𝑃𝑐𝑟
𝑃 = 𝜋2𝑚2

𝛶𝑇
(𝛶1 − 𝛶2

𝑚2𝛶2+𝛶4

𝑚2𝛶3+𝛶4
− 𝛶4

𝛶2−𝛶3

𝑚2𝛶3+𝛶4
) (30a) 

𝑃𝑐𝑟
𝑇 = 𝜋2𝑚2

𝛶𝑇
(

𝛶3𝛶4𝜅𝑠

𝑚2𝛶3+𝜅𝑠𝛶4
) (30b) 

𝑃𝑐𝑟
𝐸 = 𝜋2𝑚2

𝛶𝑇
(𝛶1) (30c) 

In Table 1, 𝜅1 = 6 (1 + 𝜐) (7 + 6𝜐)⁄ , 𝜅2 =
6 (1 + 𝜐)2 (7 + 12𝜐 + 4𝜐2)⁄ , where 𝜅1 and 𝜅2 are shear 

correction factor for Timoshenko beam theory, 𝜐  is 

Poisson ratio and equals 0.3. As a result, the critical 

buckling loads presented are almost the same as the results 

of Huang and Li (2010) by stress function method. 

Numerical results are given out in following section, the 

effective material properties are 

( ) ( )
0

K

i
f m c m

i

r R
E r E E E

R R

 −
= + −  

− 

 (31a) 

( ) ( )
0

K

i
f m c m

i

r R
G r G G G

R R

 −
= + −  

− 

 (31b) 

( ) ( )
0

K

K i
f m c m

i

r R
r

R R
   

 −
= + −  

− 

 (31c) 

( ) ( )
0

K

i
f m c m

i

r R
r

R R
   

 −
= + −  

− 

 (31d) 
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Fig. 2 Thermal post-buckling response of the FGM tubes 

under different beam models 

 

 

Fig. 3 Effect of volume fraction index K=(0,1,2,+∞) on the 

thermal post-buckling response for the FGM tubes 

 

 

where K is the volume fraction index (0 ≤ 𝐾 ≤ +∞), and 

the material properties are listed in Table 2. 

The thermal buckling response for the FGM tubes 

supported on elastic foundations by adopting different beam 

theories are compared in Fig. 2. From this figure, we can 

find that the buckling temperatures and post-buckling 

response obtained by the Euler beam theory are 

overestimated than those by the present model and 

Timoshenko beam theory, especially when L=20R0, and the 

results calculated by the present model are very close to 

those by using Timoshenko beam theory. When L=40R0, 

the buckling temperature and post-buckling response 

presented by different model are very close. Which 

indicates the effect of shear deformation decreases 

gradually with the increase of the slenderness ratio. 

Fig. 3 shows the effect of volume fraction index 

K=(0,1,2,+∞) on the thermal post-buckling response of 

FGM tubes. It can be found that, the buckling temperature 

and post-buckling strength decrease as the volume friction 

index K rises. As the volume friction index K rises, the 

volume fraction of the ceramic is reduced, so the buckling 

temperature and thermal post-buckling strength decrease. 

Fig. 4 plots the effect of the Winkler foundation 

stiffness and the shearing layer stiffness of the foundation  

 

Fig. 4 Effect of the foundation stiffness on the post-

buckling paths of FGM tubes 
 

 

on the post-buckling load-deflection curves of FGM tubes. 

As a result, the tube has a higher buckling temperature and 

post-buckling strength when it is supported by a Winkler 

foundation, and has much higher buckling temperature and 

post-buckling strength when it is supported by a two-

parameter elastic foundation. 
 

 

5. Conclusions 
 

The objective of this paper is to explore the thermal 

buckling and post-buckling behaviors of FGM tubes with 

immovable simply supported ends. The tubes are subjected 

to uniform temperature rise and rests on elastic foundations. 

Based on the two-step perturbation method, the expression 

of the critical buckling temperature and the post-buckling 

paths are obtained. It can be found that, 

• The present model predicts lower values for the 

buckling temperature and thermal post-buckling strength, 

and the buckling temperature calculated by Euler beam 

theory is higher than those calculated by the present model 

and Timoshenko beam theory. 

• With rising of the volume friction index, the volume 

fraction of the ceramic is reduced, as a result, the buckling 

temperature and thermal post-buckling strength decrease. 

• The foundation stiffness has a significant effect on the 

thermal buckling and thermal post-buckling response of the 

FGM tubes, and the tube has a higher buckling temperature 

and post-buckling strength when it is supported by a 

Winkler foundation, and has much higher buckling 

temperature and post-buckling strength when it is supported 

by a two-parameter elastic foundation. 
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