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1. Introduction 
 

Optimization of complex problems requires powerful 

tools. In order to resolve these problems, new optimization 

methods have been presented which are inspired by the 

natural or social phenomena and are known as “meta-

heuristic methods”. Meta-heuristic techniques usually have 

relatively the same process to achieve the optimal solution. 

In the most of these methods, during the algorithm process, 

a number of random responses are generated in the 

permissible area, and then it moves toward the optimum 

point during further processes. Most of these algorithms are 

the population-based ones and during the search process, in 

moving toward the optimal solution, random searches are 

also considered to be performed. Therefore, there is an 

ability to escape from the local optimum traps. Hence, a 

higher probability is provided to reach the global optimality 

(Prugel-Bennett 2010). 

In the recent years, an increasing number of the meta-

heuristic methods have been introduced, for example: 

Particle Swarm Optimization (PSO); which is inspired by 

the social behaviors of animals, such as birds and fishes 

(Kennedy and Eberhart 1995), Ant Colony Optimization 

(ACO); which uses the seeking behavior of the ants (Dorigo 

and Blum 2005), Firefly Algorithm (FA); which is modeled 

by observation of the flicker fireflies (Yang 2009), Ray 

Optimization (RO); in which each factor is considered as a 

beam of light and moves in the search space to find the 

optimum point (Kaveh and Khayatazad 2012), Colliding  
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Bodies Optimization (CBO); which is based on one-

dimensional collisions between bodies (Kaveh and Mahdavi 

2014), Crow Search Algorithm (CSA); which works based 

on intelligent behaviors of crows (Askarzadeh 2016), 

Kidney-inspired Algorithm (KA); which uses the kidney 

process in the human body (Jaddi et al. 2017), and Optimal 

Foraging Algorithm (OFA); which is inspired by the animal 

Behavioral Ecology Theory (Zhu and Zhang 2017). As none 

of the mentioned algorithms claim to optimize all kinds of 

problems i.e., linear and/or non-linear, constrained and/or 

non-constrained problems, there are still many opportunities 

to explore new innovative methods. Hence, this article 

presents a new metaheuristic optimization method, named 

as the “Numbers Cup Optimization” (NCO), which is 

inspired by sports competitions. This method clearly depicts 

the concept of meta-heuristic optimization, regarding the 

competitions among random numbers, in order to reach the 

optimal response (champion). 

In the last decades, these introduced algorithms have 

been used to solve the structural optimization. Structural 

optimization problems are generally divided into three 

classes (Klarbring 2008): 

1- Size optimization: the cross sections of the 

members are considered as design variables. 

2- Shape optimization: the coordinates of the nodes 

are considered as design variables. 

3- Topology optimization: the connectivities of the 

members are selected as design variables. 

Different types of structural optimization problems have 

been presented in the literature. Wang et al. (2002) 

presented a study for truss structure with combined size and 

shape optimization. Rahami et al. (2008) optimized truss 

structures using the genetic algorithm with sizing, geometry 

and topology design variables. Kaveh and Talatahari 

(2009a) made a study on size optimization of space trusses 
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using a hybrid Big Bang-Big Crunch algorithm. Dede et al. 

(2011) minimized the weight of the truss structures by using 

adopted Genetic Algorithm. Sonmez (2011) studied on truss 

structures taking into account the size optimization with 

Artificial Bee Colony algorithm. Miguel and Miguel (2012) 

made a study on shape and size optimization of truss 

structures considering dynamic constraints through modern 

metaheuristic algorithms (Harmony Search and Firefly 

Algorithm). Sadollah et al. (2012) presented a study on size 

optimization with discrete design variables of truss 

structures using the Mine Blast Algorithm. Miguel et al. 

(2013) employ the Firefly Algorithm (FA) in the 

simultaneous optimization of size, shape, and topology in 

truss structures. Ahrari and Atai (2013) presented a novel 

truss optimizer based on the principles of Evolution 

Strategies by taking into account the size and shape 

optimization. Kaveh and Mahdavi (2015) studied the 

application of Colliding Bodies Optimization (CBO) 

method, for size and topology optimization of steel trusses. 

Dede and Togan (2015) used the Teaching Learning Based 

Optimization (TLBO) as an optimization engine in the size 

and shape optimization of the truss structures under 

frequency constraints. Kaveh and Mahdavi (2016) applied a 

new single-solution search optimization algorithm to the 

size optimization of truss structures. Dede (2018) presented 

a new and efficient optimization algorithm called Jaya for 

size optimization of steel grillage structure. In this paper, 

the NCO algorithm is applied for finding the optimal design 

of planar truss structures under some constraints. In this 

process, size optimization is taken into account while the 

topology of the truss structure is fixed. 

The goal of the NCO method is to find the optimal 

response in less number of function evaluations (NFE). This 

method has two convergency procedures; one at the 

beginning of each course, and the other during each course. 

The optimization iterations are as same as the courses. 

The remainder of this paper is organized as follows: In 

section 2, the new optimization method is introduced. In 

sections 3, standard functions, include unimodal and 

multimodal functions, are implemented by the proposed 

method. In section 4, the NCO method is applied for size 

optimization of truss structures. Conclusions are derived in 

section 5. 

 
 

2. Methodology 
 

As mentioned previously, the algorithm is inspired by 

sport cups procedures. The model of sport cups is close to 

the optimization concept in its exact meaning, and that is to 

find the champion (optimum response) after each course of 

the competition. In sport competitions, teams are first 

grouped, and then the members of each group compete with 

each other to become the group’s best team. The best teams 

again compete until two teams find their way to the final. In 

the final round, the champion team which is the problem’s 

optimum response is found. The sports cups may be held 

yearly, bi-yearly, etc. This subject in the NCO method is 

defined as cup courses. The courses are as same as the 

optimization iterations. Teams try to perform better in next 

courses of competitions, and this is sought after by boosting 

the performance of team members. The method procedure 

would be divided into the following steps: 

1- Initialization, including: 

• Determining the number of initial population of 

variables (the total number of teams, calculated by Eq. (1)), 

• The maximum number of iterations, itMax_ , 

• The lower limit, lowerX , and the upper limit, upperX , 

for design variables, 

• Determining the parameters EN,, ,where 

tNEN  ,0,10  . ,  are integer numbers 

and EN  is a natural number. 

n

gt NN )(2=  (1) 

Nt Total number of teams (total number of points) 

Ng Number of teams in each group 

n Number of rounds of the cup, up to the final 

round ( 0n ) 

Also, the total number of points is calculated by using 

Eq. (2). Subsequently, the number of groups is calculated 

by dividing 
n

gN )(2  by Ng (Eq. (3)). All primary points are 

generated randomly, according to the minimum and 

maximum limits. 

ngt GNN =  (2) 

1)(2 −= n

gn NG  (3) 

Gn Number of primary groups 

2. random points of the design variables are grouped in 

accordance with the parameters defined in the previous 

step, and the competition will begin in each group. 

Variables are the team members, and teams with more 

capable members could perform better. This is determined 

by calculating the objective function for each team, and 

comparing the obtained result with results of other teams. 

3. After calculating the objective function for all teams 

of each group, the best team of the round, FRbest, with its 

optimum variables, XRbest, are determined among the best 

teams of each group, Fgbest, and their corresponding 

variables, Xgbest, respectively, according to resulting in 

minimum (maximum) value for the objective function. 

4. The best team of each group enter the next round and 

get grouped again. The groupings are random. At this 

round, teams will try to do their best, because they are 

motivated to stay in the competition, and ascend to the next 

round. These efforts are modeled in NCO using Eq. (4). The 

formula consists of three parts. The second term on the right 

side indicates the efforts of a team to incorporate techniques 

which the best team of the round, XRbest, has utilized. The 

third term indicates cases such as injuries, bans by receiving 

cards, return of an injured player, etc., which are 

unpredictable. 
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Dimensions of all four terms of Eq. (4) are nd×1, where 

nd represents the number of design variables. 

Xgbest Design variables of the best team in each group 

)(
1ndgbestX  

Ng Number of teams in each group 

n Number of rounds, up to the final round 

Nr Number of best teams in each round 

Nt Total number of teams 

XRbest Design variables of the best team in each round 

)(
1ndRbestX  

ii Counter of the cup rounds, from the first round up 

to the final 

rand A vector including random numbers between 0 

and 1 )( 1ndrand  

Xnew Design variables of the retrieved team )(
1ndnewX  

For instance, in a three variable function, nd=3, with an 

initial population of 2)4(2=tN , in round 1=ii , the 

number of best teams is 8=rN  and the value of the 

expression 
t

r

g

g

N

N
n

N
N )

1
(

+
−

 would be 67.0
32

8)
12

4
4(

=+
−

. 

In this round, eight best teams (Fgbest) are selected from 

eight groups of four, and the variables of these eight best 

teams, Xgbest, create a matrix with 83  dimensions. 

Between these eight teams, the best team, FRbest, 

accompanied with its design variable vector, 
13RbestX , will 

be selected. Retrieving and updating columns of matrix 

Xgbest is performed by Eq. (4). For example, for one of the 

columns, Eq. (4) is applied as followed 

.]5.0[
4)11(

1
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Finally, by retrieving all the columns of matrix Xgbest,  

 

 

matrix XNew would also have a 83  dimension. 

5. Again, these retrieved members ( )NewX  are arranged 

in Ng-team groups and the previous process is repeated until 

they result in two Ng-team groups. The winners of these 

groups will reach the final, so that the team with the 

minimum (maximum) objective function will be the 

champion of that course of competitions. 

At present, the process of one sample course is 

described. The expression 
t

r

g

g

N

N
n

N
N 











+
−

1
 in Eq. (4), 

which is a number greater than zero and less than one, is 

explained according to Fig. 1. For example, for an initial 

population of Nt=2(4)3 in the first round, ii=1, the number 

of best teams is Nr=32 and the value of the expression 

t
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g
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Similarly, in round two, 2=ii , the number of best teams 

would be 8=rN  and the foregoing expression’s value 

would be obtained equal to 1875.0
128

8
13

4
4

=










+
−

. In the 

last round, 3=ii , the number of best teams would be 

2=rN  and the expression value would be 

0469.0
128

2
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−

. The decrements in the value of the 

expression 
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−

 would be higher by moving 

toward the final, owing to the proximity of the team’s 

powers in higher levels; so, less changes take place in 

 

Fig. 1 The process of one course with an input of 2(4)3 
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design variables of these teams. 

According to the description above, for instance, in 

round 1=ii , 32 best teams, Fgbest, are determined, and 

between these 32 teams, one best team, FRbest, would be 

selected. For a sample single variable function, if the 

optimum variable 1−=RbestX  would be identified from 

,...]1,1,0,2,5,4[ −−=gbestX , due to the minimum of the 

objective function, the application of Eq. (4), for instance, 

for digit 4 from gbestX  would be as following 

.3.0

)5.0(
4)11(

1
)41(75.04

9.0
=⎯⎯⎯ →⎯

−
+

+−−+=

=

new

rand

new

X

randX
 

Fig. 1 illustrates the process of one course of Numbers 

Cup with an input of 3)4(2=tN . 

6. The figure above (mentioned steps) illustrates one 

course of Numbers Cup. For the next cups, the teams try to 

have a better performance, and they do this through 

strengthening their team members (i.e., variables). 

Strengthening each variable is accomplished through 

inclination to its best response in the previous course. 

Herein, XRbest is the vector of champion variables of the 

previous course. According to the intervals modified by Eq. 

(5), at the start of the new course, EN1 number of random 

points are created for each variable, which EN<Nt. 

 +=−= RbestuppernewRbestlowernew XXXX __ ,  (5) 

XRbest Champion variables of the previous course 

γ  Half of the new interval 

Xnew_lower New lower limit 

Xnew_upper New upper limit 

γ in Eq. (5) is calculated using the equation below 

2

)( lowerupper XX −
=


  (6) 

Xupper         Initial upper limit of variables 

Xlower  Initial lower limit of variables 

σ  Coefficient of γ 

σ in Eq. (6) is calculated from the following equation 




it
−=  (7) 

α Interval coefficient, 10   

it Iteration counter 



1
 Iteration coefficient 

τ in Eq. (7) is calculated from the equation below 




−
=

itMax _
 (8) 

α, β Interval coefficients;    0,10  

Max_it Maximum number of iteration 

For example, with 1.0,4.0 ==   and maximum  

                                                      
1Extended Number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flowchart of method 

 

 
iteratiosn of 100_ =itMax , τ will be obtained equal to 

333.3333. ( )lowerupper XX −  is assumed equal to 3. Thus, at 

the second iteration 3940.0=  and 5910.0=  will 

be obtained which γ is the size of neighboring interval for 

RbestX . The size of this neighboring is decreased by 

increasing the number of iterations; at the last iteration, 

100=it , the value of γ would be 0.15. In fact, the 

neighboring interval of the optimum response is reduced in 

each iteration compared by the previous one, and at the last 

iteration, it will reach its minimum. A number of EN  

points in the interval of ( )uppernewlowernew XX __ ,  will be 

produced for each design variable at the start of each 

iteration. This will converge the design variables to the 

optimum variable. Thus, the parameters α, β are chosen 

regarding the objective function’s complexities. 

7. Another innovation introduced in the NCO algorithm 

to avoid local optimums is the possibility of appearing new 

stars in teams. This is accomplished through generating 

ENNt −  new random points in the primary interval at the 

beginning of each course (iteration). 

Thus, the Numbers Cup Optimization algorithm induces 

convergency by generating EN  number of points, at the 

start of each iteration, from the neighboring interval of the 

previous iteration’s optimum response, and also escapes 

Start 

Initialization of 

Ng, n, EN, α, β, Xlower, Xupper and Max_it 

Iteration 

Creating a matrix (Ng , 2(Ng)
n-1) for each variable 

Rounds of the cup (up to the final) 

Choosing the best of each group by comparing 

values of the objective function → Xgbest 

Selection of XRbest from Xgbest 

Retrieving and re-grouping teams 

Generating EN points in the interval [Xnew_lower  Xnew_upper], 

and (Nt-EN) points in the interval [Xlower  Xupper] 

End 
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from the local optimums by the generation of ENNt −  

number of points at the start of each iteration, in the initial 

interval of each design variable. 

Finally, the ultimate optimum response is obtained by 

ending the maximum number of iterations (courses) or 

satisfying the convergency criteria. The members of the 

champion team are the optimum values of the design 

variables. The flowchart of the proposed algorithm is 

illustrated in Fig. 2. 
 

 

3. Testing optimization functions 
 

In this section, some standard functions were chosen to 

verify the performance of the NCO method. Also, this 

section presents a comparison between NCO and the HS-

OBL algorithm. The HS-OBL is a hybrid optimization 

approach, which the HS (harmony search) method is 

merged with the opposition-based learning (OBL) method 

(Gaoa et al. 2012). The range of some benchmark functions 

of the HS-OBL algorithm is bigger than other references. 

This condition is better illustrated the ability of the 

proposed method. The benchmark functions include both 

unimodal and multimodal functions. For all evaluations, 

computational procedures have been implemented by the 

MATLAB computer program. 
 

3.1 Benchmark functions 
 

Test functions used in simulation are as followed: 
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Wood function 
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Bohachevsky function 
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3.2 Implementation and numerical results 

 

In the HS-OBL algorithm, all benchmark functions have 

been run with a population of 100, and the number of 

function evaluation (NFE) of 10000. For an accurate 

comparison, it has been tried to set the NFE in the NCO 

method nearby 10000. In addition, the optimization results 

are based on the average of 1000 independent trials. 

The value of parameters Ng, n, EN, α, β and itMax_ , 

in the NCO are 4, 2, 24, 0.2, 0.0001 and 238, respectively. 

Thus, the value of the NFE is 9996. Optimized fitness 

results are summarized in Table 1. 

The results in Table 1 indicate the ability of the NCO 

method to reach an average respond less than the HS-OBL 

method. The important feature shown in Table 1, is the 

good performance of the NCO method in high dimension 

functions. Among the obtained results given in Table 1, the 

average optimal solution of the Rosenbrock function has a 

considerable difference with the global minimum. This 

function is unimodal, and the global minimum lies in a 

narrow, parabolic valley so that convergence to the 

minimum is difficult. 

As follows, the values of the objective functions are 

plotted in terms of the number of trials. In these figures, the 

red lines show the average of optimum responses in 1000 

trials. 

Figs. 3-6 belong to low dimension Functions. 

 

 

 

Fig. 3 Beale Function2 

                                                      
2  The maximum and minimum values of the objective function are 
2.0071e-5 and 1.6182e-10, respectively. 
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Fig. 4 Branin Function3 

 

 

Fig. 5 Colville Function4 

 

 

Fig. 6 Wood Function5 

 

 

Fig. 7 Ackley Function6 

 

 

Fig. 8 Bohachevsky Function7 
 

                                                      
3  The maximum and minimum values of the objective function are 
0.397909 and 0.397887, respectively. 
4 The maximum and minimum values of the objective function are 7.8810 

and 5.4852e-5, respectively. 
5 The maximum and minimum values of the objective function are 7.8790 

and 6.3459e-5, respectively. 
6  The maximum and minimum values of the objective function are 
20.0138 and 0.0462, respectively. 
7 The maximum and minimum values of the objective function are 5.1514 
and 0.0279, respectively. 

 

Fig. 9 Griewank Function8 

 

 

Fig. 10 Powell Function9 

 

 

Fig. 11 Rosenbrock Function10 

 

 

Fig. 12 Sphere Function11 

 

 

Fig. 13 Ackley Function12 

                                                      
8 The maximum and minimum values of the objective function are 0.3767 
and 5.0641e-5, respectively. 
9 The maximum and minimum values of the objective function are 0.0505 

and 2.8580e-5, respectively. 
10 The maximum and minimum values of the objective function are 

213.0283 and 0.5335, respectively. 
11 The maximum and minimum values of the objective function are 0.0743 
and 0.0019, respectively. 
12 The maximum and minimum values of the objective function are 
20.7527 and 1.5704, respectively. 
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Fig. 14 Bohachevsky Function13 

 

 

Fig. 15 Griewank Function14 

 

 

Fig. 16 Powell Function15 

 

 

Fig. 17 Rosenbrock Function16 

 

 

Fig. 18 Sphere Function17 
 

                                                      
13 The maximum and minimum values of the objective function are 
54.0796 and 17.5675, respectively. 
14 The maximum and minimum values of the objective function are 0.0776 

and 0.0075, respectively. 
15 The maximum and minimum values of the objective function are 

29.5173 and 1.7180, respectively. 
16 The maximum and minimum values of the objective function are 
919.7881 and 60.9763, respectively. 
17 The maximum and minimum values of the objective function are 
18.4670 and 3.4469, respectively. 

 

Fig. 19 A 10-bar planar truss 

 

 

Figs. 7-12 belong to high dimension functions with 

d=10. 

Figs. 13-18 belong to high dimension functions with 

d=50. 

 

 

4. Size optimization of truss structure 
 

For size optimization, the cross-sectional areas of the 

truss members are the design variables. Displacement and 

allowable stress are taken as the constraint. Three common 

truss examples as benchmark problems are used for size 

optimization using the proposed algorithm. This algorithm 

is applied to problem with both continuous and discrete 

variables. The final results are compared to the solutions of 

other methods to demonstrate the efficiency of the present 

approach. 

 

4.1 A 10-bar planar truss structure 
 

In this example, the 10-bar 2D truss structure is 

considered as given in Fig. 19. This truss structure is 

previously designed by Lee and Geem (2004), Li et al. 

(2007), Kaveh and Talatahari (2009b), and Kaveh et al. 

(2015). The material density is 0.1 lb/in3 and the modulus of 

elasticity is 10,000 ksi. The members are subjected to the 

stress limits of ±25 ksi and all nodes in both vertical and 

horizontal directions are subjected to the displacement 

limits of ±2.0 in. The number of variables is 10 for cross-

sectional areas. The design variables are continuous and 

their ranges are 0.1 to 35.0 in2. For this problem, two cases 

are considered: 

Case 1: P1=100 kips and P2=0, 

Case 2: P1=150 kips and P2=50 kips. 

The parameters value of Ng, n, EN, α and β, in the NCO 

are 4, 2, 20, 0.1 and 0.0001, respectively. For cases 1 and 2, 

the value of the itMax_  is 200 and 155, respectively. The 

comparison of results with those of the other references is 

given in Tables 2-3. 

As seen in the results of Table 2, the HS, PSO, PSOPC, 

HPSACO, MCSS and IMCSS algorithms obtain the best 

solutions after 20000, 150000, 150000, 10650, 8875 and  
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Case 1 

 
Case 2 

Fig. 20 Convergence history for the 10-bar truss 

 

 

 

8475 analyses. The NCO algorithm achieves its best 

solution after 8400 analyses. The best weights of the HS, 

PSO, PSOPC, HPSACO, MCSS and IMCSS algorithms are 

5057.88, 5529.5, 5061, 5056.56, 5086.9 and 5064.6 lb, 

respectively, while for the NCO is 5064.9986 lb. Although 

the NCO method can’t obtain the minimum weight, but it 

obtains the less number of function evaluations (NFE) than 

other algorithms. 
As seen in the results of Table 3, the PSO, PSOPC, 

HPSACO, MCSS and IMCSS algorithms obtain the best 
solutions after 150000, 150000, 9625, 7350 and 6625 
analyses. The NCO algorithm achieves its best solution 
after 6510 analyses. The best weights of the HS, PSO, 
PSOPC, HPSACO, MCSS and IMCSS algorithms are 
4668.81, 4679.47, 4677.7, 4675.78, 4686.47 and 4679.15 
lb, respectively, while for the NCO is 4680.2270 lb. 
Although the NCO method doesn’t obtain the minimum  

Table 1 Average optimal solutions within 1000 trials 

Function Range Global Minimum HS-OBL NCO 

Beale [-4.5,9] 0 1.2965e-6 1.1289e-6 

Branin [-5,15] 0.397887 0.3979 0.397889 

Colville [-10,20] 0 0.3900 0.2292 

Wood [-10,20] 0 0.390 0.2339 

Ackley 
d=10 

[-32,64] 
0 4.8698 0.3793 

d=50 0 16.5508 6.9409 

Bohachevsky 
d=10 

[-15,30] 
0 2.3355 1.2586 

d=50 0 216.1322 29.6484 

Griewank 
d=10 

[-20,10] 
0 21.2527 0.0789 

d=50 0 102.2558 0.0227 

Powell 
d=10 

[-4,5] 
0 0.0097 0.0086 

d=50 0 113.1235 10.7894 

Rosenbrock 
d=10 

[-20,10] 
0 13.5661 10.4147 

d=50 0 1.4064e4 131.0507 

Sphere 
d=10 

[-200,100] 
0 0.2854 0.0189 

d=50 0 1.1281e3 9.4423 

Table 2 The 10-bar truss optimization result (case1) 

Design variables Lee and Geem Li et al. Kaveh and Talatahari Kaveh et al.  

Area (in2) HS PSO PSOPC HPSACO MCSS IMCSS NCO 

A1 30.15 33.469 30.569 30.307 29.5766 30.0258 31.1567 

A2 0.102 0.11 0.1 0.1 0.1142 0.1 0.1004 

A3 22.71 23.177 22.974 23.434 23.8061 23.6277 22.3469 

A4 15.27 15.475 15.148 15.505 15.8875 15.9734 14.9622 

A5 0.102 3.649 0.1 0.1 0.1137 0.1 0.1011 

A6 0.544 0.116 0.547 0.5241 0.1003 0.5167 0.4386 

A7 7.541 8.328 7.493 7.4365 8.6049 7.4567 7.6323 

A8 21.56 23.34 21.159 21.079 21.6823 21.4374 21.6152 

A9 21.45 23.014 21.556 21.229 20.3033 20.7443 21.2733 

A10 0.1 0.19 0.1 0.1 0.1117 0.1 0.1 

Weight (lb) 5057.88 5529.5 5061 5056.56 5086.9 5064.6 5064.9986 

No. of analyses 20000 150000 150000 10650 8875 8475 8400 
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Table 4 The allowable cross sections 

No. Area (mm2) No. Area (mm2) No. Area (mm2) 

1 71.613 23 1690.319 45 5141.925 

2 90.968 24 1696.771 46 5503.215 

3 126.451 25 1858.061 47 5999.988 

4 161.29 26 1890.319 48 6999.986 

5 198.064 27 1993.544 49 7419.43 

6 252.258 28 729.031 50 8709.66 

7 285.161 29 2180.641 51 8967.724 

8 363.225 30 2238.705 52 9161.272 

9 388.386 31 2290.318 53 9999.98 

10 494.193 32 2341.931 54 10322.56 

11 506.451 33 2477.717 55 10903.2 

12 641.289 34 2496.769 56 12129.01 

13 645.16 35 2503.221 57 12838.68 

14 792.256 36 2696.769 58 14193.52 

15 816.773 37 2722.575 59 14774.16 

16 939.998 38 2896.768 60 15806.42 

17 1008.385 39 2961.284 61 17096.74 

18 1045.159 40 3096.768 62 18064.48 

19 1161.288 41 3206.445 63 19354.8 

20 1283.868 42 3303.219 64 21612.86 

21 1374.191 43 3703.218   

22 1535.481 44 4658.055   

 

 

weight, but it obtains the less NFE than other algorithms. 

For the NCO method, the convergence history of both 

cases is given in Fig. 20. 
 

4.2 A 52-bar planar truss structure 
 

The 52-bar 2D truss structure is considered as given in 

Fig. 21. This truss structure is previously designed by Li et 

al. (2007), Kaveh et al. (2015), and Kaveh and Talatahari 

(2009c). The members of this structure are divided into 12  

 

 

groups: (1) A1-A4, (2) A5-A10, (3) A11-A13, (4) A14-A17, (5) 

A18-A23, (6) A24-A26, (7) A27-A30, (8) A31-A36, (9) A37-A39, (10) 

A40-A43, (11) A44-A49, (12) A50-A52. 

The material density is 7860.0 kg/m3 and the modulus of 

elasticity is 2.07×105 Mpa. The members are subjected to 

the stress limits of ±180 Mpa. As seen in Fig. 21, loads of 

Px=100 kN and Py=200 kN, are applied to the structure. The 

design variables are discrete and are selected from Table 4. 

The parameters value of Ng, n, EN,  ,   and itMax_ , 

in the NCO are 3, 2, 13, 0.2, 0.0001 and 150, respectively. 

The comparison of results with those of the other references 

is given in Table 5. 

 

 

 

Fig. 21 A 52-bar planar truss 

Table 3 The 10-bar truss optimization result (case 2) 

Design variables Lee and Geem Li et al. Kaveh and Talatahari Kaveh et al.  

Area (in2) HS PSO PSOPC HPSACO MCSS IMCSS NCO 

A1 23.25 22.935 23.473 23.194 22.863 23.299 24.0446 

A2 0.102 0.113 0.101 0.1 0.120 0.1 0.1026 

A3 25.73 25.355 25.287 24.585 25.719 25.682 25.5745 

A4 14.51 14.373 14.413 14.221 15.312 14.510 13.8881 

A5 0.1 0.1 0.1 0.1 0.101 0.1 0.1030 

A6 1.977 1.99 1.969 1.969 1.968 1.969 1.9771 

A7 12.21 12.346 12.362 12.489 12.310 12.149 12.3192 

A8 12.61 12.923 12.694 12.925 12.934 12.360 12.6078 

A9 20.36 20.678 20.323 20.952 19.906 20.869 20.4504 

A10 0.1 0.1 0.103 0.101 0.100 0.1 0.1012 

Weight (lb) 4668.81 4679.47 4677.7 4675.78 4686.47 4679.15 4680.2270 

No. of analyses - 150000 150000 9625 7350 6625 6510 
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Fig. 22 Convergence history for the 52-bar truss 

 

 

As seen in the results of Table 5, the HPSO, MCSS, 

IMCSS and DHPSACO algorithms obtain the best solutions 

after 50000, 4225, 4075 and 5300 analyses. The NCO 

algorithm achieves its best solution after 3900 analyses. The 

best weights of the HPSO, MCSS, IMCSS and DHPSACO 

algorithms are 1905.49, 1904.05, 1902.61 and 1904.83 kg, 

respectively, while for NCO is 1902.6055 kg. Thus, the 

NCO method obtains the minimum weight with the less 

NFE than other algorithms. 

For the NCO method, the convergence history is given 

in Fig. 22.  

 
4.3 A 200-bar planar truss structure 

 

In this example, the 200-bar truss structure is considered 

as given in Fig. 23. This truss structure is previously 

designed by Sonmez (2011), Togan and Daloglu (2008), and 

Dede and Ayvaz (2015). The material density is 0.283 lb/in3 

and the modulus of elasticity is 30000 ksi. The members are 

subjected to the stress limits of ±10 ksi. There was no 

displacement limit but the minimum cross-section area was 

not allowed to be less than 0.1 in2. The members of this 

structure are divided into 29 groups. This structure is 

subjected to three different load conditions: 

case 1: 1 kips acting in the positive x-direction at nodes 

1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71, 

 

 

case 2: 10 kips acting in the negative y-direction at 

nodes 1, 2, . . ., 6, 8, 10, 12, 14, 15, . . ., 20, 22, 24, 26, 28, 

29, . . ., 73, 74, and 75, 

case 3: Cases 1 and 2 are combined. 

The parameters value of Ng, n, EN,  ,   and 

itMax_ , in the NCO are 3, 2, 13, 0.2, 0.00005 and 5000, 

respectively. The comparison of results with those of the 

other references is given in Table 6. 

 

 

 

Fig. 23 A 200-bar planar truss 

Table 5 The 52-bar truss optimization result 

Design variables Li et al. Kaveh et al. Kaveh and Talatahari  

Area (mm2) HPSO MCSS IMCSS DHPSACO NCO 

A1- A4 4658.055 4658.055 4658.055 4658.055 4658.055 

A5- A10 1161.288 1161.288 1161.288 1161.288 1161.288 

A11- A13 363.255 363.225 494.193 494.193 494.193 

A14- A17 3303.219 3303.219 3303.219 3303.219 3303.219 

A18- A23 940 939.998 939.998 1008.385 939.998 

A24- A26 494.193 506.451 494.193 285.161 494.193 

A27- A30 2238.705 2238.705 2238.705 2290.318 2238.705 

A31- A36 1008.38 1008.385 1008.385 1008.385 1008.385 

A37- A39 388.386 388.386 494.193 388.386 494.193 

A40- A43 1283.868 1283.868 1283.868 1283.868 1283.868 

A44- A49 1161.288 1161.288 1161.288 1161.288 1161.288 

A50- A52 792.256 729.031 494.193 506.451 494.193 

Weight (kg) 1905.49 1904.05 1902.61 1904.83 1902.6055 

No. of analyses 50000 4225 4075 5300 3900 
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Fig. 24 Convergence history for the 200-bar truss 

 

 

As seen in the results of Table 6, the ABC-AP and GA 

algorithms obtain the best solutions after 1450000 and 

51,360 analyses. The NCO algorithm achieves its best 

solution after 130000 analyses. The best weights of the 

ABC-AP, GA and TLBO algorithms are 25533.79,  

 

 

28544.014 and 25664.0023 lb, respectively, while for NCO 

is 25597.7688 lb. Thus, ABC-AP and NCO methods lead to 

the minimum weights, while the NCO obtains the response 

with the less NFE. 

For the NCO method, the convergence history is given 

in Fig. 24. 

 

 

5. Conclusions 
 

In this article, a new optimization algorithm, so called 

the “Numbers Cup Optimization” (NCO), is introduced. 

The NCO is designed based upon the Sport Cups’ 

procedure. In order to evaluate the algorithm, it was 

examined on a set of standard benchmark functions. The 

obtained results are compared with the intended reference 

Table 6 The 200-bar truss optimization result under load case 3 

Group Design variables Sonmez 

Togan 

and 

Daloglu 

Dede 

and 

Ayvaz 

 

 Area (in2) ABC-AP GA TLBO NCO 

1 1,2,3,4 0.1039 0.347 0.113546 0.1138 

2 5,8,11,14,17 0.9463 1.081 0.948427 0.9415 

3 19,20,21,22,23,24 0.1037 0.1 0.107798 0.1038 

4 18,25,56,63,94,101,132,139,170,177 0.1126 0.1 0.100009 0.1026 

5 26,29,32,35,38 1.9520 2.142 1.934462 1.9411 

6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37 0.2930 0.347 0.288872 0.2988 

7 39,40,41,42 0.1064 0.1 0.211586 0.1129 

8 43,46,49,52,55 3.1249 3.565 3.090253 3.1135 

9 57,58,59,60,61,62 0.1077 0.347 0.103114 0.1339 

10 64,67,70,73,76 4.1286 4.805 4.090254 4.2153 

11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75 0.4250 0.44 0.451050 0.4288 

12 77,78,79,80 0.1046 0.44 0.100707 0.1319 

13 81,84,87,90,93 5.4803 5.952 5.479848 5.4758 

14 95,96,97,98,99,100 0.1060 0.347 0.101144 0.1586 

15 102,105,108,111,114 6.4853 6.572 6.479849 6.4610 

16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113 0.5600 0.954 0.532949 0.6077 

17 115,116,117,118 0.1825 0.347 0.132492 0.1780 

18 119,122,125,128,131 8.0445 8.525 7.944450 8.1164 

19 133,134,135,136,137,138 0.1026 0.1 0.100486 0.2341 

20 140,143,146,149,152 9.0334 9.3 8.944437 9.2933 

21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151 0.7844 0.954 0.701077 0.8631 

22 153, 154, 155,156 0.7506 1.764 1.377693 0.1518 

23 157, 160, 163, 166, 169 11.3057 13.3 11.239401 11.3145 

24 171, 172, 173, 174, 175, 176 0.2208 0.347 0.228718 0.2689 

25 178, 181, 184, 187, 190 12.2730 13.3 12.239392 12.2479 

26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182,183, 185, 186, 188, 189 1.4055 2.142 1.684935 1.0949 

27 191, 192, 193, 194 5.1600 4.805 4.913586 5.7098 

28 195, 197, 198, 200 9.9930 9.3 9.718956 10.3528 

29 196, 199 14.70144 17.17 15.021916 14.3023 

 Weight (lb) 25533.79 28544.014 25664.0023 25597.7688 

 No. of analyses 1450000 51,360 - 130000 
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results and global optimum to demonstrate the ability of the 

proposed method. Also, in order to verify the method 

performance, the planar truss structures taken from the 

literature are considered. This method is implemented for 

the size optimization of 2D trusses. The optimization results 

are compared with the previous studies to demonstrate the 

efficiency of the NCO method. 

As seen in the results, the NCO algorithm has found 

optimum solutions within a lower number of analysis, 

particularly in high dimensional problems. Finally, the NCO 

method has an interesting algorithm and is an effective and 

reliable method in terms of efficiency. 
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