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1. Introduction 
 

FGMs plates are advanced hi-tech structures whose 

thermal and mechanical properties change continuously 

along the thickness direction. High resistance against high 

temperature gradients, smaller stress concentrations and 

attenuation of stress waves are some of the advantages of 

the FGMs against the traditional ones (Lezgy-Nazargah 

2015a, Lezgy-Nazargah 2015b, Lezgy-Nazargah 2016a). 

Nowadays, FGM plate structures particularly those rested 

on elastic foundations have widespread applications in 

aerospace and mechanical engineering fields. Until now, 

various mathematical approaches are employed by 

researchers for the analysis FGM plates. These different 

numerical and analytical approaches can be investigated in 

the framework of two broad categories: approaches based 

on the 3D theory of elasticity, and approaches based the 

two-dimensional (2D) plate theories. These two classes are 

reviewed with more details in the two subsequent 

paragraphs. 

Based on the 3D theory of elasticity, Huang et al. (2008) 

introduced an exact solution for simply supported FGM 

thick plates rested on Winkler–Pasternak foundations. They 

treated interactions between the elastic foundation and the 

FGM plate as boundary conditions. They solved the final 

system of the governing partial differential equations using 

the state space method. The extension of Huang et al. 

(2008) to free vibration analysis of simply supported FGM 

plates was done by Lu et al. (2009). By combining the  
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differential quadrature method (DQM) with series solution 

approach, Malekzadeh (2009) studied 3D free vibration 

analysis of rectangular FGM plates with arbitrary boundary 

conditions rested on elastic foundations. Free vibration of 

FGM circular plates rested on the two-parameter elastic 

foundations with elastically restrained edges was studied by 

Shaban and Alipur (2011). They derived governing 

differential equations based on the first-order shear 

deformation theory (FSDT). They transformed the 

governing differential equations into algebraic recurrence 

equations by adopting a new semi-analytical differential 

transform method. A 3D Peano series solution was 

presented by Lezgy-Nazargah and Cheraghi (2017) for the 

bending analysis of imperfect layered FGM magneto-

electro-elastic plates resting on two-parameter elastic 

foundations. In this reference, the state-space method is 

employed for solving the governing partial differential 

equations and the interfacial imperfection effects are taken 

into account using the concept of the generalized spring 

layer model. Based on the 3D theory of elasticity and using 

the DQM, Yas and Sobhani (2010) studied the free vibration 

of continuous grading fiber reinforced plates resting on 

Winkler-Pasternak elastic foundations.  

Using a high-order shear and normal plate theory, Batra 

(2007) studied the free vibration of FGM incompressible 

elastic plates. In addition to the displacement components, 

Batra also assumed the hydrostatic pressure as independent 

variable. The plate theory of Batra is based on the principle 

of virtual work and it does not need the shear correction 

factor. Matsunga (2008) studied the free vibration and 

stability of FGM plates using a high-order plate theory. By 

employing various orders of expanded terms in the 

expression of the displacement components, Matsunga 

investigated the effects of high order deformations on the 

buckling loads and natural frequencies of the FGM plates. 
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Vibration and buckling behavior of exponentially FGM 

sandwich plate resting on elastic foundations was 

investigated by Sobhy (2013). In this reference, it is 

assumed that the sandwich plate is made of a fully ceramic 

core layer with two metal/ceramic exponentially FGM coat. 

Sobhy deduced the governing equations by using the FSDT. 

An analytical solution was introduced by Baferani et al. 

(2011) for the free vibration of FGM plates rested on two-

parameter elastic foundation. In this reference, which is 

restricted to the FGM plates with levy type of boundary 

conditions, the governing equations of motion are derived 

based on the third-order shear deformation plate theory 

(TSDT). By taking into account this assumption that the in-

plane and transverse components of displacement field are 

composed of bending and shear parts, Thai and Choi (2012) 

introduced a refined shear deformation theory for vibration 

analysis of FGM plates rested on two-parameter elastic 

foundations. The refined plate theory of theses researchers 

contains only four unknown field variables and it gives a 

parabolic through-the-thickness distribution of the shear 

stresses without using any shear correction factor. By 

expanding the displacement components in the thickness 

direction using the Legendre polynomials, Sheikholeslami 

and Saidi (2013) studied the free vibration of simply 

supported rectangular FGM plates rested on two-parameter 

elastic foundation. They used a power law distribution for 

explaining through-the-thickness variations of the 

mechanical properties of the FGM plate. Based on a high-

order hyperbolic shear deformation theory, Akavci (2014) 

studied the free vibration of FGM plates rested on two-

parameter elastic foundations. In this work it is assumed 

that the transverse shear displacements vary as a hyperbolic 

function through the thickness of FGM plate. Using a 

trigonometric plate theory, Mantari and Soares (2014) 

obtained a Navier-type closed form solution for the bending 

analysis of single-layer and sandwich FGM plates. The 

trigonometric plate theory of these researchers has five 

unknown parameters and includes the thickness stretching 

effect. Mantari et al. (2014) investigated the static response 

of FGM plates using a tangential-exponential high-order 

shear deformation theory. The non-polynomial plate theory 

of this reference assumes a constant transverse 

displacement along the thickness of FGM plate and it does 

not require shear correction factor. Hadji et al. (2016) 

developed a new first shear deformation plate theory based 

on neutral surface position for the static and the free 

vibration analysis of FGM plates. Using a hyperbolic and 

parabolic shear and normal deformation theory, Daouadji 

and Adim (2017) studied the bending analysis of FGM 

sandwich plates. Using a sinusoidal shear deformation plate 

formulation which takes into account through-the-thickness 

deformations, Neves et al. (2011) investigated the static 

behavior of FGM plates. In this reference, the algebraic 

equations of motion are obtained by the Carrera's unified 

formulation (CUF), and further interpolated by radial basis 

functions. Based on the CUF, Brischetto and Carrera (2010) 

investigated the static response of FGM plates subjected to 

transverse mechanical loads. Note that the most of 

displacement-based and displacement-stress-based types of 

plate theories can be described precisely in the framework 

of CUF. In CUF, the principle of virtual displacements 

(PVD) is usually used for deriving the displacement-based 

plate theories while the displacement-stress-based plate 

theories are derived using the Reissner’s mixed variational 

theorem (RMVT).  

Due to coupling of the in-plane and transverse normal 

stresses, thickness flexibility effects should be considered 

for the accurate prediction of the responses of the thick 

FGM plates. In most of the available 2D displacement-

based plate theories, the effects of the thickness flexibility 

of the FGM plate have been discarded. In limited works that 

the thickness flexibility effects are considered in the 

formulations, the boundary conditions of the transverse 

normal component of the stress tensor is not exactly 

fulfilled on the upper and lower planes of the FGM plate. 

Displacement-stress-based plate theories, which are mostly 

based on RMVT, can accurately capture the thickness 

flexibility effects in the FGM plates. The computational 

efficiency of the RMVT-based plate theories is dependent 

on the considered plate theory (i.e. the order of unknown 

expansion in the thickness direction). Due to considering of 

all transverse components of the stress tensor as primary 

unknown parameter, the number of unknown field variables 

of the mixed plate theories based on RMVT is very high. 

Recently, a new 2D partial mixed plate theory is introduced 

by Lezgy-Nazargah (2016b) for the analysis of thick plate 

structures. In this partial mixed plate theory which is based 

on the principle of parametrized mixed variational theorem, 

the transverse normal stress is considered as a primary 

variable in the formulations. The partial mixed plate theory 

of Lezgy-Nazargah (2016b) does not require the shear 

correction factor and fulfills the boundary conditions of the 

transverse shear and normal stresses on the top and bottom 

planes of the plate. Using this plate theory, one can predict 

through-the-thickness variations of transverse shear and 

normal stresses directly from the constitutive equations. The 

computational efficiency is the most interesting features of 

this plate theory. The number of unknown parameters of 

this plate theory is six which is one more than FSDT. In this 

study, the partial mixed plate theory of Lezgy-Nazargah 

(2016b) with some minor changes in its original kinematics 

is employed for studying the bending and free vibration 

responses of FGM plates rested on two-parameter elastic 

foundations. It is assumed that the material properties of the 

plate vary along the thickness direction according to the 

volume fraction of constituents. Both power-law and 

exponent function are used for defining the volume fraction 

constituents of the FGM plate. A quadrilateral four-node 

plate element with 21 dofs per node is employed for 

numerical solving of the governing equations of motion. In 

the employed finite element, the deflection (transverse 

displacement) of the FGM plate is interpolated using the 

full Hermitian shape functions. Lagrange shape functions 

are employed for interpolating of the other field variables of 

the FGM plate.  

The paper is outlined as follows: the main mathematical 

formulations of the new four-node quadrilateral plate 

element are fully described in Sections 2 and 3. Numerical 

results which involve various bending and free vibration 

tests are subsequently presented in Section 4. Conclusion  
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Fig. 1 The FGM plate and the considered Cartesian 

coordinate system 

 

 

and recommendations for future researches are given in 

Section 5. 

 

 

2. Theoretical formulation 
 

As shown in Fig. 1, the considered FGM plate of the 

present study is rested on a Winkler-Pasternak type elastic 

foundation and it occupies the domain 

 / 2 / 2V h z h= −   in the Cartesian coordinate 

system ( , , )x y z .  is an arbitrary surface in the ( , )x y  

plane which is located at the mid-plane (z=0) of the FGM 

plate. kw and kp denote the stiffness of the Winkler and shear 

springs, respectively.  

 

2.1 Constitutive equations 
 

It is assumed that the mechanical properties of the plate 

vary continuously through the thick direction according to 

the one of the following distributions: 

Power-law distribution 

1
( ) ( )( )

2

n
bottom top bottom

z
P z P P P

h
= + − +  (1.a) 

Exponent-law distribution 

(1/2 / )( ) n z h
bottomP z P e +=  (1.b) 

where P represents the effective material properties (e.g., 

mass density (  ), Young's modulus (E), ….) and n is the 

material gradient index. Due to very small effects of the 

variations of Poisson's ratio (v) on the response of FGM 

plates (Yang et al. 2005, Kitipornchai et al. 2006), it is 

assumed to be a constant value through the plate thickness. 

Using the matrix notations, the 3D constitutive equations 

for the FGM plate can be expressed as 

pp pzp p

T
z zpz zz

       
    
        

D Dσ ε
=

σ εD D
 (2) 

where                        

 

 11 22 12 23 132 2 2
T

p     =ε , 

 11 22 12 23 13

T

p     =σ ,  

 33z =ε   ,   33z =σ     

and ij  and ij  are the stress and strain components, 

respectively. ppD , pzD and zzD  denote the elastic 

coefficients matrices whose explicit expressions are given 

in Appendix A. Since the transverse normal stress 

component 33( ) of the FGM plate is taken as a priori 

variables, the constitutive relations (2) should be rewritten 

as follows 

 

(3) 

where 

 

(4) 

 

2.2 Kinematics 
 

The following particular relations are used for 

representing the total displacement components of the FGM 

plate 

2
31 2

2

55 55

( , , ) ( , ) ( )
2

( )
2 2

x x
x x

ww w z
U x y z u x y z f z

x x x

T T z
z T T

D hD

+ −
+ −

 
= − − −

  

−
+ + +

 (5.a) 

2
31 2

2

44 44

( , , ) ( , ) ( )
2

( )
2 2

y y

y y

ww w z
V x y z v x y z f z

y y y

T T z
z T T

D hD

+ −

+ −

 
= − − −

  

−
+ + +

 (5.b) 

1 2 3( , , ) ( , ) ( , ) ( , )W x y z w x y w x y z w x y= + +  (5.c) 

where ( , )u x y  and ( , )v x y  denote the in-plane 

displacements of a point on the reference surface of plate. 

xT + , xT − , and yT +
, yT −

 represent the tangential 

components of force vectors applied to the external upper 

and lower surfaces of the FGM plate. 1( , )w x y and 

2( , )w x y  denotes the bending and shearing part of the 

transverse displacement component, respectively. 
22( / )( ) z hf z z ze −= − and 3( , )w x y  is an unknown 

parameter function.  

The displacement field given in Eq. (5) can be expressed 

in the following matrix form 

u u=u A u  (6) 

where  
T

U V W=u , 

1 2 3

T

u x x y yu v w w w T T T T+ − + − =
 

u and 
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2

2

1 0 ( )
2

0 1 ( )
2

0 0 1 1

u

z
z f z

x x x

z
z f z

y y y

z

   
− − −

  
   

= − − −
  





A  

2 2

55 55 55 55

( ) ( )
2 2 2 2

0 0

0 0

z z z z

D hD D hD
+ − +

 

2 2

44 44 44 44

0 0

( ) ( )
2 2 2 2

0 0

z z z z

D hD D hD



+ − +




 

(7) 

 

2.3 Transverse normal stress assumptions 
 

In order to fulfill the boundary conditions of the 

transverse normal stress on the top and bottom surface of 

the FGM plate, it is assumed as a priori unknown variable. 

Variations of the transverse normal stress through the 

thickness of the FGM plate are approximated using the 

following second-order expansion 

*
1 2

3

( , , ) ( ) ( , ) ( ) ( , )

( ) ( , )

zz z

z

x y z L z T x y L z x y

L z T x y

 −

+

= +

+
 (8) 

In the above equation ( , )x y  is an unknown stress 

field variable. ( , )zT x y+ and ( , )zT x y− are the normal 

component of traction vectors applied on the external top 

and bottom surfaces of the FGM plate, respectively. ( )iL z  

( 1,2,3)i =  denote the quadratic Lagrange interpolation 

functions (see Appendix A).   

The above equation can be rewritten in the matrix form 

as below 

 =σ A u  (9) 

where  zz=σ , 
T

z zT T − + =
 

u , and 

1 2 3( ) ( ) ( )L z L z L z =  A  .  

 

 

3. Finite element formulation 
 

3.1 Approximations of displacement and stress fields 
 
Based on the displacement and transverse normal stress 

fields introduced in sections 2.3 and 2.4, the present plate 

formulation contains totally 12 field variables u , v , 1w , 

2w , 3w ,  , zT − , zT − , xT + , xT − , yT +
and yT −

. 

However, zT − , zT − , xT + , xT − , yT +
, yT −

are the 

prescribed shear and normal tractions on the upper and 

lower planes of the FGM plate. Since the values of these 

aforementioned six parameters are known before analysis, 

the present partial mixed plate formulation has finally six 

unknown parameters u , v , 1w , 2w , 3w and  . A 

four-node quadrilateral element is constructed for the static 

bending and free vibration analyses of the FGM plates. The 

geometry of the element is approximated using the bi-linear 

Lagrangian interpolation functions. Full compatible 

Hermitian shape functions are used for interpolating the in-

plane variations of the unknown parameters of the 

transverse displacement component (w1, w2, w3) while bi-

linear Lagrange shape functions with C0-type continuity are 

employed for interpolating of the other unknown field 

variables of the FGM plate. Thus, the unknown functions of 

the displacement and stress fields can be expressed in terms 

of the corresponding nodal variables as below 

ˆe
u u u=u N u  (10.a) 

ˆe
  =u N u  (10.b) 

where ˆe
uu  and ˆe

u  are the vector of the nodal values of 

the displacement and stress fields, respectively. uN  and 

N are matrices which contain the interpolation functions. 

The expression for uN and N  are not cited here for the 

sake of brevity. The considered four-node quadrilateral 

element has the following 21 dofs per node 

1 1 , 1 , 1 , 2

2 , 2 , 2 , 3 3 , 3 , 3 ,

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

x y xy

x y xy x y xy

x x y y z z

u v w w w w w

w w w w w w w

T T T T T T + − + − + −

 
(11) 

For more details about the finite element model, the 

interested readers can refer to Lezgy-Nazargah (2016b).  

Using Eqs. (10-a) and (10-b), the displacement and 

transverse normal stress of the FGM plate can be finally 

rewritten in terms of the nodal variables of the element as 

follows 

 
(12.a) 

 
(12.b) 

Using well-known strain-displacement relations with 

considering Eqs. (12-a) and (12-b), the strain vectors pε  

and zε can also be expressed in terms of the nodal 

variables of the element 

e
p p p u u= =ε C u C Χ u  (13.a) 

e
z z z u u= =ε C u C Χ u  (13.b) 

in which the differential matrices are 
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0 0

0 0

0 , 0 0

0

0

p z

x

y

y x z

z y

z x

 
 
 

 
 
 
    

= =       
  

  
 
  

 
  

C C
 

(14) 

 

3.2 Governing equations 
 

The discretized form of the governing equations of 

motion is derived in this section. The element mass and 

stiffness matrices as well as the vector of external loadings 

of the FGM plate are obtained via the parametrized mixed 

variational theorem of Lezgy-Nazargah (2016b). According 

to this variational principle, the total potential energy of an 

FGM plate with volume   and regular boundary surfaces 

S can be written as 

 

(15) 

where p and P are the vector of body and surface forces, 

respectively. 
 

is an arbitrary parameter function which is 

called the splitting factor. As demonstrated in Lezgy-

Nazargah (2016b), the appearance of the splitting factor in 

the variational formulation has some numerical advantages. 

By selecting an appropriate splitting factor, one can adjust 

the shares of the potential and complementary energy and 

consequently increase the accuracy of the numerical results. 

In order to avoid the complexity of the formulation, the 

values of splitting factor in this study is assumed to be β=0. 

In this case, the functional of Eq. (15) reduces into a partial 

mixed form of the Reissner’s variational theorem. The 

dissection about the optimal value of β is out of the scope of 

the present paper and will be addressed in future researches. 

The total strain energy expressions associated with the 

Winkler-Pasternak foundation can be written as 

(Buczkowski and Torbacki 2001) 

( )1

2

T T T T
F w w w p w w

S

k k dS = + u I I u u C C u  (16) 

where 

0 0 0

0 0 0

0 0 1

w

 
 

=
 
  

I  ,  
0 0 /

0 0 /
w

x

y

  
=  

  
C  (17) 

By substituting Eqs. (3), (11) and (13) into the above 

energy expressions (Eqs. (15)-(16)), the following 

governing equations of motion will be obtained from the 

Hamilton’s principle 

( ) ( ) ( )t t t+ =M α K α F  (18) 

where M and K denote the total mass and stiffness matrices, 

respectively. α is the total nodal variables vector in global 

coordinates while F is the total load vector. The 

aforementioned matrices are obtained from assembling the 

corresponding elementary matrices as below 

, , ,e e e e

e e e e

= = = =   K K M M F F α α  (19) 

The elementary mass matrix e
M can be written as 

e
e uu

 
=  
  

M 0
M

0 0
 (20) 

where 

[ ]
e

e T
uu u u d



= M Χ Χ   
(21) 

The elementary stiffness matrix e
K can be also written 

as 

e e T
uu ue

e e
u



 

 
 =
 
 

K K
K

K K
 (22) 

where 

( )

ˆ[ ]
e

e

e T T T T T
uu u p pp p u u p zp zp p u

T T T T
w u w w u p u w w u

S

d

k k dS



= + 

+ +





K Χ C D C Χ Χ C D D C Χ

Χ I I Χ Χ C C Χ

  

ˆ[ ]
e

e T T
u zz zp p u z u d  



= + K Χ D D C Χ Χ C Χ

ˆ[ ]
e

e T T
zz d  



= − K Χ D Χ  

(23) 

The elementary vector of dofs e
α can be written as 

ˆ

ˆ

ue



 
=  
 

α
α

α
 (24) 

where ˆ
uα and ˆ

α  are the elementary nodal variables of 

the displacement and the transverse normal stress fields, 

respectively. Finally, the elementary load vector e
F  may 

be written a 

e e

T T
e

u u
ue

S
e

dS d





 +  
 = = 
      

 Χ P Χ pF
F

F 0

 (25) 

 

 

4. Numerical results 
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In this section, static bending and free vibration analyses 

of FGM plates rested on Winkler-Pasternak elastic 

foundations are carried out using the proposed finite 

element model. For the validation purposes, the present 

results are compared with both the classical and recent 

advanced plate theories. Some comparisons are also made 

with the solutions of the 3D theory of elasticity.   

 

4.1 Example 1 
 
A square FGM plate (a=b=1) consisting of aluminum 

(bottom plane) and alumina (top plane) is considered. The 

considered graded plate is simply supported and the bi-

sinusoidal transverse load 0 sin sinz

x y
T q

a b

 + =  is 

applied on its top surface ( / 2z h= ). The thickness ratio of 

the considered FGM plate is a/h=0.1. It is assumed that the 

Young's modulus varies along the thickness direction of 

plate according to the following relation 

1
( ) ( )

2

n

m c m

z
E z E E E

h

 
= + − + 

 
 

where 380GPacE = and 70GPamE =  denote the 

Young's modulus of alumina (ceramic) and aluminum 

(metal), respectively. n is the material gradient index of the 

graded plate which takes positive values. The Poisson’s 

ratio is assumed constant (v=0.3) in both metal and ceramic. 

Note that the following non-dimensional quantities used in 

this example 
3

4
0

10
( , )
2 2

ch E a b
w w

a q
=  , 

3

4
0

100
( , , )
2 2 4

ch E a b h
u u

a q
=  −  

3

4
0

100
( , , )
2 2 6

ch E a b h
v v

a q
=  − , 

0

(0,0, )
3

xy xy

h h

aq
 =  −  

0

( , , )
2 2 2

xx xx

h a b h

aq
 =  , 

0

( , , )
2 2 3

yy yy

h a b h

aq
 =       

0

( ,0, )
2 6

yz yz

h a h

aq
 =  , 

0

(0, ,0)
2

xz xz

h b

aq
 =   

0

1
( , , )
2 2 2

zz zz

a b h

q
 =   

 

4.1.1 Mesh convergence study 
The sensitivity of the proposed partial mixed finite 

element model with respect to the number of elements is 

investigated in this subsection. To this aim, the considered 

simply supported FGM plate is analyzed using the present 

fini te element model with 2 2 ,  4 4  and 8 8  

elements. The obtained numerical results are given in Table 

1 for two material gradient indexes n=1, 10. It can be seen 

that the convergence velocity of the present partial mixed 

finite element model is high. Deflection of the FGM plate is 

insensitive to the number of elements and only 4 4

elements are enough for a bending test. Regardless of the 

values of the material gradient index, a mesh with 8 8

elements leads to the converged results for both deflection 

and stress components. The obtained numerical results of 

Table 1 shows that a mesh with 8 8  elements is sufficient  

 

Fig. 2 Mesh sensitivity test: simply supported FGM plate 

under transverse bi-sinusoidal load-(n=10) 

 

Table 1 Results of the convergence mesh study for the 

simply supported FGM plates under bi-sinusoidal 

transverse load 

n 
Mesh (number 

of dofs) w  xx  
yz  

xz  
xy  

zz
 

1 2 2  (189) 0.5833 3.8051 0.2610 0.2059 0.5663 1.0000 

 4 4  (525) 0.5832 3.3438 0.2604 0.2502 0.6043 1.0000 

 8 8  
(1701) 0.5831 3.1291 0.2601 0.2503 0.6045 1.0000 

 
16 16  

(6069)
 

0.5831 3.1291 0.2600 0.2503 0.6045 1.0000 

10 2 2  (189) 0.9949 9.2853 0.2125 0.2362 0.6921 1.0000 

 4 4  (525) 1.0012 5.1553 0.2064 0.2273 0.5787 1.0000 

 8 8  
(1701) 1.0009 5.1410 0.2032 0.2262 0.5730 1.0000 

 
16 16  

(6069)
 

1.0009 5.1410 0.2032 0.2261 0.5730 1.0000 

 

Table 2 Results of the mesh distortion test 

 d 

 0 0.04 0.08 0.12 

w  1.0012 1.0252 1.0022 0.9179 

 

 

for carrying out a static bending test using the present 

partial mixed finite element model. Based on the results of 

the convergence mesh study, all the subsequent numerical 

results are obtained using a mesh with 8 8  elements.  

 

4.1.2 Mesh distortion test 
In this subsection, the robustness of the present partial 

mixed finite element model with respect to the distortion of 

meshes is investigated. The considered FGM plate is 

analyzed using the present finite element formulation with 

both regular (d=0) and distorted (d>0) meshes. These 

employed meshes as well as the distortion index d are 

shown in Fig. 2. For different values of the distortion index 

d, the non-dimensional transverse deflection (w ) of the 

FGM plate with material gradient parameter n=10 is given 

in Table 2. As shown in this table, the discrepancy between 

the results obtained from a regular mesh (d=0) with those 

obtained from a highly distorted mesh (d=0.12) is about 

9%. These numerical results prove that the present partial 

mixed finite element model is not sensitive to the mesh 

distortion. Due to using the full compatible Hermitian shape 

functions for interpolating the unknown parameters of the 

transverse displacement component, the present finite 

element model almost satisfies the general requirements of 

compatibility and completeness. Thus, the introduced finite  
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Table 3 Static bending test results: simply supported FGM plate under transverse bi-sinosodial load 

Plate model n �̅� �̅� �̅� �̅�𝑥𝑥 �̅�𝑦𝑦 �̅�𝑦𝑧 �̅�𝑥𝑧 �̅�𝑥𝑦 �̅�𝑧𝑧 no. unknowns 

Present 

1 

0.6480 0.5064 0.5831 3.1291 1.6063 0.2601 0.2503 0.6045 1.0000 6 

Zenkour (2006) 0.6626 0.5093 0.5889 3.0870 1.4894 0.2622 0.2462 0.6110 - 5 

Brischetto and 

Carrera (2010) 

(PVD) 

0.6435 0.4981 0.5875 - - 0.2510 - - 0.9842 15 

Brischetto and 

Carrera (2010) 

(RMVT) 

0.6435 0.4980 0.5875 - - 0.2510 - - 0.9881 30 

CLT (Neves et al. 

2011) 
- - 0.5623 - 2.0150 - - - - 3 

FSDT (Neves et al. 

2011) 
- - 0.5889 - 2.0150 - - - - 5 

Neves et al. (2011) - - 0.5845 - 1.4945 - - - - 9 

Present 

2 

0.9273 0.7413 0.7485 3.6243 1.4419 0.2396 0.2022 0.5295 1.0000 6 

Zenkour (2006) 0.9281 0.7311 0.7573 3.6094 1.3954 0.2763 0.2265 0.5441  5 

Brischetto and 

Carrera (2010) 

(PVD) 

0.9012 0.7162 0.7570 - - 0.2516 - - 0.9309 15 

Brischetto and 

Carrera (2010) 

(RMVT) 

0.9012 0.7161 0.7570 - - 0.2497 - - 0.9610 30 

CLT (Neves et al. 

2011) 
- - - - - - - - - 3 

FSDT (Neves et al. 

2011) 
- - - - - - - - - 5 

Neves et al. (2011) - - - - - - - - - 9 

Present 

3 

1.0104 0.8138 0.8279 4.1995 1.3797 0.2665 0.2136 0.5392 1.0000 6 

Zenkour (2006) 1.0447 0.8271 0.8377 3.8742 1.2748 0.2715 0.2107 0.5525 - 5 

Brischetto and 

Carrera (2010) 

(PVD) 

1.0111 0.8086 0.8381 - - - - - - 15 

Brischetto and 

Carrera (2010) 

(RMVT) 

1.0111 0.8086 0.8381 - - - - - - 30 

CLT (Neves et al. 

2011) 
- - - - - - - - - 3 

FSDT (Neves et al. 

2011) 
- - - - - - - - - 5 

Neves et al. (2011) - - - - - - - - - 9 

Present 

4 

1.0655 0.8521 0.8731 4.1011 1.2275 0.2304 0.1867 0.5501 1.0000 6 

Zenkour (2006) 1.0941 0.8651 0.8819 4.0693 1.1783 0.2580 0.2029 0.5667 - 5 

Brischetto and 

Carrera (2010) 

(PVD) 

1.0548 0.8430 0.8822 - - - - - - 15 

Brischetto and 

Carrera (2010) 

(RMVT) 

1.0549 0.8430 0.8822 - - - - - - 30 

CLT (Neves et al. 

2011) 
- - 0.8281 - 1.6049 - - - - 3 

FSDT (Neves et al. 

2011) 
- - 0.8736 - 1.6049 - - - - 5 

Neves et al. (2011) - - 0.8750 - 1.1783 - - - - 9 

Present 

9 

1.1144 0.8767 0.9848 5.0336 0.9582 0.1966 0.2113 0.5682 1.0000 6 

Zenkour (2006) 1.1358 0.8785 0.9925 4.9303 0.9092 0.2072 0.2164 0.5875 - 5 

Brischetto and 

Carrera (2010) 

(PVD) 

- - - - 0.9286 0.2107 - 0.5903 0.7277 15 

Brischetto and 

Carrera (2010) 

(RMVT) 

- - - - 0.9285 0.2298 - 0.5905 1.0295 30 

CLT (Neves et al. 

2011) 
- - - - - - - - - 3 

FSDT (Neves et al. 

2011) 
- - - - - - - - - 5 

Neves et al. (2011) - - - - - - - - - 9 

Present 

10 

1.1233 0.8623 1.0009 5.1410 0.9455 0.2032 0.2262 0.5730 1.0000 6 

Zenkour (2006) 1.1372 0.8756 1.0089 5.0890 0.8775 0.2041 0.2198 0.5894 - 5 

Brischetto and 

Carrera (2010) 

(PVD) 

- - - - 0.8966 0.2108 - 0.5925 0.7506 15 

Brischetto and 

Carrera (2010) 

(RMVT) 

- - - - 0.8964 0.2289 - 0.5926 1.0580 30 

CLT (Neves et al. 

2011) 
- - 0.9354 - 1.1990 - - - - 3 

FSDT (Neves et al. 

2011) 
- - 0.9966 - 1.1990 - - - - 5 

Neves et al. (2011) - - 0.8750 - 1.1783 - - - - 9 
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Fig. 3 Variations of the displacement and stress components 

along the thickness direction of the very thick FGM plate 

element model does not show sensitivity versus the mesh 

distortion. Note that the term "completeness" means that the 

elements must have enough global basis functions to 

capture the analytical solution in the limit of a mesh 

distortion process. The term “compatibility” means that the 

shape functions should provide displacement continuity 

between elements to avoid the appearance of material gaps 

as the elements deform. As the mesh is refined, such gaps 

would multiply and may absorb or release spurious energy 

(Lee and Bathe 1993, Prathap et al. 2006).   

 

4.1.3 Static bending analysis 
The considered simply supported square FGM plate has 

been analyzed using the present partial mixed finite element 

model for different values of the material gradient indexes. 

Results are given in Table 3 in terms of displacement and 

stress components. In this table, the present results are 

compared with the results of the generalized shear 

deformation theory of Zenkour (2006), unified formulation 

of Brischetto and Carrera (2010) based on PVD and RMVT, 

sinusoidal plate formulation of Neves et al. (2011), and 

CLT and FSDT solutions. It can be observed that the results 

of the present partial mixed finite element model are in 

good agreement with other non-classical high-order plate 

theories. In the prediction of in-plane displacements of the 

FGM plate, the results of the classical (CLT and FSDT) and 

non-classical (present, Zenkour, Brischetto and Carrera, and 

Neves et al.) plate theories are very close together whatever 

the values of material gradient index n. Concerning the 

transverse displacement, the results of Neves et al. and CLT 

diverge from the results of other plate theories with 

increasing of n. It can be also seen from Table 3 that there 

exists a relatively high discrepancies between the axial 

stresses predicted by the classical plate theories and those 

predicted by the non-classical plate theories. This 

demonstrates that the classical plate theories are not 

sufficient for accurate analysis of FGM plates. Concerning 

the transverse shear stresses, differences exist between the 

present and the RMVT results. This shows that the only 

modeling of transverse normal stress (partial mixed model) 

may be not sufficient for the accurate analysis of the FGM 

plates in some cases. In order to have a comparison between 

the computational efficiency of these different plate models, 

the number of unknown parameters of each plate model is 

also given in Table 3. The computational efficiency of the 

present partial mixed finite element model can be easily 

inferred from this table. As stated previously in section 3.1, 

the present partial mixed kinematic has six unknown 

parameters. The employed quadrilateral element has 21 dofs 

per node. The finite element results of Table 3 are obtained 

using a mesh with 8 8  elements (1701 dofs). 

 

4.2 Example 2 
 
In this example, a very thick square (a=b=L) FGM plate 

rested on two-parameter elastic foundation has been 

analyzed using the present partial mixed finite element 

model. The Young’s modulus of the considered plate varies 

exponentially along the thickness direction according to the 

following relation 
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(1/2 / )( ) n z hE z E e +=  

where E denotes the value of elastic modulus at the 

bottom surface of the plate. The values of the material 

gradient index is taken as ln (10)n =  and the Poisson's 

ratio is assumed to be 0.3 = . The thickness ratio of the 

graded plate is h/L=0.5 and a transverse bi-sinusoidal load 

with the amplitude 5
0 /10q E= is applied on its top 

surface. 

Through-the-thickness variations of the displacement 

and stress components of the FGM plate are depicted in Fig. 

3 for different values of the foundation parameters. In these 

figures, the elastic foundation parameters are represented in 

the following non-dimensional forms 

4 /w wK k a D= ,        
2 /p pK k a D=  

where 3 2/12(1 )D Eh = − . The following non-

dimensional forms are also used for the displacement and 

stress components 
610 ( / 2, / 2, ) /w w L L z h= , 610 (0, / 2, ) /u u L z h=   

0( / 2, / 2, ) /xx xx L L z q = , 0(0,0, ) /xy xy z q =  

0(0, / 2,0) /xz xz L q =  

In Fig. 3, the results of the present partial mixed finite 

element model have been compared with the exact 3D 

elasticity solutions of Huang et al. (2008). Note that the 

transverse shear component of the stress tensor ( xz ) is 

calculated directly from the constitutive relations. Although 

the considered graded plate of the present example is 

strongly thick, the results of the present model are in 

relatively good agreement with the elasticity solutions. 

These results prove the accuracy of the present partial 

mixed finite element model for the static bending analysis 

of thick FGM plates. 

It can be observed from Fig. 3 that all displacement and 

stress components of the FGM plate decrease gradually as 

either Kw or Kp increases. These decreases of stresses and 

displacements show that with increasing the foundation 

stiffness the rigidity of the plate is certainly enhanced. It is 

also seen from Fig. 3 that the variations of the transverse 

displacement (W) are not constant across the thickness as 

usually assumed in most of plate theories. Thanks to 

employing a linear distribution for the transverse deflection, 

the present finite element model can capture the non-

constant variations of deflections in FGM plates with 

enough accuracy. 

 

4.3 Example 3 
 
Free vibration of a simply supported square FGM plate 

with thickness ratio a/h=5 is studied in this example. The 

Young's modulus and the density of the considered plate 

vary along the thickness direction as: 
(1/2 / )( ) n z h

mE z E e += ,    (1/2 / )( ) n z h
mz e  +=                                                            

where 70mE GPa=  and 32702 /m kg m = . The 

Poisson’s ratio is assumed to be v=0.3 and the value of the 

material gradient index is taken as n=2.3. In presenting the 

numerical results of this example, the following non-

dimensional parameters are used 
2

/m m

a
E

h


 = ,  

4
w

w
m

k a
K

D
= ,  

  

2
p

p
m

k a
K

D
= ,    

3

212(1 )

m
m

E h
D


=

−
 

The predicted non-dimensional fundamental frequencies 

of the FGM plate are given in Table 4 for different values of 

the foundation parameters Kw, Kp. In this table, the results 

of the present partial mixed finite element model have been 

compared with exact 3D solutions of Lu et al. (2009) as 

well as the results of the refined shear deformation theory 

of Thai and Choi (2012). It is worth to note here that the 

plate model of Thai and Choi has four unknown parameters. 

It can be seen from Table 4 that the accuracy of the present 

partial mixed finite element model in the prediction of the 

fundamental frequencies of the FGM plate is much more 

than the refined plate model of Thai and Choi (2012). For 

different values of the foundation parameters, the maximum 

error of the present model in the prediction of the 

fundamental frequency is 2.08%. This value for the refined 

model of Thai and Choi is 7.66%. The lower accuracy of 

the refined plate model of Thai and Choi (2012) in the 

prediction of the natural frequencies may be attributed to 

the neglecting of the thickness stretching effects. 

 

4.4 Example 4 
 
Free vibration of an FGM plate with SSSC boundary 

conditions and the thickness ratio a/h=10 is carried out in 

this section. SSSC indicates that the graded plate is clamped 

at y=b and the other edges are simply supported. The 

mechanical properties of the plate are as follows 

1
( ) ( )

2

n

m c m

z
E z E E E

h

 
= + − + 

 
 

1
( ) ( )

2

n

m c m

z
z

h
   

 
= + − + 

 
,    0.3 =  

where 380cE GPa= , 70mE GPa= , 33800 /c kg m =  

and 32702 /m kg m = . The nondimensional fundamental 

frequencies of the graded plate predicted by the present 

partial mixed finite element model are given in Table 5 for 

different values of the foundation parameters, aspect ratios 

a/b and material gradient index n. Note that the definitions 

of the non-dimensional parameters are similar to the 

previous example. In Table 5, the results of the refined 

shear deformation theory of Thai and Choi (2012) are also 

shown. Similar to the previous example, it is seen that the 

present results are in good agreement with those generated 

by Thai and Choi (2012). 

It can be noticed from Table 5 that with increasing of 

Winkler and Pasternak foundation parameters, natural 

frequency of vibration increases. As it can be seen, 

Pasternak parameter has more effect on increasing the 

natural frequency than the Winkler parame ter. By 

comparing the numerical results cited in Tables 4 and 5, it 

can also be concluded that the effect of Pasternak 

foundation on increasing the natural frequency in FGM  
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Table 4 Non-dimensional fundamental frequency of the 

simply supported square FGM plate 

Kw Kp a/h=5,             n=2.3 

   
Exact  

(Lu et al. 2009) 

Thai and Choi 

(2012) 
Error (%)  Present Error (%) 

0 

0  4.7524  5.1163 7.66  4.8267 1.56 

10  5.1964  5.5300 6.42  5.2370 0.78 

25  5.7978  6.0982 5.18  5.7918 0.10 

10 

0  4.7759  5.1381 7.58  4.8484 1.51 

10  5.2179  5.5502 6.37  5.2568 0.74 

25  5.8170  6.1164 5.15  5.8094 0.13 

100 

0  4.9824  5.3299 6.97  5.0389 1.13 

10  5.4072  5.7282 5.94  5.4313 0.44 

25  5.9870  6.2784 4.87  5.9655 0.35 

1000 

0  6.6999  6.9634 3.93  6.6158 1.25 

10  7.0192  7.2728 3.61  6.9066 1.50 

25  7.4716  7.7136 3.24  7.3161 2.08 

 

Table 5 Non-dimensional fundamental frequency of the 

SSSC graded plate 

Kw Kp a/b n=0  n=1  n=5  n=10 

   Present 
Thai and 

Choi (2012) 
Present 

Thai and 

Choi 

(2012) 

Present 
Thai and 

Choi (2012) 
Present 

Thai and 

Choi 

(2012) 

0 

0 0.5 7.4840 7.5013  5.7524 5.7399  4.9253 4.9111  4.7477 4.7446 

100  11.6571 11.7074  11.2004 11.2760  11.2904 11.3993  10.7872 11.4676 

100 

0  7.9031 7.9195  6.3698 6.3622  5.7154 5.7092  5.5874 5.5898 

100  11.9302 11.9796  11.5288 11.6051  11.6546 11.7651  10.7873 11.8423 

0 

0 1 13.4201 13.4339  10.3547 10.3056  8.7994 8.7548  8.4596 8.4376 

100  17.6855 17.7236  16.1059 16.1763  15.6925 15.8249  15.6708 15.8113 

100 

0  13.6570 13.6706  10.7065 10.6626  9.2599 9.2234  8.9535 8.9375 

100  17.8656 17.9036  16.3335 16.4061  15.9529 16.0889  15.9401 16.0837 

0 

0 2 39.6899 36.1015  30.6331 27.9647  26.0886 23.1627  25.0853 22.1316 

100  43.8958 40.5304  36.6639 34.3067  33.6498 31.2410  33.0800 30.6913 

100 

0  39.7710 36.1890  30.7549 28.0960  26.2491 23.3411  25.2576 22.3246 

100  43.9692 40.6084  36.7657 34.4138  33.7742 31.3735  33.2107 30.8307 

 

Table 6 Non-dimensional fundamental frequency of the 

SCSC graded plate (h/a=0.2) 

Kw Kp n=0  n=0.5  n=1  n=2  n=10 

  Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

0 

0 0.5586 0.5363  0.4836 0.4680  0.4397 0.4263  0.3967 0.3844  0.3566 0.3447 

100 0.7187 0.7033  0.6714 0.6725  0.6450 0.6556  0.5903 0.6421  0.5100 0.6308 

100 

0 0.5675 0.5457  0.4947 0.4799  0.4524 0.4402  0.4114 0.4007  0.3740 0.3639 

100 0.7255 0.7105  0.6791 0.6809  0.6531 0.6647  0.5903 0.6521  0.5100 0.6416 

 

 

plates with SSSC boundary conditions is more significant 

than those with SSSS boundary conditions.   

 

4.5 Example 5 
 
Free vibration of the FGM plates with various boundary  

Table 7 Non-dimensional fundamental frequency of the 

SCSF graded plate (h/a=0.2) 

Kw Kp n=0  n=0.5  n=1  n=2  n=10 

  Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

Present 

Baferani 

et al. 

(2011) 

0 

0 0.2773 0.2714  0.2369 0.2338  0.2139 0.2121  0.1937 0.1925  0.1797 0.1781 

100 0.4539 0.4531  0.4420 0.4491  0.4358 0.4481  0.4319 0.4499  0.4327 0.4552 

100 

0 0.2948 0.2894  0.2590 0.2570  0.2393 0.2389  0.2227 0.2235  0.2125 0.2132 

100 0.4647 0.4641  0.4539 0.4616  0.4483 0.4615  0.4447 0.4642  0.4459 0.4707 

 

 

conditions are investigated in this example. The material 

properties of the considered FGM plates of the present 

example as well as the definitions of the non-dimensional 

foundation parameters are similar to the previous example. 

The considered FGM plates have square shape and their 

thickness ratio is taken as h/a=0.2. In Tables 6-7, the 

fundamental non-dimensional frequencies (

ˆ /m mh E  = ) of the graded plates with SCSC and 

SCSF boundary conditions are compared with those given 

by Baferani et al. (2011) based on the TSDT. It can be seen 

that the results of the present partial mixed finite element 

model coincide with those of TSDT for different values of 

the foundation parameters and material gradient indexes. It 

is worthy to note that the number of unknown parameters of 

the plate model of Baferani et al. (2011) is the same as the 

present partial mixed plate model. However, the present 

mixed plate model takes into account the thickness 

stretching effects. These numerical results again prove the 

accuracy of the proposed mixed finite element model for 

the free vibration analysis of the FGM plates rested on 

elastic foundations.  

From Tables 6-7, it can be observed that for SCSC and 

SSSC boundary conditions, the natural frequencies decrease 

with the increase of power law index. Similar to section 4.4, 

it is seen again that the Pasternak elastic foundation has 

more significant effect in increasing the natural frequency 

of the FGM plate. 

 

 

5. Conclusions 
 

A computationally efficient partial mixed finite element 

model was introduced for the static and free vibration 

analyses of FGM plates rested on Winkler-Pasternak elastic 

foundations. The mechanical properties of the plate are 

assumed to vary continuously along the thickness direction 

according to simple exponent/power-law distributions. The 

proposed finite element model, which is based on a 

parametrized mixed variational principle, has only one 

general unknown function more than FSDT. It can predict 

through-the-thickness variations of the transverse shear and 

normal stresses directly from the constitutive equation. The 

boundary conditions of the shear and normal stresses on the 

top and bottom surfaces of the FGM plates are also 

satisfied. The in-plane variations of the transverse 

deflection are interpolated using full Hermitian shape 

functions while C0-type continuity is considered for in-

plane variations of other unknown parameters of the stress 
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and displacement fields. The convergence velocity of the 

proposed finite element model is high and it is not sensitive 

to the mesh distortion. The numerical studies show that the 

present finite element model gives accurate results for 

thick-to-thin FGM plates with different material gradient 

indexes and various boundary and loading conditions.  

Future researches are pointed towards the extension of 

the present finite element formulation to geometrically and 

materially nonlinear analysis of laminated composite and 

sandwich plates/shells.   
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