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1. Introduction 
 

Functionally graded materials or functionally graded 

materials is a new class of materials that has attracted 

special attention and interest over the last three decades 

thanks to the advantage of continuity of physical properties 

in one or more directions. Their use is growing in 

aeronautics and aerospace where they can serve as thermal 

barriers to their rich ceramic composition. However, FGMs 

cover a wide range of applications in many other fields such 

as mechanics, medicine, civil engineering, electricity, 

nuclear, etc. (Bouderba et al. 2013, Tounsi et al. 2013, Kar 

and Panda 2013, 2014, Ahmed 2014, Zidi et al. 2014, Kar 

and Panda 2015a, b, c, d, Zemri et al. 2015, Taibi et al. 

2015, Kar et al. 2016, Boukhari et al. 2016, Bounouara et 

al. 2016, Kar and Panda 2016a, b, c, d, e, Aldousari 2017, 

Abdelaziz et al. 2017, Sekkal et al. 2017a, Kar et al. 2017, 

Kar and Panda 2017, Bellifa et al. 2017a, Benadouda et al. 

2017, Mouffoki et al. 2017, Attia et al. 2018, Shahsavari et 

al. 2018, Zine et al. 2018, Kaci et al. 2018, Fourn et al. 

2018). It was the Japanese, in 1984, who introduced for the 

first time this new philosophy of intelligent materials able 

to withstand very large temperature gradients (Koizumi 

1997). Generally, FGMs are multi-layered materials made 

by different components such as ceramic and metal. The use  
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of this type of material in the structures requires a good 

understanding of the mechanical behavior of the FGM 

structures in order to offer an optimum profile to the 

designers. For this, several studies concerning the study of 

the mechanical behavior of FGM plates are announced on 

the analysis of the dynamic behavior of FGM structures. 

For example, Reddy (2000) has analyzed the static behavior 

of FGM rectangular plates based on his third-order shear 

deformation plate theory. Reddy and Cheng (2001) have 

presented a three-dimensional model for an FGM plate 

subjected to mechanical and thermal loads, both applied at 

the top of the plate. Woo et al. (2006) studied the non-linear 

free vibration behavior of plates made of FGMs using the 

Von Karman theory for large transverse deflection. In 

addition, Park and Kim (2006) investigated the thermal post 

buckling and vibration analyses of FG plates. Sobhy (2013) 

studied the vibration and buckling behavior of 

exponentially graded material sandwich plate resting on 

elastic foundations under various boundary conditions. 

Chakraverty and Pradhan (2014) studied the free vibration 

of exponential functionally graded rectangular plates in 

thermal environment with general boundary conditions. 

Hebali et al. (2014) developed a new quasi-3D hyperbolic 

shear deformation theory for the bending and free vibration 

behavior of FG plate.  Belabed et al. (2014) used a 

hyperbolic function based higher-order shear deformation 

theory to analysis the vibration characteristics of FGM 

plate. Vo et al. (2015) studied vibration and buckling 

responses of FG sandwich beams by using a quasi-3D 
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theory. Bennai et al. (2015) proposed a novel higher-order 

shear and normal deformation theory for the study of 

vibration and stability for FG sandwich beams.  Mahi et 

al. (2015) developed a novel hyperbolic shear deformation 

model for static and dynamic analysis of isotropic, 

functionally graded, sandwich and laminated composite 

plates. Belkorissat et al. (2015) studied the dynamic 

properties of FG nanoscale plates using a novel nonlocal 

refined four variable theory. Mehar et al. (2016) presented 

vibration analysis of functionally graded carbon nanotube 

reinforced composite plate in thermal environment. 

Bouderba et al. (2016) studied the thermal stability of FG 

sandwich plates using a simple shear deformation theory. 

Bousahla et al. (2016) analyzed the thermal buckling 

behaviour of plates with FG coefficient of thermal 

expansion. Bellifa et al. (2016) presented static bending and 

dynamic analysis of FG plates using a simple shear 

deformation theory and the concept the neutral surface 

position. Beldjelili et al. (2016) analyzed the hygro-thermo-

mechanical bending response of S-FGM plates resting on 

variable elastic foundations using a four-variable 

trigonometric plate theory. Houari et al. (2016) presented a 

new simple three-unknown sinusoidal shear deformation 

theory for FG plates. Draiche et al. (2016) used a refined 

theory with stretching effect for the flexure analysis of 

laminated composite plates. Bennoun et al. (2016) studied 

the vibration response of FG sandwich plates using a novel 

five variable refined plate theory. Bellifa et al. (2017b) 

proposed a nonlocal zeroth-order shear deformation theory 

for nonlinear postbuckling of nanobeams. Kolahchi et al. 

(2017) discussed wave propagation problem of embedded 

viscoelastic FG-CNT-reinforced sandwich plates integrated 

with sensor and actuator based on refined zigzag theory. 

Chikh et al. (2017) investigated the thermal buckling of 

cross-ply laminated plates using a simplified HSDT. Mehar 

and Panda (2017) presented an experimental, numerical, 

and simulation study for elastic bending and stress analysis 

of carbon nanotube-reinforced composite plate. Mehar et al. 

(2017a) presented also a theoretical and experimental 

investigation of vibration characteristic of carbon nanotube 

reinforced polymer composite structure. Mehar et al. 

(2017b) provided nonlinear thermoelastic frequency 

analysis of functionally graded CNT-reinforced 

single/doubly curved shallow shell panels by FEM.    
During the production of FGM materials, pores may 

occur within its materials during the sintering step because 
of the large difference in solidification temperatures 
between the components of the material (Zhu et al. 2001). 
Wattanasakulpong et al. (2012) gives the discussion on 
porosities happening inside FGM samples fabricated by a 
multi-step sequential infiltration technique. 
Wattanasakulpong and Ungbhakorn (2014) also investigate 
linear and nonlinear vibration problems of FGM beams 
having porosities.  Ait Atmane et al. (2015) presented a 
computational shear displacement model for vibrational 
analysis of FG beams with porosities. Ait Yahia et al. 
(2015) investigated the wave propagation in FG plates with 
considering the porosity effect. Recently, Jahwari and 
Naguib (2016) investigated FG viscoelastic porous plates 
with a higher order plate theory and a statistical based 
model of cellular distribution. Mouaici et al. (2016) 

proposed an analytical solution for the vibration of FGM 
plates with porosities. The analysis was based on the 
deformation theory of shear with taking into account the 
exact position of the neutral surface. Ait Atmane et al. 
(2017) is study the effect of stretching the thickness and 
porosity on the mechanical response of a FG beam resting 
on elastic foundations. Akbas (2017) studied the thermal 
effects on the vibratory behaviour of FG beams with 
porosity. 

In this work, an analytical study of the free vibration of 

FGM porous plates simply supported using a new 

displacement model was presented. The plates are made of 

an isotropic material with material properties varying in the 

direction of thickness. Equations of the FG plate is obtained 

using the Hamilton principle. To solve the problem, the 

Navier solution is also used. At the end, numerical results 

for the effect of porosity and material distribution 

parameters on natural frequencies of FGM plates are 

presented. The effectiveness of the present theory is verified 

by comparing the results obtained with those found in the 

literature. 
 

 

2. Properties of the FGM constituent materials  
 

A FG plate made from a mixture of two material phases, 

for example, a metal and a ceramic. The material properties 

of FG plate are assumed to vary continuously through the 

thickness of the plate. In this investigation, the imperfect 

plate is assumed to have porosities spreading within the 

thickness due to defect during production. Consider an 

imperfect FGM with a porosity volume fraction, a(a<< 1), 

distributed evenly among the metal and ceramic, the 

modified rule of mixture proposed by Wattanasakulpong 

and Ungbhakorn (2014) is used as 
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Now, the total volume fraction of the metal and ceramic 

is Vm + Vc = 1, and the power law of volume fraction of 

the ceramic is described as 

k

C
h

z
V 








+=

2

1

 

(2) 

Hence, all properties of the imperfect FGM can be 

written as 
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It is noted that the positive real number p(0 ≤ p < ∞) is 

the power law or volume fraction index, and z is the 

distance from the mid-plane of the FG plate. The FG plate 

becomes a fully ceramic plate when k is set to zero and 

fully metal for large value of ρ. Thus, the Young’s modulus 

(E) and material density (ρ) equations of the imperfect 

FGM plate can be expressed as 
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Since the influences of the variation of Poisson’s ratio 

(ν) on the behaviour of FG plates are very small (Yang et al. 

2005, Kitipornchai et al. 2006), it is supposed to be constant 

for convenience.   

In addition, for another scenario of porosity distribution, 

it is possible to obtain imperfect FGM samples, which have 

almost porosities spreading around the middle zone of the 

cross-section, and the amount of porosity seems to be on the 

decrease to zero at the top and bottom of the cross-section. 

Based on the principle of the multi-step sequential 

infiltration technique that can be employed to fabricate 

FGM samples (Wattanasakulpong et al. 2012), the 

porosities mostly occur at the middle zone. At this zone, it 

is difficult to infiltrate the materials completely, while at the 

top and bottom zones, the process of material infiltration 

can be performed easier and leaves less porosity. Consider 

this scenario, the equations of Young’s modulus (E) and 

material density (ρ) in Eqs. (4)-(5) are replaced by the 

following forms 
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3. Fundamental equations   
 

3.1 Kinematics and strains 
 

In this work, other simplifying hypotheses are made to 

the presented theory in order to minimize the number of 

unknowns. The displacement field of the conventional 

theory is given by (Bakhadda et al. 2018, Belabed et al. 

2018) 
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where u0; v0; w0, φx, φy are five unknown displacements of 

the mid-plane of the plate, f(z) denotes shape function 

representing the variation of the transverse shear strains and 

stresses within the thickness. By considering that (Menasria 

et al. 2017, Besseghier et al. 2017, El-Haina et al. 2017, 

Fahsi et al. 2017, Khetir et al. 2017, Yazid et al. 2018) 

= dxyxx ),(  and = dyyxy ),( , the displacement 

field of the present model can be expressed in a simpler 

form as 
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In this work, the present higher-order shear deformation 

plate theory is obtained by setting 
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It can be seen that the displacement field in Eq. (9) 

introduces only four unknowns (u0, v0, w0 and θ). The 

nonzero strains associated with the displacement field in 

Eq. (9) are 
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The integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows 
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where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier. Therefore, 'A , 'B , k1 and k2 are expressed as 

follows 
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where  and   are defined in expression (30). 

For elastic and isotropic FGMs, the constitutive 

relations can be expressed as 
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where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress 

and strain components, respectively. Using the material 

properties defined in Eq. (1), stiffness coefficients, Cij, can 

be given as 
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3.2 Equations of motion 
 

To determine the equations of motion, we apply the 

principle of Hamilton (Meksi et al. 2018, Youcef et al. 

2018, Hachemi et al. 2017, Zidi et al. 2017, Klouche et al. 

2017, Ahouel et al. 2016, Al-Basyouni et al. 2015, Attia et 

al. 2015, Ait Amar Meziane et al. 2014) 
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where δU is the variation of strain energy; δV is the 

variation of the external work done by external load applied 

to the plate; and δK is the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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where A is the top surface and the stress resultants N, M, 

and S are defined by   
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The variation of the external work can be expressed as 
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where q and (
000 ,, xyyx NNN )are transverse and in-plane 

applied loads, respectively. 

The variation of kinetic energy of the plate can be 

expressed as 
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the differentiation with respect to the time variable t; ρ(z) is 

the mass density given by Eq. (7); and (Ii, Ji, Ki) are mass 

inertias expressed by  
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By substituting Eqs. (18), (20) and (21) into Eq. (17), 

the following can be derived 
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Substituting Eq. (11) into Eq. (15) and the subsequent 

results into Eqs. (19), the stress resultants are obtained in 

terms of strains as following compact form 
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and stiffness components are given as 
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Introducing Eq. (24) into Eq. (23), the equations of 

motion can be expressed in terms of displacements (u0, v0, 

w0, θ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential 

operators 
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3.3 Analytical solution for simply-supported FG plates 
 

The Navier solution method is employed to determine 

the analytical solutions for which the displacement 

variables are written as product of arbitrary parameters and 

known trigonometric functions to respect the equations of 

motion and boundary conditions. 
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where ω is the frequency of free vibration of the plate, 

1−=i  the imaginary unit.  

with 

am / = , bn / =  (30) 

The transverse load q is also expanded in the double-

Fourier sine series as 
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where 
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Considering that the plate is subjected to in-plane 

compressive loads of form: crx NN 1
0 = , cry NN 2

0 = , 

00 =xyN  (here γ1 and γ2 are non-dimensional load 

parameters). 

Substituting Eq. (29) into Eq. (28), the following 

problem is obtained 
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For the case of free vibrations we have the external 

energy V zero, which gives k=0 and Qmn=0; the vibration 

frequencies are obtained by solving the system of Eq. (33) 

in eigenvalues. 
 
 

4. Results and discussion  
 

In this section, the free vibration analysis of simply 

supported FG plates by the present theory is suggested for 

investigation. Navier solutions for the free vibration 

analysis of FG plates are presented by solving the 

eigenvalue equations. 

The FG plate is taken to be made of aluminum and 

alumina with the following material properties: 

Ceramic (Alumina, Al2O3) Ec = 380 GPa, ν = 0.3, and 

ρc = 3800 kg/m3. 

Ceramic (Zirconia, ZrO2) Ec = 200 GPa, ν = 0.3, and ρc 

= 5700 kg/m3. 

Metal (Aluminium, Al) Em = 70 GPa, ν = 0.3, and ρm = 

2702 kg/m3. 

For simplicity, the following non-dimensional natural 

frequency parameter is used in the numerical examples. 

mm Eh /  =  , cc Eh / ˆ  = ,  cc E
h

a
/

2

 =  

First, we will test the precision of this theory by 

comparing the results of adimensional frequencies with  

Table 1 Comparison of fundamental frequency parameter𝛽̅ of Al/ZrO2 square plate 

  p=1 a/h=5 

Theory Porosity a/h=5 a/h=10 a/h=20 P=2 P=3 P=5 

Vel and Batra (2004) 3-D 

α=0 

0.2192 0.0596 0.0153 0.2197 0.2211 0.2225 

Matsunaga (2008) HSDT 0.2285 0.0619 0.0158 0.2264 0.2270 0.2281 

Hosseini- Hashemi et al. (2011b) HSDT 0.2276 0.0619 0.0158 0.2256 0.2263 0.2272 

Hosseini- Hashemi et al. (2011c) FSDT 0.2276 0.0619 0.0158 0.2264 0.2276 0.2291 

CPT 0.2479 0.0634 0.0159 0.2473 0.2497 0.2526 

Mouaici et al. (2016) 

α=0 0.2276 0.0618 0.0158 0.2257 0.2263 0.2272 

α=0.1 0.2258 0.0612 0.0156 0.2228 0.2233 0.2244 

α=0.2 0.2231 0.0604 0.0154 0.2184 0.2186 0.2199 

Present 

α=0 0,2276 0,0618 0,0158 0,2256 0,2262 0,2271 

α=0.1 0,2258 0,0612 0,0156 0,2228 0,2232 0,2243 

α=0.2 0,2231 0,0604 0,0154 0,2184 0,2185 0,2197 
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Table 2 Comparison of natural frequency parameter 𝛽̂ of Al/ Al2O3 square plate 

a/h mode Theory Porosity 
p 

0.5 1 4 10 

5 

(1,1) 

Hosseini-Hashemi et al. (2011b) HSDT 

α=0 

0.1807 0.1631 0.1378 0.1301 

Hosseini-Hashemi et al. (2011c) FSDT 0.1805 0.1631 0.1397 0.1324 

CPT 0.1959 0.1762 0.1524 0.1467 

Mouaici et al. (2016) 

α=0 0.1807 0.1631 0.1397 0.1301 

α=0.1 0.1806 0.1599 0.1280 0.1195 

α=0.2 0.1803 0.1552 0.1111 0.1009 

Present 

α=0 0.1807 0.1631 0.1378 0.1300 

α=0.1 0.1806 0.1599 0.1280 0.1195 

α=0.2 0.1804 0.1553 0.1110 0.1008 

(1,2) 

Hosseini-Hashemi et al. (2011b) HSDT 

α=0 

0.3989 0.3607 0.2980 0.2771 

Hosseini-Hashemi et al. (2011c) FSDT 0.3978 0.3604 0.3049 0.2856 

CPT 0.4681 0.4198 0.3603 0.3481 

Mouaici et al. (2016) 

α=0 0.3988 0.3606 0.2982 0.2772 

α=0.1 0.3991 0.3544 0.2776 0.2534 

α=0.2 0.3991 0.3453 0.2428 0.2128 

Present 

α=0 0.3989 0.3607 0.2979 0.2771 

α=0.1 0.3991 0.3545 0.2773 0.2531 

α=0.2 0.3992 0.3454 0.2425 0.2123 

(2,2) 

Hosseini-Hashemi et al. (2011b) HSDT 

α=0 

0.5803 0.5254 0.4284 0.3948 

Hosseini-Hashemi et al. (2011c) FSDT 0.5779 0.5245 0.4405 0.4097 

CPT 0.7184 0.6425 0.5478 0.5306 

Mouaici et al. (2016) 

α=0 0.5801 0.5253 0.4288 0.3950 

α=0.1 0.5810 0.5171 0.4000 0.3601 

α=0.2 0.5816 0.5050 0.3517 0.3018 

Present 

α=0 0.5803 0.5254 0.4284 0.3948 

α=0.1 0.5811 0.5172 0.3994 0.3597 

α=0.2 0.5817 0.5051 0.3512 0.3009 

10 

(1,1) 

Hosseini-Hashemi et al. (2011b) HSDT 

α=0 

0.0490 0.0442 0.0381 0.0364 

Hosseini-Hashemi et al. (2011c) FSDT 0.0490 0.0442 0.0382 0.0366 

CPT 0.0502 0.0452 0.0392 0.0377 

Mouaici et al. (2016) 

α=0 0.0490 0.0441 0.0380 0.0363 

α=0.1 0.0489 0.0432 0.0353 0.0336 

α=0.2 0.0489 0.0418 0.0304 0.0285 

Present 

α=0 0.0490 0.0442 0.0381 0.0364 

α=0.1 0.0489 0.0432 0.0353 0.0336 

α=0.2 0.0488 0.0419 0.0304 0.0285 

(1,2) 

Hosseini-Hashemi et al. (2011b) HSDT 

α=0 

0.1174 0.1059 0.0903 0.0856 

Hosseini-Hashemi et al. (2011c) FSDT 0.1173 0.1059 0.0911 0.0867 

CPT 0.1239 0.1115 0.0966 0.0930 

Mouaici et al. (2016) 

α=0 0.1173 0.1059 0.0902 0.0856 

α=0.1 0.1172 0.1037 0.0837 0.0788 

α=0.2 0.1170 0.1006 0.0724 0.0668 

Present 

α=0 0.1174 0.1059 0.0902 0.0856 

α=0.1 0.1173 0.1037 0.0837 0.0788 

α=0.2 0.1170 0.1006 0.0724 0.0667 
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those of the literature. In this part, various numerical 

examples are described, discussed and compared with other 

existing theories such as the theory of hyperbolic shear  

 

 

 

deformation presented by Mouaici et al. (2016), classical 

plate theory (CPT), first-order shear deformation plate 

theory (FSDPT) (Hosseini-Hashemi et al. 2011c), the exact  

Table 2 Continued 

10 (2,2) 

Hosseini-Hashemi et al. (2011b) HSDT 

α=0 

0.1807 0.1631 0.1378 0.1301 

Hosseini-Hashemi et al. (2011c) FSDT 0.1805 0.1631 0.1397 0.1324 

CPT 0.1959 0.1762 0.1524 0.1467 

Mouaici et al. (2016) 

α=0 0.1807 0.1631 0.1379 0.1301 

α=0.1 0.1631 0.1599 0.1280 0.1195 

α=0.2 0.1599 0.1552 0.1111 0.1009 

Present 

α=0 0.1807 0.1631 0.1378 0.1300 

α=0.1 0.1806 0.1599 0.1280 0.1195 

α=0.2 0.1804 0.1553 0.1110 0.1008 

20 (1,1) 

Hosseini-Hashemi et al. (2011b) HSDT 

α=0 

0.0125 0.0113 0.0098 0.0094 

Hosseini-Hashemi et al. (2011c) FSDT 0.0125 0.0113 0.0098 0.0094 

CPT 0.0126 0.0114 0.0099 0.0095 

Mouaici et al. (2016) 

α=0 0.0125 0.0113 0.0098 0.0094 

α=0.1 0.0125 0.0110 0.0090 0.0087 

α=0.2 0.0124 0.0106 0.0078 0.0074 

Present 

α=0 0.0125 0.0113 0.0098 0.0094 

α=0.1 0.0125 0.0111 0.0091 0.0087 

α=0.2 0.0125 0.0107 0.0078 0.0074 

Table 3 Comparison of frequency parameter of Al/ Al2O3 rectangular plate (b=2a) 

a/h mode Theory Porosity 
p 

1 2 5 8 10 

5 

(1,1) 

Hosseini-Hashemi et al. (2011c) FSDT α=0 2.6473 2.4017 2.2528 2.1985 2.1677 

Mouaiciet al. (2016) 

α=0 2.6476 2.3952 2.2285 2.1707 2.1414 

α=0.1 2.5934 2.2740 2.0610 2.0009 1.9723 

α=0.2 2.5150 2.0819 1.7655 1.6971 1.6703 

Present 

α=0 2.6475 2.3949 2.2272 2.1696 2.1407 

α=0.1 2.5934 2.2737 2.0594 1.9993 1.9711 

α=0.2 2.5150 2.0817 1.7638 1.6948 1.6683 

(1,2) 

Hosseini-Hashemi et al. (2011c) FSDT α=0 4.0773 3.6953 3.4492 3.3587 3.3094 

Mouaici et al. (2016) 

α=0 4.0782 3.6812 3.3966 3.2987 3.2529 

α=0.1 3.9982 3.4997 3.1417 3.0358 2.9893 

α=0.2 3.8821 3.2118 2.6966 2.5724 2.5249 

Present 

α=0 4.07809 3.68052 3.39381 3.29642 3.25135 

α=0.1 3.99813 3.49907 3.13835 3.03251 2.98685 

α=0.2 3.88199 3.21141 2.69300 2.56756 2.52060 

(1,3) 

Hosseini-Hashemi et al. (2011c) FSDT α=0 6.2626 5.6695 5.2579 5.1045 5.0253 

Mouaici et al. (2016) 

α=0 6.2664 5.6403 5.1481 4.9804 4.9085 

α=0.1 6.1508 5.3723 4.7631 4.5748 4.4985 

α=0.2 5.9821 4.9466 4.1001 3.8729 4.9804 

Present 

α=0 6.2662 5.6390 5.1425 4.9758 4.9055 

α=0.1 6.1507 5.3711 4.7564 4.5683 4.4937 

α=0.2 5.9820 4.9458 4.0928 3.8633 3.7798 
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3D solution (Vel and Batra 2004), and the theory of High 

order shear strain (HSDT) (Hosseini-Hashemi et al. 2011b, 

Matsunaga 2008). 

Table 1 presents a comparison of the fundamental 

frequency 𝛽̅, according to these results we see that there is 

a great agreement between our results and the results 

obtained by Mouaici et al. (2016), and Hosseini-Hashemi et 

al. (2011b, c), and a little big compared to the exact solution 

presented by Vel and Batra (2004), and a little small 

compared to the results of the classical theory (CPT) for the 

case of the perfect plate (α = 0). 

In Table 2, using various plates’ theories for the 

comparison of the natural frequency parameter 𝛽̂ of a  

 

 

square plate Al/Al2O3 with different thickness ratios (a/h) 

and power law, index P. The results of the present model in 

the case of the perfect plate (α = 0) is in good agreement 

with those obtained by Hosseini-Hashemi et al. (2011b, c) 

and Mouaici et al. (2016). Moreover, the results of classical 

plate theory (CPT) overestimate the natural frequency of 

FGM plates, especially for thick plate at higher vibration 

modes. Furthermore, it can be shown that the frequencies 

decrease with increasing porosity (α). When the power law 

index P increases for the FGM plates, the natural frequency 

decreases. These frequencies are also sensitive to the 

variation of the ratio a/h. 

A comparison of the frequency v of the perfect and  

Table 3 Continued 

5 (2,1) 

Hosseini-Hashemi et al. (2011c) FSDT α=0 7.7811 7.1189 6.5749 5.9062 5.7518 

Mouaici et al. (2016) 

α=0 7.8762 7.0768 6.4153 6.1909 6.0995 

α=0.1 7.7369 6.7490 5.9372 5.6808 5.5811 

α=0.2 7.5330 6.2278 5.1208 4.8076 4.6922 

Present 

α=0 7.8762 7.0751 6.4074 6.1846 6.0954 

α=0.1 7.7369 6.7474 5.9277 5.6717 5.5745 

α=0.2 7.5330 6.2268 5.1105 4.7941 4.6804 

10 

(1,1) 

Hosseini-Hashemi et al. (2011c) FSDT α=0 2.7937 2.5386 2.3998 2.3504 2.3197 

Mouaici et al. (2016) 

α=0 2.7937 2.5365 2.3920 2.3414 2.3112 

α=0.1 2.7328 2.4031 2.2122 2.1643 2.1370 

α=0.2 2.6452 2.1921 1.8894 1.8396 1.8189 

Present 

α=0 2.7937 2.5364 2.3916 2.3411 2.3110 

α=0.1 2.7329 2.4030 2.2117 2.1638 2.1366 

α=0.2 2.6453 2.1921 1.8889 1.8390 1.8182 

(1,2) 

Hosseini-Hashemi et al. (2011c) FSDT α=0 4.4192 4.0142 3.7881 3.7072 3.6580 

Mouaici et al. (2016) 

α=0 4.4193 4.0092 3.7693 3.6855 3.2529 

α=0.1 4.3243 3.8001 3.4859 3.4043 2.9893 

α=0.2 4.1875 3.4693 2.9792 2.8922 2.5249 

Present 

α=0 4.4192 4.0089 3.7682 3.6846 3.6368 

α=0.1 4.3243 3.7999 3.4847 3.4031 3.3592 

α=0.2 4.1874 3.4691 2.9778 2.8903 2.8548 

 (1,3) 

Hosseini-Hashemiet al. (2011c) FSDT α=0 7.0512 6.4015 6.0247 5.8887 5.8086 

Mouaici et al. (2016) 

α=0 7.0516 6.3893 5.9790 5.8362 5.7590 

α=0.1 6.9033 6.0604 5.5295 5.3858 5.3128 

α=0.2 6.6891 5.5398 4.7305 4.5720 4.5085 

Present 

α=0 7.0515 6.3886 5.9765 5.8341 5.7575 

α=0.1 6.9032 6.0598 5.5265 5.3827 5.3105 

α=0.2 6.6890 5.5393 4.7272 4.5675 4.5045 

(2,1) 

Hosseini-Hashemi et al. (2011c) FSDT α=0 9.0928 8.2515 7.7505 7.5688 7.4639 

Mouaici et al. (2016) 

α=0 9.0935 8.2319 7.6772 7.4847 7.3845 

α=0.1 8.9053 7.8123 7.1001 6.9022 6.8058 

α=0.2 8.6331 7.1479 6.0788 5.8564 5.7685 

Present 

α=0 9.0933 8.2309 7.6731 7.4813 7.3821 

α=0.1 8.9051 7.8114 7.0953 6.8974 6.8021 

α=0.2 8.6329 7.1472 6.0736 5.8493 5.7621 

361



 

Mustapha Meradjah et al. 

 

 

 

imperfect rectangular plate Al/Al2O3 for different values of 

the power law index P and thickness ratio (a/h) is presented  

 

 

in Table 3. It can be seen that there is has a great agreement 

between our results and the results obtained by Mouaici et 

Table 4 First nine frequency parameter of Al/Al2O3 square plate (a/h=5) 

Mode N° Theory Porosity 
p 

0.5 1 2 5 10 100 

1(1,1) 

Mouaici et al. (2016) 

α=0 4.5181 4.0782 3.6812 3.3966 3.2529 2.8175 

α=0.1 4.5158 3.9982 3.4997 3.1417 2.9893 2.5267 

α=0.2 4.5096 3.8821 3.2118 2.6966 2.5249 2.0688 

Present 

α=0 4.5180 4.0781 3.6805 3.3938 3.2514 2.8204 

α=0.1 4.5157 3.9981 3.4991 3.1383 2.9868 2.5273 

α=0.2 4.5095 3.8820 3.2114 2.6930 2.5206 2.0697 

2(2,1) 

Mouaici et al. (2016) 

α=0 9.9714 9.0164 8.0925 7.3040 6.9318 6.1291 

α=0.1 9.9783 8.8616 7.7240 6.7612 6.3365 5.4824 

α=0.2 9.9797 8.6343 7.1378 5.8394 5.3223 4.4593 

Present 

α=0 9.9715 9.0166 8.0905 7.2944 6.9270 6.1369 

α=0.1 9.9784 8.8617 7.7223 6.7496 6.3286 5.4854 

α=0.2 9.9798 8.6345 7.1367 5.8268 5.3081 4.4634 

3(1,2) 

Mouaici et al. (2016) 

α=0 9.9714 9.0164 8.0925 7.3040 6.9318 6.1291 

α=0.1 9.9783 8.8616 7.7240 6.7612 6.3365 5.4824 

α=0.2 9.9797 8.6343 7.1378 5.8394 5.3223 4.4593 

Present 

α=0 9.9715 9.0166 8.0905 7.2944 6.9270 6.1369 

α=0.1 9.9784 8.8617 7.7223 6.7496 6.3286 5.4854 

α=0.2 9.9798 8.6345 7.1368 5.8268 5.3081 4.4634 

4(2,2) 

Mouaici et al. (2016) 

α=0 14.5049 13.1339 11.7508 10.4660 9.8768 8.8372 

α=0.1 14.5261 12.9296 11.2462 9.6970 9.0043 7.8932 

α=0.2 14.5423 12.6272 10.4411 8.4136 7.5460 6.3957 

Present 

α=0 14.5064 13.1354 11.7487 10.4506 9.8703 8.8508 

α=0.1 14.5275 12.9311 11.2445 9.67822 8.9925 7.8999 

α=0.2 14.5436 12.6286 10.4406 8.39291 7.5231 6.4043 

5(3,1) 

Mouaici et al. (2016) 

α=0 17.1907 15.5781 13.9180 12.3165 11.5907 10.4286 

α=0.1 17.2224 15.3488 13.3393 11.4184 10.5546 9.3081 

α=0.2 17.2502 15.0078 12.4146 9.9325 8.8382 7.5288 

Present 

α=0 17.1939 15.5813 13.9166 12.2984 11.5840 10.4464 

α=0.1 17.2254 15.3518 13.3383 11.3958 10.5410 9.3179 

α=0.2 17.2529 15.0107 12.4152 9.9073 8.8108 7.5409 

6(1,3) 

Mouaici et al. (2016) 

α=0 17.1907 15.5781 13.9180 12.3165 11.5907 10.4286 

α=0.1 17.2224 15.3488 13.3393 11.4184 10.5546 9.3081 

α=0.2 17.2502 15.0078 12.4146 9.9325 8.8382 7.5288 

Present 

α=0 17.19387 15.58130 13.91658 12.29840 11.58401 10.44643 

α=0.1 17.22541 15.35184 13.33835 11.39582 10.54106 9.31793 

α=0.2 17.25290 15.01068 12.41521 9.90734 8.81078 7.54093 

7(3,2) 

Mouaici et al. (2016) 

α=0 20.8537 18.9173 16.8757 14.8221 13.9024 12.5875 

α=0.1 20.9019 18.6582 16.2029 13.7530 12.6443 11.2264 

α=0.2 20.9481 18.2705 15.1256 12.0027 10.5816 9.0621 

Present 

α=0 20.8603 18.9239 16.8765 14.8013 13.8967 12.6124 

α=0.1 20.9081 18.6645 16.2042 13.7262 12.6296 11.2416 

α=0.2 20.9538 18.2763 15.1288 11.9724 10.5488 9.0802 
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al. (2016), and a small difference with the results of 

Hosseini-Hashemi et al. (2011c); this is due to the different 

approaches used to predict natural frequencies. The first 

theory of shear deformation (FSDT) presented by Hosseini-

Hashemi et al. (2011c) have five unknowns contrary to the 

present theory that use four unknowns. In addition, the 

frequency decreases with the existence of an imperfection 

 

 

 

 

in the plate (a ¹ 0). 

In Table 4, another comparison with the results of 

Mouaici et al. (2016) for the first nine modes of the 

frequency v of a square plate Al/Al2O3 for different values 

of the power law index P and a thickness ratio (a/h = 5). 

Here too, the results are in great agreement with those of 

Mouaici et al (2016). 

Table 4 Continued 

8(2,3) 

Mouaici et al. (2016) 

α=0 20.8537 18.9173 16.8757 14.8221 13.9024 12.5875 

α=0.1 20.9019 18.6582 16.2029 13.7530 12.6443 11.2264 

α=0.2 20.9481 18.2705 15.1256 12.0027 10.5816 9.0621 

Present 

α=0 20.8603 18.9239 16.8765 14.8013 13.8967 12.6124 

α=0.1 20.9081 18.6645 16.2042 13.7262 12.6296 11.2416 

α=0.2 20.9538 18.2763 15.1288 11.9724 10.5487 9.0802 

9(4,1) 

Mouaici et al. (2016) 

α=0 25.2274 22.9124 20.4125 17.7953 16.6351 15.1525 

α=0.1 25.2978 22.6233 19.6365 16.5287 15.1139 13.5042 

α=0.2 25.3690 22.1875 18.3910 14.4786 12.6451 10.8801 

Present 

α=0 25.2402 22.9251 20.4180 17.7735 16.6330 15.1878 

α=0.1 25.3100 22.6354 19.6426 16.49900 15.1002 13.5278 

α=0.2 25.3805 22.1989 18.3994 14.4439 12.6078 10.9072 

 

 

(a) (b) 

Fig. 1 Influence of the power law index of the imperfect platen (α=0.1) on the frequency, (a) a/h=5 and (b) a/h=100 

 
 

(a) (b) 

Fig. 2 Influence of thickness ratio of the imperfect plate (α=0.1) on the frequency, (a) P=1 and (b) P=100 
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(a) (b) 

Fig. 3 The effect of power law index of FG square plate on fundamental frequency parameter, (a) a/h=5 and (b) a/h=100 

 

 

(a) (b) 

Fig. 4 Variation of the adimensional frequency as a function of the thickness ratio a/h and porosity coefficient α, (a) P=1 and 

(b) P=100 

 

 

 

(a) (b) 

Fig. 5 Variation of the adimensional frequency according to the porosity for different thickness ratio a/h, (a) P=1 and (b) 
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In Fig. 1(a) and (b), we present a comparison between 

two solutions of porosity by plotting the variation of 

frequency. The porosity coefficient is taken α=0.1 and the 

thickness of the plate is h=0.2 m (Fig. 1(a)) and h=0.01 m 

(Fig. 1(b)). It can be seen that the frequency decrease with 

the increase of the power law index and the solution II 

provides higher frequencies than those of solution I. This is 

due to distributions of porosity across thickness. Indeed, the 

linear. 

Distribution of porosity (solution II) and constant 

distribution (solution I) of porosity are considerably 

different to induce a different in results. 

We study the variation of the adimensional frequency as 

a function of the thickness ratio a/h for the two distributions 

of the porosity for the power law index P = 1 and P = 100. 

In Fig. 2(a) and (b). It has been found that increasing the 

thickness ratio increases the adimensional frequency. 

Fig. 3(a) and 3(b), present the variation of the frequency 

parameter with power law index P is given for a/h=5 and 

a/h=100 respectively. According to these figures, the 

frequency parameter decreases with increasing index P and 

porosity parameter a. 

Figs. 4(a) and 3(b) depict the fundamental frequency 

parameters versus the thickness ratio of FGM plate for p=1 

and p=100 respectively. It is seen that the results increase as 

the thickness ratio of the plate increases for all cases 

(perfect and imperfect plate). 

From the Fig. 5(a) and (b), the adimensional frequency 

is established as a function of the porosity and for different 

values of the thickness coefficient. It can be deduced from 

this curve that the increase in porosity reduces the 

adimensional frequency, regardless of the thickness ratio. 

On the contrary, an increase in the thickness ratio leads to 

an increase in the adimensional frequency. 

 
 

5. Conclusions  
 

A hyperbolic shear deformation theory is developed to 

study dynamic behaviour porous FGM plates. Unlike other 

shear deformation theories, only four unknown 

displacement functions are used in the current theory 

against five unknown displacement functions used in other 

theories. The properties of the material are assumed to vary 

in the direction of the thickness of the plate according to the 

rule of the mixture, which is reformulated to evaluate the 

characteristics of the material with the porosity phases. The 

equations of motion are derived from the Hamilton 

principle. Numerical validation has been done to establish 

the natural frequencies of FGM plates, while the emphasis 

is on examining the influence of several parameters. From 

the results obtained by the model presented, we can see that 

its results are very accurate compared to those obtained by 

Hosseini-Hashemi et al. (2011b, c), and Mouaici et al. 

(2016), and that the porosity contributes to significantly 

reducing the non-dimensional frequency. An improvement 

of present work will be considered in the future to consider 

the thickness stretching effect by using quasi-3D shear 

deformation models (Bessaim et al. 2013, Bousahla et al. 

2014, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 

2014, Larbi Chaht et al. 2015, Hamidi et al. 2015, Bourada 

et al. 2015, Meradjah et al. 2015, Bennoun et al. 2016, 

Draiche et al. 2016, Sekkal et al. 2017b, Bouafia et al. 

2017, Abualnour et al. 2018, Benchohra et al. 2018, 

Bouhadra et al. 2018, Ait Yahia et al. 2018). 
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