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1. Introduction 
 

Recently great attempts done due to achieve new 

composite materials with novel qualities in aerospace and 

high tech industries. One of the most recent materials are 

the composites, reinforced by CNTs. The revolutionary 

properties of CNT, persuaded scientists and engineers to use 

them in various materials and components and many 

different distributions. One of these materials are the 

combination of high strength CNTs with various polymer 

matrixes. Such a material may have great application, not 

only in aerospace but also in automotive engineering for 

building the structure of supercars. One of the most 

favorable applications is the biomechanical and medical 

applications, in which high strength material are more 

favorable. In one hand, in all of these applications, wave 

propagation is the key features in the material properties. 

On the other hand, the composite sheets or beams may be 

situate in high temperature thermal environments. So, there 

is a lack of knowledge in study of wave propagation in 

CNTRC materials. By means of continuum mechanics, 

Sofiev and Alizada (2010), explained that the modified 

Young’s moduli is acquired by considering the vacancies. 

And also, the triple components of this module are 

introduced as macroscopic value and factors of vacancy and 

scale effects. Besides, Alizada (2011) studied the beams 

with coatings of nano scale and their stability. Recent  
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investigations are mostly focused on vibration of CNTRC 
structures. Yan et al. (2011) investigated the behaviour of a 
functionally graded (FG) beam which is edge cracked. They 
used rotational spring model to model the beam and crack 
and used Hamilton principle to gain the governing equation. 
Discrete singular convolution method had been used to 
solve vibration of skew laminated plates by Civalek (2009). 
By means of mapping, straight sided domains had been 
converted into circular field. The effect of skew angle had 
been shown in this study. Simsek (2010) studied the FG 
beams and their fundamental frequency by means of 
various high order theories of beams. Yas and Samadi 
(2012) studied CNTRC and made a complete investigation 
in vibration and buckling in beam structures. They used 
Timoshenko beam to model their CNTRC beams. Besides 
they used the regulation of mixture to homogenize the 
properties of CNTRC beams and utilized various 
distributions of CNTs in their matrix. Ebrahimi and Habibi 
(2017) used Halpin-Tsai model to homogenize the elastic 
properties of CNTRC plate imposed to low velocity impact. 
Both buckling influences and vibrational characteristic 
analysis of macro beams made up of FG-CNTRC had been 
done by Nejati and Eslampanah (2016), under axial load. 
They modeled a cantilever CNTRC beam under axial load 
and utilized Eshelby type, Mori-Tanaka method to find the 
impressive elastic modulus. The assumption of Euler 
Bernoulli beam with surrounded circular Winkler 
foundation had been used by Civalek (2016) due to model 
the buckling of micro tubes. Shen et al. (2017) examined 
the vibration influences in a post buckled CNTRC beam on 
thermal environment. They used Von Kármán nonlinear 
displacement relations of a CNTRC beam and extended rule 
of mixture to homogenize the elastic properties. Lin and 
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Xiang (2014) pondered the vibration effects in CNTRC 
beams by means of both first and third order shear plate 
theories. Besides the influence of volume fraction of CNT 
and various distributions had been tested. The nonlinear 
equation of large deformations of composite laminated 
plates had been investigated by Civalek (2010). It had been 
found that the regular Shannon kernel gives better results in 
such problems. Alibeigloo (2015) pondered FG-CNTRC 
beams under bending by means of a thin piezoelectric layer. 
To analyse, they used semi analytical method and 
differential quadrature method. Bending behaviour of single 
walled carbon nanotubes (SWCT) with higher order shear 
deformation theories had been done by Akgöz (2015). They 
had shown the dependency of bending characteristics to 
elastic foundation and also the accomplishment of shear 
deformation in small ratios of slenderness. Ghorbanpour 
Arani et al. (2016), used nonlocal piezoelectricity theory 
based on Eringen (1972) nonlocal theories to study wave 
propagation in FG-CNTRC micro plates. They used 
sinusoidal shear deformation theory and rule of mixture to 
homogenize the elastic properties. Another research about 
the beams with nano-coatings is Sofiev et al. (2012) in 
which the uniform expansion loads and the multilayer beam 
consists of elastic and nano material filled parts. Ebrahimi 
and Barati (2016) studied the both uniform and nonlinear 
temperature rise in vibration of nanobeams made of 
magneto-electro-elastic materials. Alibeigloo (2013) made a 
static analyse in FG-CNTRC beams with two layers of 
piezoelectric actuators. The dependency of flexoelasticity 
on nonlocality had been shown by Ebrahimi (2017) in 
investigation of buckling properties of magneto-electro-
elastic made functionally graded nanobeams. Ghorbanpour 
Arani et al. (2017) used nonlocal piezoelectricity theory to 
investigate the CNTRC micro plates with magnetic field. 
They used both damping and spring foundations in their 
model. Energy method utilized in this investigation to 
achieve to governing equation. The assumption of 
Timoshenko beam for vibration of composite laminated 
composite beams had been done by Chen (2012). It had 
been shown that the length scale effects can be highlight 
better by means of Timoshenko beam theory.  Wu et al. 
(2015) investigated both vibration of FG-CNTRC in which 
reinforcement had been done by CNT reinforced composite 
face sheets. Differential transform method combined with 
Eringen nonlocal elasticity theory, had been used in order to 
investigate the thermal effects of vibration in functionally 
graded nanobeams by Ebrahimi (2015). The structure 
contains a uniform homogeneous part embedded by 
CNTRC face sheets. And also, solution procedure done by 
differential quadrature method. Recently, Wattanasakulpong 
and Ungbhakorn (2013) made a complete research in 
bending and free vibration of FG-CNTRC beams by means 
of analytical solution. In one hand, in a new investigation 
by Ebrahimi and Salari (2015), both linear and nonlinear 
temperature effects are investigated. On the other hand, 
Ebrahimi and Barati (2015) investigated the effect of non-
locality with higher order shear deformation beam theory to 
investigate the thermo vibrational analysis of functionally 
graded nano beams. Both static and dynamic examination 
of cylindrical panels, made up of FG-CNTRC had been 
done by Zhang et al. (2014). Eshelby type, Mori-Tanaka 
method had been used to find the effective elastic attributes 
of composite substances. The effectiveness of elastic 

properties of CNTRC plates by Mori-Tanaka theory had 
been derived by Sobhani Aragh et al. (2012) and used third 
order plate theory to reach governing equations. The 
rotation of nanobeams made of functionally graded 
materials had been investigated by Ebrahimi et al. (2016), 
in which nanobeams are subjected to thermal effects. 
Fantuzzi et al. (2017) concentrated on micro mechanical 
attributes of CNTs. Besides, first order shear deformation 
theory had been utilized to study the vibration of FG-
CNTRC reinforced by sighted plates. They used mapping 
technique and domain decomposition method. Solution 
procedure governing equation had been solved using 
differential quadrature method. Janghorban and Nami 
(2017) studied wave propagation in FG-CNTRC plates. The 
effect of Silica aerogel foundation on bending analyse of 
FG porous sandwich nanoplates had been studied by 
Ghorbanpour Arani and Zamani (2017). Analysis of nano-
structure’s mechanical behaviors is one of recent interesting 
research topics. (Ebrahimi and Barati 2016f, g, h, i, j, k, l, 
m, n, Ebrahimi and Barati 2017). For instance, thermal 
buckling and free vibration analysis of FG nanobeams 
subjected to temperature distribution have been exactly 
investigated by Ebrahimi and Salari (2015a, b, c) and 
Ebrahimi et al. (2015 a, b). Ebrahimi and Barati (2016o, p, 
q) investigated buckling behavior of smart piezoelectrically 
actuated higher-order size-dependent graded nanoscale 
beams and plates in thermal environment. 

More recently, Shen and Xiang (2013) made a nonlinear 

analyse in CNTRC beams in thermal environments. It 

should be mentioned that in this paper temperature 

dependent properties of SWCNT had been used. 

As it is clear from previous researches, there is no study 

in wave propagation of CNTRC beam in thermal 

environments. Herein it is tried to make a complex 

investigation in wave propagation in thermal effects. 

Besides various shear deformation theories and different 

distributions of CNT in polymer matrix had been studied. 

Then the governing equation had been solved by means of 

extended Hamilton principle and solved analytically. And 

also, temperature dependent properties of CNT had been 

used to reach to realistic results. 

 

 

2. Theory and formulation 
 

2.1 Thermo mechanical attributes of CNTRC beams 
 

Herein a combination of CNTRC beam, SWCTs and a 

polymer matrix is assumed which is subjected to heat 

flames or other thermal sources as exhibited in Fig. 1.  

Dimensions of CNTRC beam are as follows: (L) is 

introduced as the length of beam and thickness is expressed 

by (h). Herein, Beam is situated in shear layer and springs 

are the schematics of Winkler substructure. It is necessary 

to homogenize the elastic attributes in order to reach to 

equals. According to rule of mixture (Arani et al. 2017) 

11 1 11

CNT m

CNT mE V E V E= +  (1) 

2

22 22

CNT m

CNT m

V V

E E E


= +  (2) 
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Fig. 1 Schematic effect of thermal effects in composite 

beam resting on Winkler substructure with a shear layer 

 

 

Fig. 2 Various distributions of CNT in matrix. (a)UD-Beam 

(b) X-Beam (c) V-Beam (d) O-Beam 

 

Table 1 Various geometrical properties of CNTRC beams 

Geometry of CNTRC beam Volume fraction 

Uniform distribution 
*

CNTV  

V distribution 
*2

(1 )VCNT

z

h
+  

X distribution *4 CNT

z
V

h
 

O distribution *2(1 2 ) CNT

z
V

h
−  

 

 

3

22 12

CNT m

CNT m

V V

G G G


= +  (3) 

CNT m

CNT mV V  = +  (4) 

CNT m

CNT mV V  = +  (5) 

1CNT mV V+ =  (6) 

*

( / )(1 )

CNT

CNT CNT m

CNT CNT

W
V

W W 
=

+ −
 (7) 

Where E11, E22, G22, ρ, v are the resultant properties of 

homogenized composite. Besides, η1, η2, η3 are the 

manufacturing efficiency of CNTRC beam which shows the 

quality of mixture of CNT and polymeric matrix. Also, 

VCNT, Vm are the volume fractions of carbon nanotube and 

matrix. 
11 22 12, ,CNT CNT CNTE E G  are the Young’s modulus and 

shear modulus of carbon nanotubes and Em, Gm are the 

properties of matrix. In addition, vCNT, ρCNT are the 

Poisson’s ratio and density of carbon nanotube. In contrast, 

ρm, vm are the attributes of polymer matrix. Eq. (7), explains 

the mass fraction of CNT. Fig. 2 shows various distributions 

of CNT in polymer matrix. Volume fractions of various 

CNTRC beams are available in Table 1. 

 

2.2 Kinematic relations 
 

Displacement relations of CNTRC beam can be 

illustrated by various shear deformation theories (Şimşek 

2017) 

b
x

su u z f
w w

x x

 


− −


=  (8) 

z b su w w= +  (9) 

in which (u) is the term of movements, and (w) is transverse 

displacement and wb, ws are the terms of bending and shear 

displacements of the beam. f(z) explains various functions 

of shear deformation through the thickness. Various shear 

deformation theories employed in this paper are available in 

Table 2. Shear and simple strain narrations of the CNTRC 

beam can be elucidated by Hamilton precept as shown in 

Eqs. (10)-(13) 

2xx

2 2

2
( )b sw wu

x
z f

x
z

x


 

 
−


= −  (10) 

s
xz

w
g

x



=


 (11) 

0
( ) 0

t

U V K dt + − =  (12) 

( )ij ij xx xx xz xz
v v

U dV dV         = = +   (13) 

Inserting Eqs. (10) and (11) into Eq. (13) yields 

2 2

2 20
( )b s s

b s

L d w d w d wd u

dx dxdx dx
U N M M Q dx

  
 − − +=   (14) 

Where U is the strain term of energy, V illustrates the 

work done by exterior forces and K interoperates the kinetic 

energy. The strain term is as follows 

xx
A

b xx
A

s xx
A

xz
A

N dA

M z dA

M f dA

Q g dA









=

=

=

=









 
(15) 

Differential of the work done by bending, shear and 
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thermal effects can be explained in the following  

Table 2 Various shear strain shape functions 

Shear deformation theory Reference Abbreviation Formula 

Third order Reddy (2000) TSDT 
3

2

4
(1 )

3

z
z

h
−  

Sinusoidal 
Touratier 

(1991) 
SSDT sin( )

h z

h





 

Hyperbolic 
Soldatos 

(1991) 
HSDT 

1
sinh( ) zcosh

2

z
h

h
−   

First order 
Reissner 

(1985) 
FSDT z 

 

 

constitution 

0

( ) ( )
( ( ))

L
T s b s bd w w d w w

V N dx
dx dx




+ +
=   (16) 

where, NT is applied thermal force since temperature 

changes 

/2

0
/2

( , ) ( , ) ( )
h

T

h
N E z T z T T T dz

−
= −  (17) 

In which T0 is the reference temperature which is mostly 

the room temperature. Following equation explain the 

variety of kinetic energy 

0
0

2 2 2 2

1 2

2 2 2 2

1 2

2 2 2 2

2

( [ ( )( )]

( ) ( )

( ) ( )

( ))

L
b s b s

b b b b

s s s s

b s s b

dw dw d w d wdu d u
K I

dt dt dt dt dt dt

d w d w d w d wdu d u
I I

dt dxdt dxdt dt dxdt dxdt

d w d w d w d wdu d u
J K

dt dxdt dxdt dt dxdt dxdt

d w d w d w d w
J dx

dxdt dxdt dxdt dxdt

 


 

 

 

= + + + −

+ +

− + + +

+



 (18) 

where 

2 2
2 1 2 0 1 2( , , , , , ) ( )( , , ,1, , )K J J I I I z f f zf z z dA=   (19) 

Next equations are available by inserting Eqs. (13)-(19) 

in Eq. (12) when δu, δwb and δws corresponds to zero 

3 32

0 1 12 2 2

b sd w d wN d u
I I J

x dt dxdt dxdt


= − −


 (20) 

2 2 2 2

02 2 2 2

4 43

1 2 22 2 2 2 2

( )
( )Tb b s b s

b s

d M d w w d w d w
N I

dx dx dt dt

d w d wd u
I I J

dxdt dx dt dx dt

+
= + + +

− −

 
(21) 

2 2 2

02 2 2

2 4 43

1 2 22 2 2 2 2 2

( )
(

)

Ts b s b

s b s

d M d w w d wdQ
N I

dxdx dx dt

d w d w d wd u
J J K

dt dxdt dx dt dx dt

+
+ = + +

+ − −

 
(22) 

The simple stress-strain relations to analyze the CNTRC 

macro beam are as follows 

11(z)xx xxQ =  (23) 

55(z)xz xzQ =  (24) 

11

11 2

(z)
(z)

1

E
Q


=

−
 (25) 

55 12(z) G (z)Q =  (26) 

By inserting Eqs. (23)-(26) into (20)-(22)  

2 2

2 2

Tb s
s x

w wu
N A B B N

x x x

 
= − − −

  
 (27) 

2 2

2 2

Tb s
b s b

w wu
M B D D M

x x x

 
= − − −

  
 (28) 

2 2

2 2

Tb s
s s s s s

w wu
M B D H M

x x x

 
= − − −

  
 (29) 

s
s

w
Q A

x


=


 (30) 

where cross sectional properties are 

2 2

( , , , , , )

( ) (1, , , , , )

s s s

A

A B B D D H

E z z f z zf f dA

=


 (31) 

2 ( )s
A

A g G z dA=   (32) 

The governing equations derived by inserting Eqs. (31)-

(32) into Eqs. (27)-(30) can be simplified as follows 

3 3 3 32

0 1

2

2 13 3 2 2 2
0s

b s b sw w w wu
I I J

x x t

u
A B B

x tx x t
− −

    
− + + =

       
 (33) 

4 4 2 2 23 3

0 13 4 4 2 2 2 2

4 4

2 22 2 2 2

( )

0

( )
( ) ( )T b s b

s
s

b s

b s w w w w uw wu
B D D

x x
N I I

x t t t x

w w
I J

t x x

x

t

   +   
− + −

       

 
+ +

   

− − −

=

 

(34) 

4 4 2 2 2 23

03 4 4 2 2 2 2

4 43

1 2 22 2 2 2 2
0

( )
( ) ( )T b s b sb s s

s s s s

b s

w w w w
N I

x t t

w wu
J J K

t

w w wu
B D H A

x x

x t t

x x

x x

    +  
− +

      

 
− + +

     

− − + −

=

 

(35) 

 

 

3. Solution procedure 
 

Desperation relations of wave propagation in solid 

bodies can be used to solve the governing equation 

1 2( , ) exp[ ( )]nu x t U i x y t  = + −  (36) 

1 2( , ) exp[ ( )]b bnw x t W i x y t  = + −  (37) 

1 2( , ) exp[ ( )]s snw x t W i x y t  = + −  (38) 
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where β1, β2 are equal. In addition, Un, Ubn, Wsn are the 

unknown parameter. By inserting Eqs. (36)-(38) into Eqs. 

(33)-(35) gives 

11 12 13 11 12 13
2

21 22 23 21 22 23

31 32 33 31 32 33

0

n

bn

sn

Ua a a b b b

a a a b b b W

a a a b b b W



     
     

− =     
     
      

 (39) 

where 
2 2 2 2

11 12 13

2 2 2

21 22 55

2 2 2

23

3 3 3 3

31 32 11

2

4 4 2 4

33

4 2

, ,
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a N

,

N ,

N

s s

T

s s

T

s s s

s s

T

s

s s s w

T

s

a A a B a B i B i

a B H A

H i A i D i

a B i B i a E i H i

A ki

a D H A k D

D

   

  

   

   



   

 

= − = = − +

= − = + +

= − − + +

= + = − +

+ +

= + + + +

− +

  

and 

11 0 12 1 13 1 1

21 1 22 2 23 2 2

31 1 1 32 2 1

2 2 2 2

33 2 2 0 2

, b ,b

,b ,b

,b ,

2 s

b I J J i I

b J K K i J i

b I i J i K i J ki

b K J A I I

 

 

  
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= = − = +

= = − = +

= − + = − +

= + + − −

  

To achieve the critical frequency, it is necessary to take 

the determinant equal to zero. The roots of Eq. (39) are as 

follows 

0 1 2
1 2 3, ,M M M  = = =  (40) 

Phase velocity can be illustrated by 

( )
( )

, 1,2,3
j

p i
M

C j



= =  (41) 

In above equation Cp expresses the phase velocity, β is 

the symbol of wave number of a CNTRC beam.  

 
 

4. Numerical results of eigenvalue problem 
 

This part is dedicated to clarify the results of theories, 

explained in previous theories. First of all, it is necessary to 

explain material properties of matrix and CNT. The polymer 

matrix chosen in this investigation is Methyl Methacrylate. 

The attributes of proper SWCNT are available as follows.  

Thermal relying attributes of CNT are listed in Table.4. 

(Shen et al. 2013). 

The results of current investigation had been checked by 

previous investigation as shown in Table 5.  

As it is shown in both Fig. 3, and Table 6, wave 

frequency increases by the rise of temperature. According to 

Fig. 3(a), for UD-Beam, wave frequency increases from 

T=300 to 400 but the value of wave frequency and similar 

behaviour of wave frequency observed from T=400 and 

T=500. Fig. 3(b) shows the increasement of wave frequency 

by wave number for O-Beam. Obviously the results are 

nearly close for the Temperatures T=400, 500 and 700 but  

results for T=300 is not close to others and V-Beam have 

similar behaviour. In contrast, in X-Beam, the difference of 

results between various temperatures is nearly the same 

according to Fig. 3(c). Fig. 4 shows that O-Beam and V- 

Table 3 Attributes of polymer matrix (Shen et al. 2013) 

T 
m  mE  

m  

300 1150
3kg m  2.5 Gpa 64.5 10 / K−  

 

Table 4 Thermal characteristics of a (10, 10) SWCNT with 

length = 9.26 nm, radius = 0.68 nm, 
12 0.175CNT =   

T (k) 11 (Tpa)CNTE  
22 (Tpa)CNTE  

12 (Tpa)CNTG  6

11 ( 10 / K)CNT −  

300 5.6466 7.0800 1.9445 5.1682 

400 5.5679 6.9814 1.9703 5.0905 

500 5.5308 6.9348 1.9643 5.0189 

700 5.4744 6.8641 1.9644 4.8943 

 

Table 5 Comparison of dimensionless frequency for various 

plate theories in UD-Beam 

Shape function of plate 

theory 

Dimensionless frequency of UD-Beam 

00

110

I
L

A
 =  

Present Wattanasakulpong (2013) 

FSDT 0.99761 0.997 

TSDT 0.974607 0.9745 

ESDT 0.97563 0.9756 

HSDT 0.974537 0.9745 

SSDT 0.9749101 0.9749 

 

 

Beam have similar manner but X-Beam has lower 

responses than UD-Beam. And also the results of all 

distributions, get closer between the wave number of 40 to 

approximately 65. Fig. 5. Fig. 5 shows the increasement of 

wave frequency for various wave numbers in two different 

temperatures, T=300 and T=500. The logarithmic scale 

behaviour of increasement in wave frequency for various 

temperatures shown in Fig. 6. The effect of Winkler 

foundation in thermal enviroment shown in Fig. 7. It had 

been observed that in constant temperature, results have a 

high increase and then sudden downfall from wave 

numbers, 0 to 500, then they will be overlaped. Simply, 

increase of Winkler foundation, causes this effect in wave 

frequency. As a matter of fact, by increase of temperature 

the foregoing effect will be reduced. Fig. 8 shows the 

variation of phase velocity by means of temperature rise for 

various shear deformation theories. SSDT has higher values 

than TSDT and FSDT. Besides, phase velocity increases by 

the rise of temperature. The effect of thermal parameter, NT 

shown in Fig. 9, in which V-Beam has higher values of 

phase velocity than X-Beam and UD-Beam. This is 

beacause of the difference of distribution of caron nanotube 

and polymer matrix in different geometries which causes 

higher module of Yound and shear, in which they are both 

effective in the eigenvalue problem. Herein, the results of 

O-Beam are neglected because they are completely the 

same as V-Beam. Fig. 10 shows the effects of temperature 

rise in phase velocity for different geometries of beams in 

which UD-Beam has a little higher values than X-Beam but 
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V-Beam is highly greater than the other two. Besides the 

results of UD-Beam and O-Beam are nearly the close so it  

 
(a) 

 
(b)  

 
(c) 

 
(d) 

Fig. 3 Wave frequency vs. wave number for various 

temperatures in various distributions of CNT in composite 

by means of SSDT. (a) Uniform distribution (b) O-

distribution (c) X-distribution (d) V-distribution 

 

 

is neglected as previous figure. Fig. 11 shows the 

temperature effect in increase of wave frequency for various  

 

Fig. 4 Wave frequency vs wave number for various 

distributions in SSDT and T=400 

 

 
(a) 

 
(b)  

Fig. 5 Variation of wave frequency .vs wave number for 

various shear deformation theories in different 

temperatures. (a) T=300 (b) T=500 

 

 

500
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Fig. 6 Wave frequency vs. wave number in logarithmic 

form in UD-Beam and SSDT for various temperatures 
 

 
(a) 

 
(b)  

Fig. 7 Wave frequency for various wave numbers in 

different Winkler numbers. (a) T=300 (b) T=700 
 

 
(a) 

 
(b)  

 

Fig. 8 Phase velocity vs. wave number in different 

temperatures by means of various shear deformation 

theories. (a) SSDT (b) TSDT (c) FSDT 
 

 

Fig. 9 Effect of thermal parameter in phase velocity for 

different geometries 

 

 

Fig. 10 Effect of temperature in phase velocity for various 

geometries of beam 
 

 
(a) 

 
(b)  

 
(c) 

 
(d) 
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Fig. 11 Wave frequency vs. temperature for different beam 

geometries. (a) UD-Beam (b) O-Beam (c) X-Beam (d) V-

Beam 

Table 6 Effect of temperature rise in wave number for 

various CNT distributions 

T Wave no. Uniform O-distribution X-distribution V-distribution 

300 

20 0.80226379 0.80226379 0.80226379 0.80226379 

40 1.10569451 1.10569451 1.10569451 1.10569451 

60 1.2307596 1.2307596 1.2307596 1.2307596 

80 1.31019343 1.31019343 1.31019343 1.31019343 

100 1.37896114 1.37896114 1.37896114 1.37896114 

400 

20 0.8259355 0.92689826 0.82582074 0.92689826 

40 1.10774696 1.11429876 1.1077376 1.11429876 

60 1.23428795 1.24430374 1.23427232 1.24430374 

80 1.33059472 1.38460582 1.330506 1.38460582 

100 1.42494568 1.54055571 1.42474863 1.54055571 

500 

20 0.84823164 0.96391246 0.84808932 0.96391246 

40 1.10946896 1.11606642 1.10945855 1.11606642 

60 1.23709486 1.24672309 1.23707829 1.24672309 

80 1.34629125 1.39686425 1.34619993 1.39686425 

100 1.4594181 1.56568374 1.45921972 1.56568374 

700 

20 0.88022669 0.99220505 0.88004491 0.99220505 

40 1.1116407 1.1172538 1.11162925 1.1172538 

60 1.24045118 1.24828869 1.24043399 1.24828869 

80 1.36447492 1.40464593 1.36438333 1.40464593 

100 1.49843493 1.58143957 1.49824076 1.58143957 

 

 

geometries of CNTRC beams. Whith rise of temperature 

while the wave number is 50. The wave frequency rises by 

the increasement of KW. As it is obvious from the figure, O-

Beam and V-eam have higher responses than the other two. 

For a UD-Beam, the differences between responses of 

different winkler parameters are nearly the same. Although 

for others, there is a higher difference between KW=0.4, 0.8. 

This gap increases for a X-Beam and then decreases for a 

V-Beam. Table 7 presents the effects of tempereture rise in 

wave frequency of various shear deformation theories. In 

which SSDT and ESDT are nearly simillar and both TSDT 

and FSDT give simillar responses. 
 

 

5. Conclusions 
 

The accomplishment of thermal influences had been 

studied. The growth of wave frequency due to temperature 

rise shown in different plots and tables. The effects of 

different distributions of CNT in polymer matrix 

investigated combined by various shear deformation 

theories. Besides The effect of Winkler elastic foundation in 

wave frequency and the accomplishment of thermal 

surroundings observed. The Temperature affect in variation 

of phase velocity had been done due to reach different 

properties of wave propagation. It had been found that the 

effect of Winkler elastic foundation decreases by the 

increase of temperature. Phase velocity of CNTRC beams 

increases by the thermal effects. Besides, by increasing the 

wave number, wave frequency increases which had been 

discussed for various geometries of CNTRC beams. In  

Table 7 Effect of temperature and various shear deformation 

theories in two different temperatures 

T 
Wave 

number 

Wave frequency 

SSDT TSDT FSDT ESDT 

300 

5 0.25032258 0.17747 0.177555 0.258721 

10 0.47469854 0.339276 0.339422 0.490747 

15 0.65898974 0.475837 0.476011 0.681534 

20 0.80226379 0.585036 0.585206 0.830129 

25 0.91094539 0.669686 0.66983 0.95 

30 0.99321947 0.734452 0.734553 1.03 

35 1.05629373 0.783948 0.783997 1.095302 

40 1.10569451 0.822005 0.821995 1.14755 

45 1.1454151 0.851561 0.851485 1.189938 

50 1.17827544 0.874786 0.874639 1.225376 

55 1.20625729 0.893264 0.893041 1.255905 

60 1.2307596 0.908146 0.907841 1.282968 

65 1.25277876 0.920274 0.919883 1.307587 

70 1.27303218 0.930269 0.929786 1.3305 

75 1.29204224 0.938594 0.938013 1.352242 

80 1.31019343 0.945595 0.944911 1.373203 

85 1.32777155 0.951538 0.950745 1.393674 

90 1.34499086 0.956626 0.955718 1.413871 

95 1.36201313 0.961018 0.959988 1.433956 

100 1.37896114 0.964836 0.963679 1.454049 
 

500 

5 0.288656 0.205632 0.20572926 0.298168 

10 0.531721 0.386182 0.38634242 0.548668 

15 0.715936 0.53157 0.53174922 0.738109 

20 0.848232 0.64168 0.64184357 0.874266 

25 0.942942 0.722762 0.72288855 0.972304 

30 1.01264 0.782118 0.78219564 1.045287 

35 1.066207 0.825871 0.82589175 1.10234 

40 1.109469 0.858554 0.85851242 1.14939 

45 1.146168 0.883359 0.8832511 1.190215 

50 1.178713 0.9025 0.90232002 1.227227 

55 1.208676 0.917508 0.91725232 1.261986 

60 1.237095 0.929457 0.9291198 1.295507 

65 1.264665 0.939104 0.93868133 1.328463 

70 1.291858 0.946997 0.94648194 1.3613 

75 1.318994 0.953531 0.95291891 1.394315 

80 1.346291 0.959001 0.95828603 1.427703 

85 1.3739 0.963627 0.96280361 1.461589 

90 1.401918 0.967577 0.96663902 1.496053 

95 1.430411 0.97098 0.96992102 1.53114 

100 1.459418 0.973935 0.97274977 1.566872 
 

 

 

propagation of elastic waves in CNTRC beams, it should be 

mentioned that the results of SSDT and ESDT are nearly 

converged. Although the responses of TSDT and FSDT are 
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nearly similar. The temperature affected wave frequency 

has higher differences by increasing of Winkler elastic 

function coefficient, while the distribution changes from 

uniform distribution. For the future works in wave 

propagation of CNTRC beams, it is recommended to 

investigate the special boundary condition which are useful 

in industry such as clamped-hinged-clamped with 

assumption of Timoshenko beam theories. 
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