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Abstract. In this work, a high order hyperbolic shear deformation theory with four variables is presented to study the vibratory
behavior of functionally graduated plates. The field of displacement of the theory used in this work is introduced indeterminate
integral variables. In addition, the effect of porosity is studied. It is assumed that the material characteristics of the porous FGM
plate, varies continuously in the direction of thickness as a function of the power law model in terms of volume fractions of
constituents taken into account the homogeneous distribution of porosity. The equations of motion are obtained using the
principle of virtual work. An analytical solution of the Navier type for free vibration analysis is obtained for a FGM plate for
simply supported boundary conditions. A comparison of the results obtained with those of the literature is made to verify the
accuracy and efficiency of the present theory. It can be concluded from his results that the current theory is not only accurate but
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also simple for the presentation of the response of free vibration and the effect of porosity on the latter.
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1. Introduction

Functionally graded materials or functionally graded
materials is a new class of materials that has attracted
special attention and interest over the last three decades
thanks to the advantage of continuity of physical properties
in one or more directions. Their use is growing in
aeronautics and aerospace where they can serve as thermal
barriers to their rich ceramic composition. However, FGMs
cover a wide range of applications in many other fields such
as mechanics, medicine, civil engineering, electricity,
nuclear, etc. (Bouderba et al. 2013, Tounsi ef al. 2013, Kar
and Panda 2013, 2014, Ahmed 2014, Zidi et al. 2014, Kar
and Panda 2015a, b, ¢, d, Zemri et al. 2015, Taibi et al.
2015, Kar et al. 2016, Boukhari et al. 2016, Bounouara et
al. 2016, Kar and Panda 2016a, b, c, d, e, Aldousari 2017,
Abdelaziz et al. 2017, Sekkal et al. 2017a, Kar et al. 2017,
Kar and Panda 2017, Bellifa et al. 2017a, Benadouda et al.
2017, Mouffoki et al. 2017, Attia et al. 2018, Shahsavari et
al. 2018, Zine et al. 2018, Kaci et al. 2018, Fourn et al.
2018). It was the Japanese, in 1984, who introduced for the
first time this new philosophy of intelligent materials able
to withstand very large temperature gradients (Koizumi
1997). Generally, FGMs are multi-layered materials made
by different components such as ceramic and metal. The use
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of this type of material in the structures requires a good
understanding of the mechanical behavior of the FGM
structures in order to offer an optimum profile to the
designers. For this, several studies concerning the study of
the mechanical behavior of FGM plates are announced on
the analysis of the dynamic behavior of FGM structures.
For example, Reddy (2000) has analyzed the static behavior
of FGM rectangular plates based on his third-order shear
deformation plate theory. Reddy and Cheng (2001) have
presented a three-dimensional model for an FGM plate
subjected to mechanical and thermal loads, both applied at
the top of the plate. Woo et al. (2006) studied the non-linear
free vibration behavior of plates made of FGMs using the
Von Karman theory for large transverse deflection. In
addition, Park and Kim (2006) investigated the thermal post
buckling and vibration analyses of FG plates. Sobhy (2013)
studied the vibration and buckling behavior of
exponentially graded material sandwich plate resting on
elastic foundations under various boundary conditions.
Chakraverty and Pradhan (2014) studied the free vibration
of exponential functionally graded rectangular plates in
thermal environment with general boundary conditions.
Hebali et al. (2014) developed a new quasi-3D hyperbolic
shear deformation theory for the bending and free vibration
behavior of FG plate. Belabed et al. (2014) used a
hyperbolic function based higher-order shear deformation
theory to analysis the vibration characteristics of FGM
plate. Vo et al. (2015) studied vibration and buckling
responses of FG sandwich beams by using a quasi-3D
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theory. Bennai et al. (2015) proposed a novel higher-order
shear and normal deformation theory for the study of
vibration and stability for FG sandwich beams. Mabhi et
al. (2015) developed a novel hyperbolic shear deformation
model for static and dynamic analysis of isotropic,
functionally graded, sandwich and laminated composite
plates. Belkorissat et al. (2015) studied the dynamic
properties of FG nanoscale plates using a novel nonlocal
refined four variable theory. Mehar ef al. (2016) presented
vibration analysis of functionally graded carbon nanotube
reinforced composite plate in thermal environment.
Bouderba et al. (2016) studied the thermal stability of FG
sandwich plates using a simple shear deformation theory.
Bousahla ef al. (2016) analyzed the thermal buckling
behaviour of plates with FG coefficient of thermal
expansion. Bellifa et al. (2016) presented static bending and
dynamic analysis of FG plates using a simple shear
deformation theory and the concept the neutral surface
position. Beldjelili ez al. (2016) analyzed the hygro-thermo-
mechanical bending response of S-FGM plates resting on
variable elastic foundations using a four-variable
trigonometric plate theory. Houari et al. (2016) presented a
new simple three-unknown sinusoidal shear deformation
theory for FG plates. Draiche et al. (2016) used a refined
theory with stretching effect for the flexure analysis of
laminated composite plates. Bennoun et al. (2016) studied
the vibration response of FG sandwich plates using a novel
five variable refined plate theory. Bellifa et al. (2017b)
proposed a nonlocal zeroth-order shear deformation theory
for nonlinear postbuckling of nanobeams. Kolahchi et al.
(2017) discussed wave propagation problem of embedded
viscoelastic FG-CNT-reinforced sandwich plates integrated
with sensor and actuator based on refined zigzag theory.
Chikh ef al. (2017) investigated the thermal buckling of
cross-ply laminated plates using a simplified HSDT. Mehar
and Panda (2017) presented an experimental, numerical,
and simulation study for elastic bending and stress analysis
of carbon nanotube-reinforced composite plate. Mehar et al.
(2017a) presented also a theoretical and experimental
investigation of vibration characteristic of carbon nanotube
reinforced polymer composite structure. Mehar et al.
(2017b) provided nonlinear thermoelastic frequency
analysis of functionally graded CNT-reinforced
single/doubly curved shallow shell panels by FEM.

During the production of FGM materials, pores may
occur within its materials during the sintering step because
of the large difference in solidification temperatures
between the components of the material (Zhu et al. 2001).
Wattanasakulpong et al. (2012) gives the discussion on
porosities happening inside FGM samples fabricated by a
multi-step sequential infiltration technique.
Wattanasakulpong and Ungbhakorn (2014) also investigate
linear and nonlinear vibration problems of FGM beams
having porosities. Ait Atmane et al. (2015) presented a
computational shear displacement model for vibrational
analysis of FG beams with porosities. Ait Yahia et al.
(2015) investigated the wave propagation in FG plates with
considering the porosity effect. Recently, Jahwari and
Naguib (2016) investigated FG viscoelastic porous plates
with a higher order plate theory and a statistical based
model of cellular distribution. Mouaici et al. (2016)

proposed an analytical solution for the vibration of FGM
plates with porosities. The analysis was based on the
deformation theory of shear with taking into account the
exact position of the neutral surface. Ait Atmane et al.
(2017) is study the effect of stretching the thickness and
porosity on the mechanical response of a FG beam resting
on elastic foundations. Akbas (2017) studied the thermal
effects on the vibratory behaviour of FG beams with
porosity.

In this work, an analytical study of the free vibration of
FGM porous plates simply supported using a new
displacement model was presented. The plates are made of
an isotropic material with material properties varying in the
direction of thickness. Equations of the FG plate is obtained
using the Hamilton principle. To solve the problem, the
Navier solution is also used. At the end, numerical results
for the effect of porosity and material distribution
parameters on natural frequencies of FGM plates are
presented. The effectiveness of the present theory is verified
by comparing the results obtained with those found in the
literature.

2. Properties of the FGM constituent materials

A FG plate made from a mixture of two material phases,
for example, a metal and a ceramic. The material properties
of FG plate are assumed to vary continuously through the
thickness of the plate. In this investigation, the imperfect
plate is assumed to have porosities spreading within the
thickness due to defect during production. Consider an
imperfect FGM with a porosity volume fraction, a(a<< 1),
distributed evenly among the metal and ceramic, the
modified rule of mixture proposed by Wattanasakulpong
and Ungbhakorn (2014) is used as

P(z) = Pm(vm —%]H%(Vc—%j (1

Now, the total volume fraction of the metal and ceramic
is Vm + V¢ = 1, and the power law of volume fraction of
the ceramic is described as

z 1Y
VC:[thZ) (2)

Hence, all properties of the imperfect FGM can be
written as

1z a

P@2) =P, +(R Pm)(2+h] (R.+R)% G)

It is noted that the positive real number p(0 < p < o) is

the power law or volume fraction index, and z is the

distance from the mid-plane of the FG plate. The FG plate

becomes a fully ceramic plate when k is set to zero and

fully metal for large value of p. Thus, the Young’s modulus

(E) and material density (p) equations of the imperfect
FGM plate can be expressed as

1 zY a
E(Z)_Em'i_(Ec_Em{z—i_hj _(Ec+Em)E (4)
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1 z\ a
p(2) = p, +(p. pm)(Z h) —(pc+pm)§ (5)

Since the influences of the variation of Poisson’s ratio
(v) on the behaviour of FG plates are very small (Yang et al.
2005, Kitipornchai et al. 2006), it is supposed to be constant
for convenience.

In addition, for another scenario of porosity distribution,
it is possible to obtain imperfect FGM samples, which have
almost porosities spreading around the middle zone of the
cross-section, and the amount of porosity seems to be on the
decrease to zero at the top and bottom of the cross-section.
Based on the principle of the multi-step sequential
infiltration technique that can be employed to fabricate
FGM samples (Wattanasakulpong et al. 2012), the
porosities mostly occur at the middle zone. At this zone, it
is difficult to infiltrate the materials completely, while at the
top and bottom zones, the process of material infiltration
can be performed easier and leaves less porosity. Consider
this scenario, the equations of Young’s modulus (E) and
material density (p) in Egs. (4)-(5) are replaced by the
following forms

_ 1,2)’ af, 2
E(Z)_EW(E“E“‘{TFJ _(E”Em)E(_ h] ©
P 2
o= pn +(oe—n| 3+ —<pc+pm>%[l‘—r'f'] )

3. Fundamental equations
3.1 Kinematics and strains

In this work, other simplifying hypotheses are made to
the presented theory in order to minimize the number of
unknowns. The displacement field of the conventional
theory is given by (Bakhadda et al. 2018, Belabed et al.
2018)

wmmao=udmmo—z%§+fawuxmo (8a)

mezo=wuwn—z%§+fuw¢xmo (8b)

w(X, Y, z,t) =wg (X, y,t) (8¢)

where uo; vo; wo, ¢x, @y are five unknown displacements of
the mid-plane of the plate, f{z) denotes shape function
representing the variation of the transverse shear strains and
stresses within the thickness. By considering that (Menasria
et al. 2017, Besseghier et al. 2017, El-Haina et al. 2017,
Fahsi et al. 2017, Khetir et al. 2017, Yazid et al. 2018)

=I9(X,y)dx and @y =J‘c9(x, y)dy, the displacement

field of the present model can be expressed in a simpler

form as
u(x,y,z,t)=upg(x,y t)—z%+klf(z)je(x y,t)dx (9a)
owg
v(x,y,2,) =vo(x, y,t)—ZW+k2 f(Z)jH(X, y.)dy (9b)

W(X, ¥, Z,t) =wg (X, ,t) (9¢)

In this work, the present higher-order shear deformation
plate theory is obtained by setting

5 bz
f(2) = Z[Z—EJ (10)

It can be seen that the displacement field in Eq. (9)
introduces only four unknowns (uo, vo, wo and 6). The
nonzero strains associated with the displacement field in
Eq. (9) are

€x >(<) k)? k>s<
sy r=1¢ey i ky t+ (@K
b
) 7y Kxy Ky (11)
0
el
Vxz 7 xz
Where
2
6u0 _M
—_— 2
b
“x S “ 862)i/v
gO _ “vVo kb R 0
0 o "o |
7y %o, Mo | (K 02w,
—2= 0
oy oX Xy
kS kO (122)
Ky klijedmkzijedy
oy OX
0 kzjedy
7% klj'adx
and
df (z
9(z) - I@ (12b)
dz

The integrals defined in the above equations shall be
resolved by a Navier type method and can be written as
follows

220 0 0%0
< — A 6dy=B—L (13)
Igd =N oy o0 oxdy

>
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00
Ide=A'Zf’J‘9dY=Bay

where the coefficients A and B' are expressed
according to the type of solution used, in this case via

Navier. Therefore, A", B', k and k, are expressed as
follows

1
e R 2L SRS ML)

wherea and f are defined in expression (30).

For elastic and isotropic FGMs, the -constitutive

relations can be expressed as

oy C, C, O 0 0 |fe&
oy C, C,, O 0 0 ||
Ty r=| 0 0 Ce O 0 K7y (15)
Ty, 0 © 0 Cu 0 |7y
T 0 0 0 0 Cul|l7y

Xz

where (ax, 0y, Ty, Tyz, Txz) and (&x, €y, Yxy, Yz Pxz) are the stress
and strain components, respectively. Using the material
properties defined in Eq. (1), stiffness coefficients, Cy, can
be given as

E(2) E(z
C11:(:22:1_1/2 1 L1 = ‘i—u(/z)’
(16)
Cos = Cyp = Cyp = =2
44 55 66 2(1+v)'

3.2 Equations of motion

To determine the equations of motion, we apply the
principle of Hamilton (Meksi et al. 2018, Youcef et al.
2018, Hachemi et al. 2017, Zidi et al. 2017, Klouche et al.
2017, Ahouel et al. 2016, Al-Basyouni ef al. 2015, Attia et
al. 2015, Ait Amar Meziane et al. 2014)

Ozj(5U+§V—5K)dt (17)

where oU is the variation of strain energy; JV is the
variation of the external work done by external load applied
to the plate; and 0K is the variation of kinetic energy.

The variation of strain energy of the plate is given by

= .ﬂaxﬁ & +0,08,+7,0 14 +7,0 7y, + 7,0 yxz]dV
\

[l a e No N6 MK MK MK, (18)
A

FMESKE+MESKS +MESKS +850 75, +85,5 7% |dA=0
where A is the top surface and the stress resultants N, M,
and S are defined by

(Ni,Mib,MiS): hj'z(l,z,f)aidz, (i=xy,xy), (19)

-h/2

hi2

( :zrsiz) J-g(rxwfyz)dz

-h/2

The variation of the external work can be expressed as

OaWO 65W0 0 aWO 65W0
X A, Xy A AL
ox X ox
:—jqéwodA—.[ 2 dA (20)
A A OaWO 85W0
Ty

where ¢ and (N S,NO N Qy )are transverse and in-plane

applied loads, respectively.
The variation of kinetic energy of the plate can be
expressed as

K :j[u'(suw(swwaw] o(z)dV
\
- J{|O[uo(5u'0 0,8, i3y

A

o
21
(k, A)[ &;f+a$5uoj +(k, B)[ a;sya aaj‘”°]] @h

&%%V'voﬁﬂo@5WOJ+K2[(k1A.)(09859] B [aaa&aD
X ox oy X ox o o

|
X 0K O OX oy oy oy oy

|
e
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o

+

[
—

+

[

I
[
~

the differentiation with respect to the time variable ¢; p(z) is
the mass density given by Eq. (7); and (Z;, J;, K;) are mass
inertias expressed by

h/2

(|01|11|2): I(l,z,zz)p(z)dz (22a)

-h/2

hi/2

(9,3, K,)= [(F.2 1, 12)p(2)dz (22b)
2

—-h/

By substituting Eqgs. (18), (20) and (21) into Eq. (17),
the following can be derived

N, N
5u0:5—*+ =yl — law +kAJ169
x oy ox ox
oN,, oN,
5v0:oﬂfxy+o =lgVy — I, —2+k, BJlag
ox oy ‘y oy
A2pp b é) hﬂ b iq M b .
SWy: OANLX + e =I0W0+I1(au—° a’—"j
ox 6x6y oy oy
2%
1,V +J,| k A—+k B'
e [ ox? ay? } (23)
82MS 683, 085,
56—k Ms -k, M; —(k Ak, B') s
xoy ox oy

[k Aau*”” B ij [(k K7 20 By Zy‘g]+

62
o)

s
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Substituting Eq. (11) into Eq. (15) and the subsequent
results into Egs. (19), the stress resultants are obtained in
terms of strains as following compact form

N A B BS|fe¢
MPLl=| B D D%UKkPl,S=A%y 4)
MS BS DS HS kS

in which

N = NNy Ny s M2 =me mB e, |

(252)
me = s w35 |
0.0.0 b bbbl
5:{9x’5y*7xy}1’ k :{kaky’kxy}’ 25
ke =fks ke ks e
- X1y xy
Ar A O Biy Bz O
0 0 Ag 0 0 Bg 050
C
Dig D O
D=|Dy; Dy 0
0 0 Dgg
Bii B O Dy D 0
B*=|B)» By 0 |, D°=|D, D3 0 |,
0 0 Bg 0 0 Dg
- 25d)
Hjp Hy 0
H® = Hls2 stz 0
0 0 Hg
_lo ol [ as
R I
L Ass
and stiffness components are given as
Ain Bip Dip By Dfp Hpy
Az Bz Dip Bz Dip Hipp=
Ass Bss Des Bgs Dgs Hgs
(26a)
h/2 1
[eubzzzt@t@.20) v e
1-v
—hi2
2
(Azzx B2, D22,B5,, D3, H§2)= (A11: By1, D11, By, Diy, Hlsl) (26b)
h/2
2
Ay = Ads = IC44[9(Z)] dz, (26¢)
~h/2

Introducing Eq. (24) into Eq. (23), the equations of
motion can be expressed in terms of displacements (uo, vo,
wo, 0) and the appropriate equations take the form

AU + Agg Ayl + (A, + Agg )dipVo — Bry iy Wo —
(B, +2Bgg )y Wo + (Bée (ky Ak, B)) dyp0 + (27a)
(Biky + B Ky ) 0y = 1tig — 1, iy + J; A'kyd,d,

Agy AV + Agg dyy Vo Jr(A12 + AGG) dipUg — By doppWo —
(Biz +ZBes) d;4,Wo +(B§6 (klAl+k2 B')) dy, 0+ (27b)
(B5,K, +B5k, ) d,0 = 1%y — 1, dyi +J; B'k, d,d,

By, dyylip + (Blz + ZBes)dlzzUo + (Blz +2Bg, )dquo +

By 0oV — DyyyaWo — 2(Dy; +2Dyg5) dy W —

AL R (Dlsl k + D k, ) dy,0+ Z(Dée (klAl+sz'))d1122€ + (27¢)
(Dlszkl + D;zkz) 050 =1oWy + |1(d1Uo + dzvo)* I, (duwo + dzzwo)

+3, (A" i +k, B dyd)

- (Bls1k1 +Bhk, )d1“o - (Bess (kA sz'))deo -

(Bge (kiA"" k, B')) i3V — (Blsz ky + Bk, )dzvo

+ (Dlslkl + Dk, )ano +2 (Dge (klA""sz'))dnzzWo +

(Dlszk1 +Dpk, )dzzwu —H klz 0-Hj, kzz 0-2H5k k,0 (270)
- ((k1A'+kz B')Z Hes )dnzz‘9 +A B')Z dy0+ A5 (k; A')z dy,0 =

=3, (k A'dyiiy +k, B'dy¥y ) + 3, (kg A'dy; W + k, B'dygWiy ) —

Kz((k1A')2 duf+ (k, B')zdzzé)

where dj, dj and dj, are the following differential
operators

0? &3
I aXian i 6xi6xjéx| ’
(28)
o4 o . .
dijim = i=—.(@,j.I,m=12).

aXianaX|6Xm ’ aXi ’

3.3 Analytical solution for simply-supported FG plates

The Navier solution method is employed to determine
the analytical solutions for which the displacement
variables are written as product of arbitrary parameters and
known trigonometric functions to respect the equations of
motion and boundary conditions.

Juo o Umnei’”tcos(a x)sin(8 y)

vo|_ erpi_‘“t sin(e x)cos(B y)

‘Wo mz_‘{; Wine! @ sin(ee x)sin(s y) (29)
4 T X' ®singa xsin(s y)

where w is the frequency of free vibration of the plate,
\ﬁ =-1 the imaginary unit.
with

a=mzla p=nzlb (30)

The transverse load ¢ is also expanded in the double-
Fourier sine series as

4% Y) = 33 Qo sin(a ¥sin( 4 y) 31)

m=1 n=1

where
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Table 1 Comparison of fundamental frequency parameter8 of Al/ZrO, square plate

p=1 a/h=5

Theory Porosity a’h=5 a’/h=10 a’/h=20 P=2 P=3 P=5
Vel and Batra (2004) 3-D 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225
Matsunaga (2008) HSDT 0.2285 0.0619 0.0158 0.2264 0.2270 0.2281
Hosseini- Hashemi et al. (2011b) HSDT =0 0.2276 0.0619 0.0158 0.2256 0.2263 0.2272
Hosseini- Hashemi et al. (2011c) FSDT 0.2276 0.0619 0.0158 0.2264 0.2276 0.2291
CPT 0.2479 0.0634 0.0159 0.2473 0.2497 0.2526
=0 0.2276 0.0618 0.0158 0.2257 0.2263 0.2272
Mouaici et al. (2016) a=0.1 0.2258 0.0612 0.0156 0.2228 0.2233 0.2244
a=0.2 0.2231 0.0604 0.0154 0.2184 0.2186 0.2199
=0 0,2276 0,0618 0,0158 0,2256 0,2262 0,2271
Present a=0.1 0,2258 0,0612 0,0156 0,2228 0,2232 0,2243
a=0.2 0,2231 0,0604 0,0154 0,2184 0,2185 0,2197

ab
Qun =~ [ [ a0 y)sinta sings y) dray -
00

qo for sinusoidally distributed load (32)

16q0

mn;rz

for uniformly distributed load

Considering that the plate is subjected to in-plane
compressive loads of form: N)[() =71N¢r NS =y,7Ngr s

N >(<)y =0 (here y and p, are non-dimensional load

parameters).
Substituting Eq. (29) into Eq. (28), the following

problem is obtained

u my, 0 my my

1 13

Sy Sy S
S, Syu S,
S S S
Sy Syu S

o

-
u Mg My Mgy My

@

S 0
Su o 0 My My My, )0
s o (33)
S 0

x = < C

3 Oy My My Mgy My,

Sut :_(Allaz + Aeeﬁz)

>

Sp=—ap (A12 + Aea)

Sis =a(Bya? + B, A2 + 2B<;6ﬂ2),

Sy, = a(lefl +K, By, — (ky A+k,B")Bgs B2 )
Sy = _(Aeeaz + Azzﬁz),
S2s=B(B” + Broa® +2Bgsar?)

Sos = ﬂ(kz B3, +kiBY, — (k, Ak, B')BéGaz)
Sq =—(Dpyar* +2(D,, +2Dgg)a? 52 + Dzzﬂ4),

(34)

834 = —kl(Dflaz + szﬂz )+ 2(k1A‘+k2 B') DgSC(zﬂz

- kz(D§2ﬂ2 + Dlszaz)

844 = 7kl(Hflkl + Hfzkz)* (klA'+szl)2 H§6a2ﬂ2
)2 \2
—kz(Hf2k1+ H§2k2)—(k1A) Asa? - (koB') AL °
2 2
k:Ncr(7la +72ﬂ)

My, :_Io, My =a Il, my, =-JdikA'a

m22=_|0, My = Il’ m24:_kZB'ﬂ‘]l’ (34)

My, =—lo — I, (a® + %)
My, =J, (k, Aa? +k, B'5)

my, =-K, ((kl A')Zaz +(k2 BI)Z’ﬂz)

For the case of free vibrations we have the external
energy V zero, which gives k=0 and (,,,=0; the vibration
frequencies are obtained by solving the system of Eq. (33)
in eigenvalues.

4. Results and discussion

In this section, the free vibration analysis of simply
supported FG plates by the present theory is suggested for
investigation. Navier solutions for the free vibration
analysis of FG plates are presented by solving the
eigenvalue equations.

The FG plate is taken to be made of aluminum and
alumina with the following material properties:

Ceramic (Alumina, A1203) Ec = 380 GPa, v = 0.3, and
pc = 3800 kg/m?>.

Ceramic (Zirconia, ZrO2) Ec = 200 GPa, v = 0.3, and pc
= 5700 kg/m>.

Metal (Aluminium, Al) Em = 70 GPa, v=10.3, and pm =
2702 kg/m>.

For simplicity, the following non-dimensional natural
frequency parameter is used in the numerical examples.

— ~ _ 2
B=onpn!En ,B=0hJp./E;, a)za)aT,/pC/EC

First, we will test the precision of this theory by
comparing the results of adimensional frequencies with
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Table 2 Comparison of natural frequency parameter § of Al/ Al203 square plate

a/h mode Theory Porosity P
0.5 1 4 10
Hosseini-Hashemi et al. (2011b) HSDT 0.1807  0.1631  0.1378 0.1301
Hosseini-Hashemi et al. (2011¢) FSDT o=0 0.1805  0.1631  0.1397 0.1324
CPT 0.1959  0.1762  0.1524 0.1467
o=0 0.1807  0.1631  0.1397 0.1301
(L,1) Mouaici et al. (2016) 0=0.1 0.1806  0.1599  0.1280 0.1195
0=0.2 0.1803  0.1552  0.1111 0.1009
o=0 0.1807  0.1631  0.1378 0.1300
Present 0=0.1 0.1806  0.1599  0.1280 0.1195
0=0.2 0.1804  0.1553  0.1110 0.1008
Hosseini-Hashemi et al. (2011b) HSDT 0.3989  0.3607  0.2980 0.2771
Hosseini-Hashemi et al. (2011c) FSDT 0=0 0.3978  0.3604  0.3049 0.2856
CPT 0.4681  0.4198  0.3603 0.3481
o=0 0.3988  0.3606  0.2982 0.2772
5 (1,2) Mouaici et al. (2016) 0=0.1 0.3991  0.3544  0.2776 0.2534
0=0.2 0.3991  0.3453  0.2428 0.2128
0=0 0.3989  0.3607  0.2979 0.2771
Present 0=0.1 0.3991  0.3545  0.2773 0.2531
0=0.2 0.3992  0.3454  0.2425 0.2123
Hosseini-Hashemi et al. (2011b) HSDT 0.5803  0.5254  0.4284 0.3948
Hosseini-Hashemi et al. (2011¢) FSDT 0=0 0.5779  0.5245  0.4405 0.4097
CPT 0.7184  0.6425  0.5478 0.5306
0=0 0.5801  0.5253  0.4288 0.3950
(2,2) Mouaici et al. (2016) 0=0.1 0.5810  0.5171  0.4000 0.3601
0=0.2 0.5816  0.5050  0.3517 0.3018
=0 0.5803  0.5254  0.4284 0.3948
Present 0=0.1 0.5811  0.5172  0.399% 0.3597
0=0.2 0.5817  0.5051  0.3512 0.3009
Hosseini-Hashemi et al. (2011b) HSDT 0.0490  0.0442  0.0381 0.0364
Hosseini-Hashemi et al. (2011¢) FSDT 0=0 0.0490  0.0442  0.0382 0.0366
CPT 0.0502  0.0452  0.0392 0.0377
o=0 0.0490  0.0441  0.0380 0.0363
(1,1) Mouaici et al. (2016) 0=0.1 0.0489  0.0432  0.0353 0.0336
0=0.2 0.0489  0.0418  0.0304 0.0285
o=0 0.0490  0.0442  0.0381 0.0364
Present 0=0.1 0.0489  0.0432  0.0353 0.0336
10 0=0.2 0.0488  0.0419  0.0304 0.0285
Hosseini-Hashemi et al. (2011b) HSDT 0.1174 0.1059 0.0903 0.0856
Hosseini-Hashemi et al. (2011¢) FSDT 0=0 0.1173 0.1059  0.0911 0.0867
CPT 0.1239  0.1115  0.0966 0.0930
0=0 0.1173  0.1059  0.0902 0.0856
(1,2) Mouaici et al. (2016) 0=0.1 0.1172  0.1037  0.0837 0.0788
0=0.2 0.1170  0.1006  0.0724 0.0668
0=0 0.1174  0.1059  0.0902 0.0856
Present 0=0.1 0.1173  0.1037  0.0837 0.0788

0=0.2 0.1170  0.1006  0.0724 0.0667
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Table 2 Continued

Hosseini-Hashemi et al. (2011b) HSDT 0.1807  0.1631  0.1378 0.1301

Hosseini-Hashemi et al. (2011c) FSDT o=0 0.1805  0.1631  0.1397 0.1324

CPT 0.1959  0.1762  0.1524 0.1467

o=0 0.1807  0.1631  0.1379 0.1301

10 2,2) Mouaici et al. (2016) 0=0.1 0.1631 0.1599  0.1280 0.1195
0=0.2 0.1599  0.1552  0.1111 0.1009

o=0 0.1807  0.1631  0.1378 0.1300

Present 0=0.1 0.1806  0.1599  0.1280 0.1195

0=0.2 0.1804  0.1553 0.1110 0.1008

Hosseini-Hashemi et al. (2011b) HSDT 0.0125  0.0113  0.0098 0.0094

Hosseini-Hashemi et al. (2011c) FSDT o=0 0.0125  0.0113  0.0098 0.0094

CPT 0.0126  0.0114  0.0099 0.0095

o=0 0.0125  0.0113  0.0098 0.0094

20 (1,1 Mouaici et al. (2016) 0=0.1 0.0125  0.0110  0.0090 0.0087
0=0.2 0.0124  0.0106  0.0078 0.0074

o=0 0.0125  0.0113  0.0098 0.0094

Present 0=0.1 0.0125  0.0111 0.0091 0.0087

0=0.2 0.0125  0.0107  0.0078 0.0074

Table 3 Comparison of frequency parameter of Al/ ALLOs rectangular plate (b=2a)

a/h mode Theory Porosity b
1 2 5 8 10
Hosseini-Hashemi er al. (2011c) FSDT a=0 2.6473 2.4017 22528 2.1985 2.1677
a=0 2.6476 23952 22285 2.1707 2.1414
Mouaiciet al. (2016) a=0.1 25934 2.2740 2.0610 2.0009 1.9723
1,1 a=0.2 25150 2.0819 1.7655 1.6971 1.6703
a=0 2.6475 2.3949 22272 2.1696 2.1407
Present a=0.1 25934 22737 2.0594 1.9993 1.9711
a=0.2 25150 2.0817 1.7638 1.6948 1.6683
Hosseini-Hashemi ef al. (2011c) FSDT a=0 4.0773 3.6953 3.4492 3.3587 3.3094
a=0 4.0782 3.6812 3.3966 3.2987 3.2529
Mouaici et al. (2016) a=0.1 3.9982 3.4997 3.1417 3.0358 2.9893
5 1,2) a=0.2 3.8821 32118 2.6966 2.5724 25249
a=0 4.07809 3.68052 3.39381 3.29642 3.25135
Present a=0.1 3.99813 3.49907 3.13835 3.03251 2.98685
a=0.2 3.88199 321141 2.69300 2.56756 2.52060
Hosseini-Hashemi ef al. (2011c) FSDT a=0 6.2626 5.6695 5.2579 5.1045 5.0253
a=0 6.2664 5.6403 5.1481 4.9804 4.9085
Mouaici er al. (2016) a=0.1 6.1508 53723 47631 45748 4.4985
(1,3) a=0.2 5.9821 4.9466 4.1001 3.8729 4.9804
=0 6.2662 5.6390 5.1425 4.9758 4.9055
Present =0.1 6.1507 53711 4.7564 45683 4.4937
a=0.2 5.9820 4.9458 4.0928 3.8633 3.7798
those of the literature. In this part, various numerical deformation presented by Mouaici et al. (2016), classical
examples are described, discussed and compared with other plate theory (CPT), first-order shear deformation plate

existing theories such as the theory of hyperbolic shear  theory (FSDPT) (Hosseini-Hashemi et al. 2011c), the exact
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Table 3 Continued

Hosseini-Hashemi et al. (2011c) FSDT =0 7.7811 7.1189 6.5749 5.9062 5.7518

=0 7.8762 7.0768 6.4153 6.1909 6.0995

Mouaici et al. (2016) a=0.1 7.7369 6.7490 5.9372 5.6808 5.5811

5 2,1) a=0.2 7.5330 6.2278 5.1208 4.8076 4.6922
=0 7.8762 7.0751 6.4074 6.1846 6.0954

Present a=0.1 7.7369 6.7474 5.9277 5.6717 5.5745

a=0.2 7.5330 6.2268 5.1105 4.7941 4.6804

Hosseini-Hashemi et al. (2011c) FSDT =0 2.7937 2.5386 2.3998 2.3504 2.3197

a=0 2.7937 2.5365 2.3920 2.3414 2.3112

Mouaici et al. (2016) a=0.1 2.7328 2.4031 22122 2.1643 2.1370

(1,1) a=0.2 2.6452 2.1921 1.8894 1.8396 1.8189
a=0 2.7937 2.5364 2.3916 2.3411 2.3110

Present a=0.1 2.7329 2.4030 22117 2.1638 2.1366

a=0.2 2.6453 2.1921 1.8889 1.8390 1.8182

Hosseini-Hashemi et al. (2011c) FSDT =0 4.4192 4.0142 3.7881 3.7072 3.6580

=0 4.4193 4.0092 3.7693 3.6855 3.2529

Mouaici et al. (2016) a=0.1 4.3243 3.8001 3.4859 3.4043 2.9893

(1,2) a=0.2 4.1875 3.4693 2.9792 2.8922 2.5249
=0 4.4192 4.0089 3.7682 3.6846 3.6368

Present a=0.1 4.3243 3.7999 3.4847 3.4031 3.3592

10 a=0.2 4.1874 3.4691 2.9778 2.8903 2.8548
Hosseini-Hashemiet al. (2011c) FSDT a=0 7.0512 6.4015 6.0247 5.8887 5.8086

a=0 7.0516 6.3893 5.9790 5.8362 5.7590

Mouaici et al. (2016) a=0.1 6.9033 6.0604 5.5295 5.3858 5.3128

(1,3) a=0.2 6.6891 5.5398 4.7305 4.5720 4.5085
a=0 7.0515 6.3886 5.9765 5.8341 5.7575

Present a=0.1 6.9032 6.0598 5.5265 5.3827 5.3105

a=0.2 6.6890 5.5393 4.7272 4.5675 4.5045

Hosseini-Hashemi et al. (2011c) FSDT =0 9.0928 8.2515 7.7505 7.5688 7.4639

=0 9.0935 8.2319 7.6772 7.4847 7.3845

Mouaici et al. (2016) a=0.1 8.9053 7.8123 7.1001 6.9022 6.8058

2,1) a=0.2 8.6331 7.1479 6.0788 5.8564 5.7685
=0 9.0933 8.2309 7.6731 7.4813 7.3821

Present a=0.1 8.9051 7.8114 7.0953 6.8974 6.8021

a=0.2 8.6329 7.1472 6.0736 5.8493 5.7621

3D solution (Vel and Batra 2004), and the theory of High
order shear strain (HSDT) (Hosseini-Hashemi et al. 2011b,
Matsunaga 2008).

Table 1 presents a comparison of the fundamental
frequency f3, according to these results we see that there is
a great agreement between our results and the results
obtained by Mouaici et al. (2016), and Hosseini-Hashemi et
al. (2011b, ¢), and a little big compared to the exact solution
presented by Vel and Batra (2004), and a little small
compared to the results of the classical theory (CPT) for the
case of the perfect plate (a = 0).

In Table 2, using various plates’ theories for the
comparison of the natural frequency parameter § of a

square plate Al/AI203 with different thickness ratios (a/h)
and power law, index P. The results of the present model in
the case of the perfect plate (« = 0) is in good agreement
with those obtained by Hosseini-Hashemi et al. (2011b, c)
and Mouaici et al. (2016). Moreover, the results of classical
plate theory (CPT) overestimate the natural frequency of
FGM plates, especially for thick plate at higher vibration
modes. Furthermore, it can be shown that the frequencies
decrease with increasing porosity (o). When the power law
index P increases for the FGM plates, the natural frequency
decreases. These frequencies are also sensitive to the
variation of the ratio a/h.

A comparison of the frequency v of the perfect and



362 Mustapha Meradjah et al.

Table 4 First nine frequency parameter of AI/AL,O; square plate (a/h=5)

Mode N° Theory Porosity P
0.5 1 2 5 10 100
=0 4.5181 4.0782 3.6812 3.3966 3.2529 2.8175
Mouaici et al. (2016) 0=0.1 4.5158 3.9982 3.4997 3.1417 2.9893 2.5267
0=0.2 4.5096 3.8821 3.2118 2.6966 2.5249 2.0688
1D =0 4.5180 4.0781 3.6805 3.3938 32514 2.8204
Present 0=0.1 4.5157 3.9981 3.4991 3.1383 2.9868 2.5273
0=0.2 4.5095 3.8820 3.2114 2.6930 2.5206 2.0697
a=0 9.9714 9.0164 8.0925 7.3040 6.9318 6.1291
Mouaici et al. (2016) 0=0.1 9.9783 8.8616 7.7240 6.7612 6.3365 5.4824
0=0.2 9.9797 8.6343 7.1378 5.8394 5.3223 4.4593
2@ a=0 9.9715 9.0166 8.0905 7.2944 6.9270 6.1369
Present 0=0.1 9.9784 8.8617 7.7223 6.7496 6.3286 5.4854
0=0.2 9.9798 8.6345 7.1367 5.8268 5.3081 4.4634
o=0 9.9714 9.0164 8.0925 7.3040 6.9318 6.1291
Mouaici et al. (2016) 0=0.1 9.9783 8.8616 7.7240 6.7612 6.3365 5.4824
0=0.2 9.9797 8.6343 7.1378 5.8394 5.3223 4.4593
32 o=0 9.9715 9.0166 8.0905 7.2944 6.9270 6.1369
Present 0=0.1 9.9784 8.8617 7.7223 6.7496 6.3286 5.4854
0=0.2 9.9798 8.6345 7.1368 5.8268 5.3081 4.4634
o=0 14.5049 13.1339 11.7508 10.4660 9.8768 8.8372
Mouaici et al. (2016) 0=0.1 14.5261 12.9296 11.2462 9.6970 9.0043 7.8932
0=0.2 14.5423 12.6272 10.4411 8.4136 7.5460 6.3957
@2 o=0 14.5064 13.1354 11.7487 10.4506 9.8703 8.8508
Present 0=0.1 14.5275 12.9311 11.2445 9.67822 8.9925 7.8999
0=0.2 14.5436 12.6286 10.4406 8.39291 7.5231 6.4043
o=0 17.1907 15.5781 13.9180 12.3165 11.5907 10.4286
Mouaici et al. (2016) 0=0.1 17.2224 15.3488 13.3393 11.4184 10.5546 9.3081
0=0.2 17.2502 15.0078 12.4146 9.9325 8.8382 7.5288
GD o=0 17.1939 15.5813 13.9166 12.2984 11.5840 10.4464
Present 0=0.1 17.2254 15.3518 13.3383 11.3958 10.5410 9.3179
0=0.2 17.2529 15.0107 12.4152 9.9073 8.8108 7.5409
o=0 17.1907 15.5781 13.9180 12.3165 11.5907 10.4286
Mouaici et al. (2016) 0=0.1 17.2224 15.3488 13.3393 11.4184 10.5546 9.3081
0=0.2 17.2502 15.0078 12.4146 9.9325 8.8382 7.5288
o3 o=0 17.19387 15.58130 13.91658 12.29840 11.58401 10.44643
Present 0=0.1 17.22541 15.35184 13.33835 11.39582 10.54106 9.31793
0=0.2 17.25290 15.01068 12.41521 9.90734 8.81078 7.54093
o=0 20.8537 18.9173 16.8757 14.8221 13.9024 12.5875
Mouaici et al. (2016) 0=0.1 20.9019 18.6582 16.2029 13.7530 12.6443 11.2264
0=0.2 20.9481 18.2705 15.1256 12.0027 10.5816 9.0621
62 o=0 20.8603 18.9239 16.8765 14.8013 13.8967 12.6124
Present 0=0.1 20.9081 18.6645 16.2042 13.7262 12.6296 11.2416
0=0.2 20.9538 18.2763 15.1288 11.9724 10.5488 9.0802
imperfect rectangular plate Al/Al,O3 for different values of in Table 3. It can be seen that there is has a great agreement

the power law index P and thickness ratio (a/h) is presented between our results and the results obtained by Mouaici et
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Table 4 Continued
o=0 20.8537 18.9173 16.8757 14.8221 13.9024 12.5875
Mouaici et al. (2016) 0=0.1 20.9019 18.6582 16.2029 13.7530 12.6443 11.2264
0=0.2 20.9481 18.2705 15.1256 12.0027 10.5816 9.0621
8(&3) o=0 20.8603 18.9239 16.8765 14.8013 13.8967 12.6124
Present 0=0.1 20.9081 18.6645 16.2042 13.7262 12.6296 11.2416
0=0.2 20.9538 18.2763 15.1288 11.9724 10.5487 9.0802
o=0 25.2274 229124 20.4125 17.7953 16.6351 15.1525
Mouaici et al. (2016) 0=0.1 25.2978 22.6233 19.6365 16.5287 15.1139 13.5042
0=0.2 25.3690 22.1875 18.3910 14.4786 12.6451 10.8801
4D o=0 25.2402 22.9251 20.4180 17.7735 16.6330 15.1878
Present 0=0.1 25.3100 22.6354 19.6426 16.49900 15.1002 13.5278
0=0.2 25.3805 22.1989 18.3994 14.4439 12.6078 10.9072
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Fig. 2 Influence of thickness ratio of the imperfect plate (a=0.1) on the frequency, (a) P=1 and (b) P=100

al. (2016), and a small difference with the results of
Hosseini-Hashemi et al. (2011c¢); this is due to the different
approaches used to predict natural frequencies. The first
theory of shear deformation (FSDT) presented by Hosseini-
Hashemi et al. (2011c) have five unknowns contrary to the

present theory that use four unknowns. In addition, the
frequency decreases with the existence of an imperfection

in the plate (a ' 0).

In Table 4, another comparison with the results of
Mouaici et al. (2016) for the first nine modes of the
frequency v of a square plate Al/Al,O3 for different values
of the power law index P and a thickness ratio (a’h = 5).
Here too, the results are in great agreement with those of
Mouaici et al (2016).
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Fig. 3 The effect of power law index of FG square plate on fundamental frequency parameter, (a) a’h=>5 and (b) a/h=100
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In Fig. 1(a) and (b), we present a comparison between
two solutions of porosity by plotting the variation of
frequency. The porosity coefficient is taken a=0.1 and the
thickness of the plate is h=0.2 m (Fig. 1(a)) and h=0.01 m
(Fig. 1(b)). It can be seen that the frequency decrease with
the increase of the power law index and the solution II
provides higher frequencies than those of solution I. This is
due to distributions of porosity across thickness. Indeed, the
linear.

Distribution of porosity (solution II) and constant
distribution (solution I) of porosity are considerably
different to induce a different in results.

We study the variation of the adimensional frequency as
a function of the thickness ratio a/h for the two distributions
of the porosity for the power law index P =1 and P = 100.

In Fig. 2(a) and (b). It has been found that increasing the
thickness ratio increases the adimensional frequency.

Fig. 3(a) and 3(Db), present the variation of the frequency
parameter with power law index P is given for a/h=5 and
a/h=100 respectively. According to these figures, the
frequency parameter decreases with increasing index P and
porosity parameter a.

Figs. 4(a) and 3(b) depict the fundamental frequency
parameters versus the thickness ratio of FGM plate for p=1
and p=100 respectively. It is seen that the results increase as
the thickness ratio of the plate increases for all cases
(perfect and imperfect plate).

From the Fig. 5(a) and (b), the adimensional frequency
is established as a function of the porosity and for different
values of the thickness coefficient. It can be deduced from
this curve that the increase in porosity reduces the
adimensional frequency, regardless of the thickness ratio.
On the contrary, an increase in the thickness ratio leads to
an increase in the adimensional frequency.

5. Conclusions

A hyperbolic shear deformation theory is developed to
study dynamic behaviour porous FGM plates. Unlike other
shear deformation theories, only four unknown
displacement functions are used in the current theory
against five unknown displacement functions used in other
theories. The properties of the material are assumed to vary
in the direction of the thickness of the plate according to the
rule of the mixture, which is reformulated to evaluate the
characteristics of the material with the porosity phases. The
equations of motion are derived from the Hamilton
principle. Numerical validation has been done to establish
the natural frequencies of FGM plates, while the emphasis
is on examining the influence of several parameters. From
the results obtained by the model presented, we can see that
its results are very accurate compared to those obtained by
Hosseini-Hashemi et al. (2011b, c), and Mouaici et al.
(2016), and that the porosity contributes to significantly
reducing the non-dimensional frequency. An improvement
of present work will be considered in the future to consider
the thickness stretching effect by using quasi-3D shear
deformation models (Bessaim et al. 2013, Bousahla et al.
2014, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al.
2014, Larbi Chaht et al. 2015, Hamidi et al. 2015, Bourada

et al. 2015, Meradjah ef al. 2015, Bennoun et al. 2016,
Draiche et al. 2016, Sekkal et al. 2017b, Bouafia et al.
2017, Abualnour et al. 2018, Benchohra et al. 2018,
Bouhadra et al. 2018, Ait Yahia et al. 2018).
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