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1. Introduction 
 

In addition to advancing and stationary contact 

problems, receding contact represents another class of 

contact problems in which the contact extent decreases 

from its initial unloaded area during the course of loading 

application (Johnson 1985). In contrast, the contact area of 

the first two kinds of contact problems either expands or 

stays as a constant with increasing external loads. Receding 

contact typically occurs in layered structures characterizing 

the separation of a layer from an associated substrate. 

Engineering examples include asphalt pavements, train 

tracks, pad bearings, ship decks, floor boards, bed 

mattresses, transitional and interference pin-rod fittings, and 

among others. Receding contact threatens the health and 

integrity of multilayered structures and therefore has 

received extensive attentions of engineers and scientists for 

longer than a century (Rončević et al. 2016). The classical 

mechanical model that simulates the receding contact 

phenomenon considers an infinite elastic layer pressed 

against a semiinfinite substrate by either a concentrated  
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force or uniformly distributed loads. Although not the 

earliest to tackle the problem, Keer et al. (1972) first 

obtained the accurate receding contact size and contact 

pressure, by the use of elasticity theory. 

The classical receding contact model of the layer-

substrate type was continuously extended over last a few 

decades to take more influential factors into account. These 

efforts include introducing a surface traction of different 

distributions (Keer and Chantaramungkorn 1972, Tsai et al. 

1974, Parel and Hills 2016), a solid indenter (Civelek and 

Erdogan 1974), frictional effects (Ç ömez 2010), a 

homogeneously coated layer (Adibelli et al. 2013), two 

unbonded layers both of finite thickness (Yaylacı and 

Birinci 2013, Yaylacı et al. 2014), a substrate composed of 

two quarter-planes (Erdogan and Ratwani 1974), a 

completely rigid substrate (Gecit 1986), an elastic substrate 

of finite thickness (Ç ömez et al. 2004), just to name a few. 

Another remarkable extension of the classical receding 

contact model is the replacement of the homogeneous 

elastic layer with a functionally graded material (FGM) 

whose material properties are allowed to vary continuously 

along its transverse dimension (El-Borgi et al. 2006). The 

semianalytical results found in El-Borgi et al. (2006) 

suggest that a hard FGM layer can effectively help to 

reduce the peak contact pressure, whereas for a soft one the 

opposite is true. 

Analogously, variations of the FGM-substrate system 

have also been extensively studied in the literature. For 

example, this fundamental model was shortly extended to 
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axisymmetric case by Rhimi et al. (2009). Two years later, 

Rhimi et al. (2011) revisited the problem by replacing 

surface traction loads with a spherical rigid indenter. Liu et 

al. further explored the same axisymmetric model by 

discretizing the FGM layer into several sublayers with 

linearly varied shear moduli. By such an approximate, FGM 

layers with arbitrarily graded material properties can be 

addressed. The frictional version of the fundament model 

has also been recently solved (El-Borgi et al. 2014). In 

addition, Adıyaman et al. (2016) analyzed an FGM layer 

supported by two elastic quarter-planes. Substrates other 

than an elastic half-plane have also been considered. For 

example, Adıyaman et al. (2017) investigated the loss of 

contact between an FGM layer and a rigid substrate under 

the application of gravity and a tensile surface traction over 

a finite interval. Yan and Li (2015) and Ç ömez et al. (2016) 

considered a homogeneous and an FGM substrate both of 

finite thickness, respectively. 

These studies are all concerned with the receding 

contact occurring in structures composed of two layers 

(including the substrate), in which the FGM strip functions 

as an independent structural element. Nonetheless, in 

engineering practice FGMs are typically employed as 

coatings or transitional layers aiming to bridge components 

with drastically different material properties. As a result, an 

FGM component is best designed as a coating perfectly 

bonded to a supporting layer. Additional mathematical 

efforts required in the semianalytical formulation of such a 

three-layer structure, however, are massive. The major 

difficulties include the determination of coefficient 

functions in Fourier transforms of displacements and 

stresses and the numerical integration of the resultant 

singular integral equations. For axisymmetric problems 

Fourier transforms must also be replaced by Hankel ones. 

For these reasons, semianalytical solutions to a receding 

contact occurring in structures composed of more than two 

layers are relatively rare (Adibelli et al. 2013, Yaylacı and 

Birinci 2013, Yaylacı et al. 2014), not to mention those 

containing FGM coatings (Yan and Mi 2017a, b). 
Given the often intimidating mathematical difficulties 

involved in theoretical analysis, researchers have also 
resorted to finite element (FE) modeling, an accurate and 
robust numerical method, to solve receding contact 
problems. Kauzlarich and Greenwood (2001) numerically 
solved the receding contact radius between a pad and a 
rigid/elastic support due to an axisymmetric load by a 
threedimensional FE modeling. Their results are found in 
good agreement with the semianalytical predictions by Keer 
et al. (1972). Ö ner et al. (2014) solved the receding contact 
problem between two unbonded elastic layers of finite 
thickness supported by a Winkler foundation using both the 
analytical method and an FE modeling. Nearly perfect 
agreement was found between the results from two 
methods. The same group of authors further made a few 
extensions of the classical receding contact model by 
comparing analytical and FE results (Yaylacı et al. 2014, 
Adıyaman et al. 2015, Birinci et al. 2015). Rončević and 
Siminiati (2010) performed FE modeling of the classical 
receding contact model using commercial software and 
successfully validated their numerical results against 
analytical solutions available in literature. Later, this work 

was further extended to the receding contact between an 
elastic indenter and a homogeneous layer due to uniform 
pressure loads and this time the FE results are validated 
against experimental measurements based on digital image 
correlation technique (Rončević et al. 2016). 

As can be seen from the above literature review on FE 

analysis of receding contact problems, most mechanical 

models are limited to homogeneous materials. When a 

structural element with graded properties are concerned, an 

FE model has to discretize the originally varying modulus 

of elasticity. In the semianalytical determination of the 

stress field around a cylindrical crack embedded inside the 

wall of a cylindrical tube, externally bonded to an infinite 

substrate and internally to a solid cylinder, Itou and Shima 

(1999) chose to divide the interfacial layer into three 

sublayers with the same thickness. Young’s modulus and 

Poisson’s ratio in each of the three sublayers are taken as 

constants, evaluated at sublayer lower surfaces. This idea of 

discretization has also found its applications in the FE 

modeling of structures containing FGM components. For 

example, Turan et al. (2016) developed an FE formulation 

for the advancing contact problem between an FGM layer 

and a half-space substrate, perfectly bonded along their 

interface, due to a uniform surface pressure applied on a 

circular portion of the top surface. FE results of 

displacements and stresses are able to be validated against 

those of classical elasticity. In a similar fashion, Balci et al. 

(2016) proposed an FE methodology for the thermoelastic 

contact problem of a thin FGM layer coated on a 

homogenous half-plane substrate, indented by a sliding 

stamp. Also using a sliding stamp, Güler et al. (2017) 

recently developed an analytical and finite element 

comparative study on the plane contact over a functionally 

graded orthotropic half-plane. The FE modeling of an FGM 

layer involved in a receding contact structure, however, 

remains unelucidated. 

In this paper, we aim to tackle the receding contact of a 

coated elastic layer pressed against a halfplane substrate by 

both a semianalytical and an FE modeling approach. The 

material properties of the coating are allowed to vary 

exponentially along the thickness direction. The indentation 

load is either a concentrated force or uniform compressive 

tractions acted upon the top surface of the composite 

laminate. The interface between the FGM layer and 

substrate is assumed frictionless such that no shear tractions 

can be transmitted. Both the semianalytical and FE analysis 

are performed within the framework of linear elasticity. The 

central result of the semianalytical formulation is a singular 

integral equation which is numerically integrated by Gauss-

Chebyshev quadrature, together with the global force 

balance condition. An iterative algorithm based on the 

method of steepest descent is developed to guarantee the 

convergence of the solution. The key techniques of the FE 

modeling include the division of the FGM coating into 

homogeneous sublayers, smoothening of nodal stresses at 

sublayer interfaces, and the definition of receding contact at 

the FGM-substrate interface. 

The remainder of this paper is organized as follows. 

Section 2 describes the semianalytical formulation of the 

proposed receding contact model, reinforced by a numerical 

integration algorithm tailored for the resultant singular  
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Fig. 1 Geometry of the receding contact problem between a 

two-layer inhomogeneous laminate and a half-plane 

substrate, pressed against each other due to a uniformly 

distributed surface traction 

 

 

integral equation. In Section 3, the pre- and post-processing 

settings of FE contact modeling in the commercial software 

package ABAQUS/Standard are introduced such that the 

presented simulations can be independently repeated. 

Section 4 aims to validate the semianalytical solution 

against available literature results and FE modeling, to 

perform extensive parametric studies on receding contact 

parameters, and to discuss the significance of results 

predicted by both methods. Finally, in Section 5, 

conclusions of the paper are drawn and an outlook to future 

work foreseen. 

 

 

2. Method of semianalytical solution 
 

Let us consider an infinite two-layer laminate pressed 

against a half-plane substrate due to a uniformly distributed 

surface traction of intensity 𝑝(𝑥), as shown in Fig. 1. The 

laminate is composed of a homogeneous elastic layer of 

thickness h1 and a functionally graded one with thickness 

h2. The elastic and FGM layers are perfectly bonded along 

their interface. The material properties of all three media 

are characterized by shear modulus 𝜇  and Kolosov’s 

constant 𝜅. In the linear theory of plane elasticity, the latter 

parameter is a generalization of Poisson’s ratio, i.e., 𝜅 =
3 − 4𝜈  in plane strain formulation whereas 𝜅 =
(3 − 𝜈) (1 + 𝜈)⁄  for plane stress problems. For simplicity, 

the Kolosov’s constant of all three media has been set to 

equal in the present study. While the elastic layer and the 

half-plane substrate are both treated as homogeneous 

media, the shear modulus of the FGM layer is allowed to 

vary exponentially along its transverse dimension 

𝜇2(𝑦) = 𝜇1𝑒
−𝛽𝑦 ,       − ℎ2 ≤ 𝑦 < 0 (1) 

where 𝛽  is an arbitrary nonzero constant. Neglecting 

gravity and friction at the FGM-substrate interface, the 

displacement equations of equilibrium for all three 

deformable media can be formulated as 

(𝜅 + 1)
𝜕2𝑢𝑙
𝜕𝑥2

+ (𝜅 − 1)
𝜕2𝑢𝑙
𝜕𝑦2

+ 2
𝜕2𝑣𝑙
𝜕𝑥𝜕𝑦

= 0 (2a) 

(𝜅 − 1)
𝜕2𝑣𝑙
𝜕𝑥2

+ (𝜅 + 1)
𝜕2𝑣𝑙
𝜕𝑦2

+ 2
𝜕2𝑢𝑙
𝜕𝑥𝜕𝑦

= 0 (2b) 

(𝜅 + 1)
𝜕2𝑢2
𝜕𝑥2

+ (𝜅 − 1)
𝜕2𝑢2
𝜕𝑦2

+ 2
𝜕2𝑣2
𝜕𝑥𝜕𝑦

− 𝛽(𝜅 − 1)
𝜕𝑢2
𝜕𝑦

− 𝛽(𝜅 − 1)
𝜕𝑣2
𝜕𝑥

= 0 

(2c) 

(𝜅 − 1)
𝜕2𝑣2
𝜕𝑥2

+ (𝜅 + 1)
𝜕2𝑣2
𝜕𝑦2

+ 2
𝜕2𝑢2
𝜕𝑥𝜕𝑦

− 𝛽(3 − 𝜅)
𝜕𝑢2
𝜕𝑥

− 𝛽(𝜅 + 1)
𝜕𝑣2
𝜕𝑦

= 0 

(2d) 

It is clear that the first two equations of (2) work for the 

homogeneous elastic layer and half-plane substrate (𝑙 =  1 

or  3) whereas the last two for the infinite FGM lamina. 

The central task of a plane elastic problem is to seek a 

general solution to Eqs. (2). Such a solution is only general 

in the sense that it often contains arbitrary constants or 

functions that have to be determined by imposing the 

boundary conditions of a given mechanical model. 

 

2.1 Mathematical formulation of the receding contact 
problem 

 
The technique of standard Fourier transform is now 

implemented upon Eqs. (2a), (2b), (2c), (2d), since in the 

transformed space these partial differential equations can be 

converted into ordinary ones. For the elastic layer (0 ≤ 𝑦 ≤
ℎ1), the transformed displacements and stresses read 

�̃�1(𝜆, 𝑦) = (𝐶1 + 𝐶2𝑦)𝑒
𝜆𝑦 + (𝐶3 + 𝐶4𝑦)𝑒

−𝜆𝑦 (3a) 

�̃�1(𝜆, 𝑦) = 𝑖 [(𝐶1 + 𝐶2 (𝑦 −
𝜅

𝜆
)) 𝑒𝜆𝑦

− (𝐶3 + 𝐶4 (𝑦 +
𝜅

𝜆
)) 𝑒−𝜆𝑦] 

(3b) 

�̃�𝑦𝑦1(𝜆, 𝑦) = 2𝜇1𝑖 [(𝐶1𝜆 − 𝐶2 (
1 + 𝜅

2
− 𝜆𝑦)) 𝑒𝜆𝑦

+ (𝐶3𝜆 + (
1 + 𝜅

2
+ 𝐶4𝜆𝑦)) 𝑒

−𝜆𝑦] 
(4a) 

�̃�𝑥𝑦1(𝜆, 𝑦) = 2𝜇1 [(𝐶1𝜆 + 𝐶2 (
1 − 𝜅

2
+ 𝜆𝑦)) 𝑒𝜆𝑦

− (𝐶3𝜆 − 𝐶4 (
1 − 𝜅

2
− 𝜆𝑦)) 𝑒−𝜆𝑦] 

(4b) 

where 𝐶1 through 𝐶4 are arbitrary functions of 𝜆, namely 

the transform of the spatial variable 𝑥. These functions are 

taken as unknowns and can be solved by enforcing 

boundary conditions. The transformed displacements and 

stresses for the FGM layer (ℎ2 ≤ 𝑦 ≤ 0) appear in a much 

more complicated form, due to its inhomogeneous 

distribution of elastic modulus 
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�̃�2(𝜆, 𝑦) = ∑𝐶𝑘+4𝑒
𝑚𝑘𝑦

4

𝑘=1

 (5a) 

�̃�2(𝜆, 𝑦) = ∑𝐶𝑘+4𝑛𝑘𝑒
𝑚𝑘𝑦

4

𝑘=1

 (5b) 

�̃�𝑦𝑦2(𝜆, 𝑦) =
𝜇2𝑒

−𝛽𝑦

𝜅 − 1
∑𝐶𝑘+4

4

𝑘=1

[(1 + 𝜅)𝑚𝑘𝑛𝑘

− 𝑖(3 − 𝜅)𝜆]𝑒𝑚𝑘𝑦 

(6a) 

�̃�𝑥𝑦2(𝜆, 𝑦) = 𝜇2𝑒
−𝛽𝑦∑𝐶𝑘+4

4

𝑘=1

[𝑚𝑘 − 𝑖𝜆𝑛𝑘]𝑒
𝑚𝑘𝑦 (6b) 

where 𝑚1, ⋯ ,𝑚4 and 𝑛1, ⋯ , 𝑛4 are known functions of 

𝜆, given in Appendix A. As before, 𝐶5, ⋯ , 𝐶8  are also 

unknown functions of 𝜆 that have to be solved from the 

boundary conditions. The semiinfinite nature of the half-

plane substrate requires that both displacements and stresses 

mush vanish in regions far away from the area of receding 

contact. This condition helps to simplify the Fourier 

transforms of the elastic fields in the half-plane substrate 

and to reduce the number of unknown functions from four 

to two 

�̃�3(𝜆, 𝑦) = (𝐶9 + 𝐶10𝑦)𝑒
|𝜆|𝑦 (7a) 

�̃�3(𝜆, 𝑦) = 𝑖 [𝐶9sgn(𝜆) + 𝐶10 (𝑦sgn(𝜆) −
𝜅

𝜆
)] 𝑒|𝜆|𝑦 (7b) 

�̃�𝑦𝑦3(𝜆, 𝑦) = 2𝑖𝜇3 [𝐶9𝜆

+ 𝐶10 (𝜆𝑦 −
(1 + 𝜅)

2
sgn(𝜆))] 𝑒|𝜆|𝑦 

(8a) 

�̃�𝑥𝑦3(𝜆, 𝑦) = 2𝜇3 [𝐶9|𝜆| + 𝐶10 (
1 − 𝜅

2
+|𝜆|𝑦)] 𝑒|𝜆|𝑦 (8b) 

where sgn(𝜆) is the signum function of 𝜆. 

Under the application of the uniformly distributed 

surface loads acting upon only a segment of the upper 

surface of the elastic layer, the traction boundary conditions 

are straightforward 

𝜎𝑦𝑦1(𝑥, ℎ1) = −𝑝(𝑥)𝐻(𝑎 − |𝑥|), |𝑥| < ∞ (9a) 

𝜎𝑥𝑦1(𝑥, ℎ1) = 0, |𝑥| < ∞ (9b) 

where 𝐻(𝑎 − |𝑥|) is the unit step function and 𝑎 the half-

length of the uniform surface traction. It is noted that in the 

present study the surface traction 𝑝(𝑥) is given a priori, 

which helps to simplify the mathematical efforts. 

Perfect bonding at the interface separating the elastic 

and FGM layer renders us both continuous displacements 

and stresses 

𝜎𝑦𝑦1(𝑥, 0) = 𝜎𝑦𝑦2(𝑥, 0), |𝑥| < ∞ (10a) 

𝜎𝑥𝑦1(𝑥, 0) = 𝜎𝑥𝑦2(𝑥, 0), |𝑥| < ∞ (10b) 

𝑢1(𝑥, 0) = 𝑢2(𝑥, 0), |𝑥| < ∞ (10c) 

𝑣1(𝑥, 0) = 𝑣2(𝑥, 0), |𝑥| < ∞ (10d) 

Without friction, only compressive normal tractions can 

be transmitted across the area of receding contact 

𝜎𝑦𝑦2(𝑥, −ℎ2) = −𝑞(𝑥)𝐻(𝑏 − |𝑥|), |𝑥| < ∞ (11a) 

𝜎𝑥𝑦2(𝑥, −ℎ2) = 0, |𝑥| < ∞ (11b) 

𝜎𝑦𝑦3(𝑥, −ℎ2) = −𝑞(𝑥)𝐻(𝑏 − |𝑥|), |𝑥| < ∞ (11c) 

𝜎𝑥𝑦3(𝑥, −ℎ2) = 0, |𝑥| < ∞ (11d) 

where 𝑞(𝑥) denotes the receding contact pressure and 𝑏 

the contact half-length. 

Three groups of boundary conditions, i.e., Eqs. (9a), 

(9b), (10a), (10b), (10c), (10d), (11a), (11b), (11c), (11d), 

provide ten equations to solve for the same number of 

unknown functions (𝐶1, ⋯ , 𝐶10). It is fortunate that these 

equations are all linear with respect to the ten unknowns. To 

this end, we substitute the transformed displacements and 

stresses (3a), (3b,), (4a), (4b), (5a), (5b), (6a), (6b), (8a), 

(8b) into the Fourier transforms of the above three groups 

of boundary conditions. Although the procedure is logically 

straightforward yet mathematically quite tedious. For 

brevity, the solutions to these functions (𝐶1, ⋯ , 𝐶10) are 

documented in Appendix B.  

Up to this point, the elastic field in all three media is 

symbolically solved. However, both the receding contact 

pressure and contact length at the FGM-substrate interface 

remain unknown. Recall that, as long as the condition of 

continuous contact is satisfied no gaps should be found 

across the FGM-substrate interface 

𝜕𝑣2(𝑥, −ℎ2)

𝜕𝑥
=
𝜕𝑣3(𝑥, −ℎ2)

𝜕𝑥
, |𝑥| < 𝑏 (12) 

The displacement continuity condition has been 

formulated in terms of the interface slope in order to 

eliminate possible rigid-body movements. In addition, static 

equilibrium dictates that the resultant force of the contact 

pressure at the receding contact interface must balance that 

of the applied surface traction 

∫ 𝑞(𝑡)𝑑𝑡
𝑏

−𝑏

= ∫ 𝑝(𝑡)𝑑𝑡
𝑎

−𝑎

 (13) 

Eqs. (12) and (13) are nothing but the conditions to 

determine the receding contact parameters. Plugging Eqs. 

(24a), (24b), (24c) back into the vertical displacements (5b, 

7b) and subsequently imposing the slope continuity 

condition (12), a singular integral equation can be obtained 

𝑏0∫ 𝑞(𝑡) {
1

𝑡 − 𝑥
+ ∫ sin[𝜆(𝑡 − 𝑥)] 𝐵(𝜆)𝑑𝜆

∞

0

} 𝑑𝑡
𝑏

−𝑏

=
𝑒𝛽ℎ2

(1 − 𝜅)
∫ 𝑘(𝑥, 𝑡)𝑝(𝑡)𝑑𝑡
𝑎

−𝑎

 
(14) 
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where 

𝑘(𝑥, 𝑡)

= ∫ 𝜆 sin[𝜆(𝑡 − 𝑥)]∑(−1)𝑘
𝐷1(𝑘+4)

𝐷
𝑛𝑘𝑒

−𝑚𝑘ℎ2

4

𝑘=1

𝑑𝜆
∞

0

 (15a) 

𝐵(𝜆) =
𝜆

𝑏0
∑(−1)𝑘

𝐷7(𝑘+4)

𝐷
𝑛𝑘𝑒

−𝑚𝑘ℎ2

4

𝑘=1

+
𝜇1(1 + 𝜅)𝑒

𝛽ℎ2

4𝜇3(𝜅 − 1)
− 1 

(15b) 

and for very large 𝜆  expression (15b) can be further 

simplified by performing an asymptotic analysis (El-Borgi 

et al. 2006, White 2010) 

𝑏0 =
(1 + 𝜅)(𝑒𝛽ℎ2𝜇1 + 𝜇3)

4𝜇3(𝜅 − 1)
 (16) 

The singular integral Eq. (14) and the force balance Eq. 

(13) are the central conditions for determining the receding 

contact pressure 𝑞(𝑥) and contact half-length 𝑏 , whose 

semianalytical solution algorithm is outlined in the next 

subsection. 

 

2.2 Semianalytical solution algorithm 
 
One successful quadrature that can be used to 

numerically discretize the singular integral Eq. (14) is 

Gauss-Chebyshev formula (Erdogan and Gupta 1972, Li 

2013). The integrals over [−𝑏, 𝑏] and [−𝑎, 𝑎] must both 

be changed into an integral over [−1,1] before applying 

the quadrature rule. This change of intervals can be 

performed straightforwardly. In the meantime, we also 

choose to make the nondimensionalization 𝑥 𝑏⁄ → 𝑟. As a 

result, the singular integral Eq. (14) and the force balance 

condition (13) are converted to 

𝑏0∫ �̅�(𝑠) {
1

𝑠 − 𝑟
+ 𝑏∫ 𝑠𝑖𝑛[𝑏𝜆(𝑠 − 𝑟)] 𝐵(𝜆)𝑑𝜆

∞

0

} 𝑑𝑠
1

−1

=
𝑎𝑒𝛽ℎ2

(1 − 𝜅)
∫ �̅�(𝑟, 𝑠)�̅�(𝑠)𝑑𝑠
1

−1

,

|𝑟| ≤ 1 

(17a) 

𝑏∫ �̅�(𝑠)𝑑𝑠
1

−1

= 𝑎∫ �̅�(𝑠)𝑑𝑠
1

−1

 (17b) 

where 

�̅�(𝑟, 𝑠)

= ∫ 𝜆 𝑠𝑖𝑛[𝜆(𝑎𝑠
∞

0

− 𝑏𝑟)]∑(−1)𝑘
𝐷1𝑘+4
𝐷

𝑛𝑘𝑒
−𝑚𝑘ℎ2

4

𝑘=1

𝑑𝜆 

(18a) 

�̅�(𝑠) = ℎ1𝑞(𝑏𝑠) 𝑃⁄ , �̅�(𝑠) = ℎ1𝑝(𝑎𝑠) 𝑃⁄  (18b, c) 

with P representing the resultant force of the applied 

surface traction. Following Erdogan and Gupta (1972), the 

zeros of Chebyshev polynomial of the second kind are used 

as abscissae for quadratures. Moreover, Eq. (17a) was 

repeatedly evaluated at the zeros of Chebyshev polynomial 

of the first kind. This scheme leads to the following 

simultaneous algebraic equations for the receding contact 

half-length and the nondimensionalized contact pressure 

𝑏0∑�̅�(𝑠𝑗)√1 − 𝑠𝑗
2 {

1

𝑠𝑗 − 𝑟𝑖

𝑁

𝑘=1

+ 𝑏∫ sin[𝑏𝜆(𝑠𝑗 − 𝑟𝑖)] 𝐵(𝜆)
∞

0

𝑑𝜆}

=
𝑎𝑒𝛽ℎ2

(1 − 𝜅)
∑ �̅�(𝑠𝑗)√1 − 𝑠𝑗

2�̅�(𝑟𝑖 , 𝑠𝑗)

𝑁

𝑘=1

 

(19a) 

𝑏∑ �̅�(𝑠𝑗)√1 − 𝑠𝑗
2

𝑁

𝑘=1

= 𝑎∑ �̅�(𝑠𝑗)√1 − 𝑠𝑗
2

𝑁

𝑘=1

 (19b) 

where 

𝑟𝑖 = 𝑐𝑜𝑠 (
𝜋

2

2𝑖 − 1

𝑁 + 1
) , 𝑖 = 1,⋯ ,𝑁 + 1 (20a) 

𝑠𝑗 = 𝑐𝑜𝑠 (
𝑗𝜋

𝑁 + 1
) , 𝑗 = 1,⋯ ,𝑁 (20b) 

are zeros of the (𝑁 + 1) th degree Chebyshev polynomial 

of the first kind and the 𝑁th degree Chebyshev polynomial 

of the second kind, respectively. 

Due to symmetry, the singular integral equation (17a) is 

identically satisfied at the midpoint of the receding contact 

length (𝑟 = 0). Consequently, it is more convenient to pick 

an even number for N such that the median equation of 

(19a), when 𝑖 = 𝑁 2⁄ + 1, can be dropped (Erdogan and 

Gupta 1972). As a result, Eqs. (19a), (19b) yield a total 

number of 𝑁 + 1  equations for the same number of 

unknowns, i.e., the normalized contact pressure �̅�(𝑠𝑗) and 

the contact half-length b. It is obvious that these algebraic 

equations are nonlinear for the contact half-length yet 

fortunately linear for the contact pressure. To solve for this 

pair of receding contact parameters, we first make a guess 

at b and subsequently evaluate �̅� from (19a). Next, the 

residual of (19b) is examined against a predefined degree of 

tolerance, e.g., 10−5 . Unless this tolerance condition is 

satisfactorily met, the guess of b must be renewed, by 

following the method of steepest descent (Ortega and 

Rheinboldt 1987), and the algorithm loop recycled. 

 

 

3. Contact modeling in ABAQUS/Standard 
 

For comparison purpose, the structure used in FE 

modeling is completely based on the model shown in Fig. 1. 

Benefiting from the symmetry, only a half of the theoretical 

model needs to be analyzed. The symmetry condition 

implies that at the center of the receding contact interface 

the horizontal displacement and the slope must satisfy 
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Fig. 2 Plane strain mesh details of the right half of the 

receding contact model under the application of uniform 

surface loads 

 

Table 1 The discrete distribution of Young’s modulus 

(GPa) in ten sublayers of a soft, nearly homogeneous, and 

hard FGM lamina. The Young’s modulus of the 

homogenous elastic layer is assumed as 𝐸 = 210 GPa, the 

value of a typical steel material, such that the continuity at 

the elastic layer-FGM interface is guaranteed 

sublayer interval (ℎ2) 𝛽 = −1 𝛽 = 0.001 𝛽 = 1 

1 0.0~ − 0.1 190.02 210 232.09 

2 −0.1~ − 0.2 171.93 210 256.49 

3 −0.2~ − 0.3 155.57 210 283.47 

4 −0.3~ − 0.4 140.77 210 331.28 

5 −0.4~ − 0.5 127.37 210 346.23 

6 −0.5~ − 0.6 115.25 210 382.64 

7 −0.6~ − 0.7 104.28 210 422.89 

8 −0.7~ − 0.8 94.36 210 467.36 

9 −0.8~ − 0.9 85.38 210 516.52 

10 −0.9~ − 1.0 77.25 210 570.84 

 

 

𝑢𝑥 =
𝜕𝑢𝑦

𝜕𝑥
= 0, 𝑥 = 0, 𝑦 ≤ ℎ1 (21) 

The material properties of all three deformable media 

are defined as isotropic and linearly elastic. The receding 

contact problem is numerically analyzed in 

ABAQUS/Standard, a highly accurate linear and nonlinear 

implicit solver. The model is meshed with plane strain finite 

elements, i.e., CPE4I, namely the 4-node bilinear 

quadrilateral and incompatible modes. This element type 

can effectively avoid shear locking. In particular, for 

bending problems only a few number of elements are 

needed in the transverse dimension, in order to achieve the 

same accuracy as that of 8-node biquadratic elements. 

Noticeably, the computational cost is much less expensive. 

Fig. 2 shows a referential geometry of the FE models 

analyzed in this work. Meshes in the vicinity of the area of 

receding contact, where accuracy is of most importance, are 

finer than the rest of the domain. For regions away from the 

contact area, the advancing-front technique was used for 

mesh generation, such that meshes are evenly ramped. No 

significant stresses and deformation are expected in regions 

far away from the contact area. For the referential model 

shown in Fig. 2, the thickness of the elastic layer is chosen 

as the fundamental characteristic length. The thickness of 

the FGM layer is set to the same as that of the elastic layer 

ℎ2 = ℎ1 . In theoretical analysis, the elastic layer, FGM 

lamina and half-plane substrate are all infinite in the 

horizontal dimension. Convergence tests demonstrate that 

for half-lengths longer than 20 times of ℎ1, FE analysis 

results are unaffected. The height of the substrate is also 

taken as 20ℎ1 . The surface traction is prescribed as 

uniformly distributed pressure on the upper surface of the 

elastic layer. 

One of the key difficulties in the FE modeling of FGMs 

lies in the way how to handle the inhomogeneous 

distribution of material properties, since they are typically 

treated as constants in individual elements. In the 

calculation of the stress field around a cylindrical crack 

embedded in a cylindrical shell, whose Young’s modulus 

and Poisson’s ratio are assumed to vary linearly between 

those of an inscribed solid cylinder and those of a 

surrounding substrate, Itou and Shima (1999) chose to 

divide the interfacial cylindrical layer into three sublayers. 

Each sublayer was assigned distinct but constant elastic 

constants. In a similar fashion, we choose to divide the 

FGM layer into ten sublayers of equal thickness. As an 

example, Table 1 tabulates the values of Young’s modulus 

in each of the ten sublayers, evaluated from Eq. (1) at 

sublayer lower surfaces with 𝜇1 = 84 GPa. For 𝜈 = 0.25 

( 𝜅 = 2  for plane strain), the corresponding Young’s 

modulus reads 𝐸1 = 210 GPa, approximately the value of a 

typical steel component. In addition, the modulus of 

elasticity of the substrate is set to the same value as that in 

the homogeneous layer for the referential model (𝜇3 = 𝜇1). 
Furthermore, to remove the discontinuity of stresses at the 

interfaces between each pair of neighboring sublayers, the 

stresses at any node lying on sublayer interfaces are 

smoothened as the average of those obtained in four 

surrounding elements. 
Another key step in the FE analysis of the present 

problem is the definition of contact. At the interface of 
receding contact, the stiffer one between the FGM layer and 
the substrate is always chosen as the master surface. The 
other one is called the slave surface. ABAQUS/Standard 
provides two discretization methods for defining contact, 
i.e. node-to-surface and surface-to-surface. In the former 
mode, master surface nodes are allowed to penetrate into 
the slave surface, but not vice versa. In this work, we 
adopted the surface-to-surface mode to define contact, in 
which the distance between the master and slave surface is 
constantly checked against a predefined (default) value. 
Two surfaces are artificially bonded if their distance 
becomes less than the tolerance. Otherwise, either a gap still 
exists or penetration has occurred. For larger tolerances, 
penetration is less likely to happen. However, both the 
computational cost and even the convergence can be 
threatened. Finally, in sliding formulation finite sliding was  
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Table 2 Validation of the semianalytical solution algorithm 

against existing results for the case of a concentrated 

surface load (𝑎 ℎ⁄ = 0.01) , with reference to the 

degenerated model given in El-Borgi et al. (2006) 

𝛽ℎ2 𝑏 ℎ2⁄  Error (El-Borgi et al. 2006) Error (present) 

-1 1.1778 2.0E-07 7.44E-05 

0.001 1.3243 2.0E-07 9.24E-06 

1 1.6026 2.0E-07 7.16E-06 

 
 

assumed between the master and slave surfaces such that 
the extent of contact can be instantaneously receded with 
the application of increasing indentation loading. 

 

 

4. Results and discussion 
 

4.1 Comparison with literature results 
 

It is instructive to first validate the proposed 

semianalytical solution algorithm against available 

literature results. The model investigated in the present 

work, as shown in Fig. 1, can be viewed as an extension to 

the one solved in El-Borgi et al. (2006). They calculated the 

receding contact half-length and contact pressure between 

an FGM layer of finite thickness h and a half-plane 

substrate, under the application of either a concentrated 

surface load, approximated by the uniform traction 𝑎 ℎ⁄ =
0.01, or uniformly distributed surface tractions (𝑎 ℎ⁄ =
1, 2, 4). The parameter a assumes the same meaning as in 

the present study, namely the half-length of the applied 

surface loads. It is seen that the model shown in Fig. 1 

reduces to the degenerated one as studied in El-Borgi et al. 

(2006) when the homogeneous elastic layer is absent 
(ℎ1 = 0) and changing the variable ℎ2 → ℎ1. 

The first three columns of Table 2 are directly adapted 

from the Table 1 of El-Borgi et al. (2006) for the particular 

case of a concentrated surface load, roughly approximated 

by the uniformly distributed surface traction with 𝑎 ℎ⁄ =
0.01. Since the mechanical model of this type neglects any 

size effects that may appear at the nanoscale (Mi 2017), it is 

more convenient to perform the theoretical calculation 

under a dimensionless framework, i.e. Eqs. (19a-b). For this 

reason, the resultant force of the nondimensionalized 

surface traction is always kept a constant: 

∫ (ℎ𝑝(𝑎𝑠) 𝑃⁄ )𝑑𝑠
𝑎 ℎ⁄

−𝑎 ℎ⁄
= ∫ �̅�(𝑠)𝑑𝑠

𝑎 ℎ⁄

−𝑎 ℎ⁄
= 1 . The fourth 

column represents the residual error of the force balance 

condition (19b), obtained in the present study by 

substituting the receding contact half-length (second 

column of Table 2) into Eqs. (19a), solving for the receding 

contact pressure q, and evaluating the absolute difference 

between two sides of (19b). Instead of directly comparing 

the receding contact parameters obtained in the present 

study and those found in the literature, this means of 

validation provides a more effective evaluation on the 

accuracy of the developed solution algorithm. In view of 

the data tabulated in Table 2, it can be concluded that 

excellent agreement has been achieved and thus the solution 

algorithm developed in previous sections are validated. 

4.2 Comparison between semi analytical solution and 
FE results 
 

In this subsection, we present an analytical and FE 

comparative study on the receding contact stress and 

contact half-length at the FGM-substrate interface, as 

functions of the inhomogeneity index 𝛽ℎ2 defined for the 

FGM layer and the relative distribution range of the surface 

traction 𝑎 ℎ1⁄ . Although the semianalytical analysis can be 

performed within the dimensionless framework, FE 

modeling requires a concrete mechanical model. The 

geometry of the FE model is constructed on the basis of the 

referential model discussed in Section 3: the thicknesses 

ℎ2 = ℎ1 = 1mm, the shear moduli 𝜇3 = 𝜇1 = 84 GPa, the 

resultant force 𝑃 = 1000N, Poisson’s ratio 𝜈 = 0.25, and 

Kolosov’s conatant 𝜅 = 2 for plane strain condition. For a 

given ratio 𝑎 ℎ1⁄ , the surface traction applied on the FE 

model always satisfies the condition  

∫ (ℎ1𝑝(𝑎𝑠) 𝑃⁄ )𝑑𝑠
𝑎 ℎ⁄

−𝑎 ℎ⁄
= ∫ �̅�(𝑠)𝑑𝑠

𝑎 ℎ⁄

−𝑎 ℎ⁄
= 1 . Therefore, the 

expression for a uniform surface traction reduces to: 

𝑝(𝑥) = 𝑃 (2𝑎)⁄ , |𝑥| ≤ 𝑎  representing a line force of 

constant intensity. 

Figs. 3 through 5 show the distribution of the 

dimensionless contact stress at the FGM-substrate 

interface due to a concentrated surface load 𝑎 ℎ1⁄ = 0.01, a 

uniform surface traction 𝑎 ℎ1⁄ = 1 , and 𝑎 ℎ1⁄ = 2 , 

respectively. For each loading condition, a soft (𝛽ℎ2 =
−1), a nearly homogeneous (𝛽ℎ2 = 0.001), and a hard 
(𝛽ℎ2 = 1)  FGM layer are considered. Both the 

semianalytical solution (solid line) and the FE modeling 

results (black dots) are resented in the figures. As 

mentioned in Section 3, meshes with finer elements (0.1 

mm) were used for the region close to the receding contact 

and were evenly ramped to coarser elements (0.5 mm) 

toward the remote boundaries of the model. For the case of 

a concentrated load (Fig. 3), even finer meshes (0.01 mm) 

have to be used for a small domain immediately beneath the 

loading area. Except the surface traction and the 

inhomogeneity index, the other parameters are all kept as 

constants, as explained above. 

It is seen that the analytical solution and FE modeling 

results are able to validate against each other with a 

sufficient degree of accuracy. For all three surface tractions 

considered in this subsection, FE modeling slightly 

underestimates the level of contact stresses near the center 

and both perimeters of the area of receding contact. In other 

regions, both solutions are found in perfect agreement. It 

should also be noted that while the analytical solution is 

able to accurately predict the contact size up to three 

significant figures, FE modeling is much less competent, 

due to the discrete nature of FE method. Table 3 compares 

the receding contact half-lengths obtained by the semi 

analytical solution and FE analysis with two typical element 

sizes implemented in the finely meshed region, for the nine 

cases studied in Figs. 3 through 5. To be specific, the 

accuracy of FE analysis results is limited by the size of the 

plane strain elements adopted in the simulation. 

Consequently, when FE modeling is employed as a means 

of analyzing contact problem one should focuses on the 

pressure distribution instead of the contact size. 
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Fig. 3 Distribution of the receding contact stress at the 

FGM-substrate interface under the application of a 

concentrated surface load ( 𝑎 ℎ1⁄ = 0.01 , ℎ2 ℎ1⁄ = 1 , 

𝜇3 𝜇1⁄ = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1) 

 

 

Fig. 4 Distribution of the receding contact stress at the 

FGM-substrate interface under the application of a 

uniformly distributed surface traction (𝑎 ℎ1⁄ = 1, ℎ2 ℎ1⁄ =

1, 𝜇3 𝜇1⁄ = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1) 

 

 

Irrespective of the distribution property of surface 

tractions, the peak contact stress in Figs. 3-5 is always 

found at the center of the receding contact area and 

monotonically drop to zero at both perimeters. Under the 

application of a given surface traction, the peak contact  

 

 

Fig. 5 Distribution of the receding contact stress at the 

FGM-substrate interface under the application of a 

uniformly distributed surface traction (𝑎 ℎ1⁄ = 2, ℎ2 ℎ1⁄ =

1, 𝜇3 𝜇1⁄ = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1) 

 

 

stress decreases with increasing FGM inhomogeneity index. 

The contact length, on the other hand, behaves an 

increasing function of the FGM inhomogeneity index. This 

observation is actually dictated by the force balance 

condition (13), since the area under any normalized stress 

curve must be equal to unity. Intersecting among the three 

curves in any plot are therefore inevitable. 

A comparison among curves with the same 

inhomogeneity index in Figs. 3-5 reveals that the peak 

contact stress appears a decreasing function of the length 

scale ratio 𝑎 ℎ1⁄ . For contact length, the opposite 

conclusion is true. For the three types of surface tractions 

studied Figs. 3-5, the changes in both the peak stress and 

contact length are quite obvious, implying that the thickness 

of the composite laminate (ℎ1 + ℎ2) are far shorter than 

enough to make the Saint-Venant’s principle come into 

effect. As a result, both the contact pressure distribution and 

contact length must be determined on purpose for a 

particular surface load. 

 

4.3 Semianalytical analysis results 
 

Since the receding contact length can only be accurately 

captured in the theoretical modeling of the receding contact 

problem, this subsection devotes to the semianalytical 

analysis of the contact halflength 𝑏 as a function of the 

surface traction property 𝑎 ℎ1⁄ , FGM inhomogeneity index   

Table 3 Comparison of the receding contact half-length 𝑏 obtained by the semianalytical analysis and FE modeling 

with two typical element sizes (0.1 mm and 0.05 mm), for nine combinations of surface loads and FGM inhomogeneity 

index 

𝑎 ℎ1⁄  
𝛽ℎ2 = −1 𝛽ℎ2 = 0.001 𝛽ℎ2 = 1 

Anal. FE(0.1) FE(0.05) Anal. FE(0.1) FE(0.05) Anal. FE(0.1) FE(0.05) 

0.01 2.3620 2.4 2.35 2.6540 2.7 2.65 3.1112 3.1 3.10 

1 2.5827 2.6 2.60 2.8715 2.9 2.85 3.3031 3.3 3.30 

2 3.2100 3.2 3.20 3.4597 3.5 3.45 3.8340 3.8 3.85 
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Fig. 6 Variation of the receding contact half-length as a 

function of the FGM inhomogeneity index for three types of 

surface loads (ℎ2 ℎ1⁄ = 1, 𝜇3 𝜇1⁄ = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1) 

 

 

𝛽ℎ2, shear moduli ratio 𝜇3 𝜇1⁄ , and thickness ratio ℎ2 ℎ1⁄ . 

In view of the force balance condition (13), the other 

contact parameter, the peak contact pressure 𝑞𝑚𝑎𝑥  , can be 

qualitatively inferred from its inverse relation with 𝑏. 

Fig. 6 shows the variation of the receding contact half-

length as a function of the FGM inhomogeneity index in the 

continuous interval [−3,1], for three types of surface loads. 

It can be seen that for a hard FGM layer (𝛽ℎ2 > 0), the 

contact half-length behaves an increasing function for all 

three surface tractions, implying that a hard FGM layer 

helps to expand the area of receding contact. Moreover, the 

harder the FGM layer the steeper the contact half-length 

curve becomes. Consequently, hard FGM layers should be 

employed provided that the peak contact stress is of the 

primary concern. For soft FGM layers, the situation is more 

complicated. The dependence of contact half-length on the 

FGM inhomogeneity index is not monotonic. The minimum 

contact half-length occurs in the vicinity of 𝛽ℎ2 = −2. The 

specific value at the point of inflection depends on the 

extent of the applied surface traction. In the less likely 

occasion where a small contact size is desired a negative 

FGM inhomogeneity index close to 𝛽ℎ2 = −2  is most 

ideal. 

The elastic stiffness of the half-plane substrate is 

another important factor that affects the property of 

receding contact. In Fig. 7, the receding contact half-length 

is plotted against different shear moduli ratios between the 

substrate and the elastic layer. As before, three FGM 

inhomogeneity indices were considered in the analysis. The 

receding contact length behaves a monotonically decreasing 

function of the ratio 𝜇3 𝜇1⁄  in the studied range, 

independent on the FGM layer stiffness. The receding 

contact half-length 𝑏 narrows about 0.8 times of the elastic 

layer thickness ℎ1 when the half-plane changes from a soft 

(𝜇3 = 0.5𝜇1) substrate to a hard (𝜇3 𝜇1⁄ ) one. The peak 

contact stress, on the other hand, can be expected to 

increase with the shear moduli ratio 𝜇3 𝜇1⁄ . The function of 

the FGM layer is the same as in the previous analysis. Hard 

FGM layers are capable of elevating the overall level of 

contact size in the entire interval of shear moduli ratio. 

 

Fig. 7 Variation of the receding contact half-length as a 

function of the shear moduli ratio between the halfplane 

substrate and the homogeneous layer for three levels of 

FGM inhomogeneity index ( 𝑎 ℎ1⁄ = 1 , ℎ2 ℎ1⁄ = 1 , 

∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1) 

 

 

Fig. 8 Variation of the receding contact half-length as a 

function of the thickness ratio between the FGM and 

homogeneous layer for three levels of FGM inhomogeneity 

index (𝑎 ℎ1⁄ = 1, 𝜇3 𝜇1⁄ = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1) 

 

 

We further studied the impact of the thickness ratio 

between the FGM and the elastic layer on the contact half-

length for the uniform surface traction 𝑎 ℎ1⁄ = 1 (Fig. 8). 

As usual, three inhomogeneity indices were taken into 

account. The other parameters assume the same values as 

those defined for the referential model. For all three cases, 

the receding contact size appears nearly a linear function of 

the thickness ratio. This behavior implies that increasing the 

thickness ratio helps to expand the extent of receding 

contact and thus to reduce the peak contact stress. The rate 

of increase of the receding contact size, however, is a strong 

increasing function of the FGM inhomogeneity index. For 

the limiting case of ℎ2 = 0, the FGM layer is absent and 

therefore all three curves intersect at the same point as 

expected. 
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Fig. 9 Distribution of the nondimensionalized displacement 

vector 𝐮 ℎ1⁄  near the area of receding contact. The black 

dot at the FGM-substrate interface denotes the boundary of 

the receding contact. 𝑎 ℎ1⁄ = 1, ℎ2 ℎ1⁄ = 1, 𝜇3 𝜇1⁄ = 1, 

𝛽ℎ2 = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1 

 

 

Fig. 10 Distribution of the nondimensionalized vertical 

displacement 𝑢𝑦 ℎ1⁄  near the area of receding contact. The 

black dot at the FGM-substrate interface denotes the 

boundary of the receding contact. 𝑎 ℎ1⁄ = 1, ℎ2 ℎ1⁄ = 1, 

𝜇3 𝜇1⁄ = 1, 𝛽ℎ2 = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1 

 
 
4.4 FE analysis results 

 

Although FE analysis fails to accurately predict the 

receding contact half-length due to the limit of element size, 

it is able to generate the full-field displacements and 

stresses by a one-time calculation. In contrast, the 

determination of elastic field at regions other than the 

interface of receding contact encounters additional, often 

intimidating, challenges in a semi analytical solution. In this 

subsection, we present the FE results performed with 

respect to the referential model defined in Section 3: ℎ2 =
ℎ1 = 1 mm ,  𝜇3 = 𝜇1 = 84 GPa ,  𝑃 = 1000 N ,  and ν =
0.25 (𝜅 = 2 for plane strain condition). In addition, the 

FGM inhomogeneity index is fixed as 𝛽ℎ2 = 1. The 

indentation load applied on the top surface of the elastic 

layer is a uniform surface traction of constant intensity 

 

Fig. 11 Distribution of the nondimensionalized normal 

stress (ℎ1 𝜎𝑦𝑦 𝑃⁄ ) near the area of receding contact. The 

black dot at the FGM-substrate interface denotes the 

boundary of the receding contact. 𝑎 ℎ1⁄ = 1, ℎ2 ℎ1⁄ = 1, 

𝜇3 𝜇1⁄ = 1, 𝛽ℎ2 = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1 

 

 

Fig. 11 Distribution of the nondimensionalized normal 

stress (ℎ1 𝜎𝑦𝑦 𝑃⁄ ) near the area of receding contact. The 

black dot at the FGM-substrate interface denotes the 

boundary of the receding contact. 𝑎 ℎ1⁄ = 1, ℎ2 ℎ1⁄ = 1, 

𝜇3 𝜇1⁄ = 1, 𝛽ℎ2 = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1 

 

 

 𝑝 = 𝑃 (2𝑎)⁄ , where 𝑎 = ℎ1 . The rest of the the top 

surface is traction free. All FE models were meshed with 

the same scheme as the one used for producing Fig. 4. 

Fig. 9 represents the vector plot of the plane 

displacement field in the vicinity of the region of receding 

contact. For better illustrating the results, only a portion of 

the whole model is shown. Both the magnitude and 

direction of the displacements are plotted, illustrating the 

receding contact behavior occurring at the FGM layer-

substrate interface under the application of the uniform 

surface traction. A displacement vortex is clearly observed 

around a point at the elastic-FGM layer interface, roughly 

twice the contact half-length measured from the symmetry 

axis. Across the center of the vortex, the direction of the 

displacement vector is reversed. For regions in 𝑥 > 2𝑏, the 

composite laminate is obviously deflected upward. The 

farther a field point is the larger the deflection becomes,  
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Fig. 12 Distribution of the nondimensionalized shear stress 

(ℎ1 𝜎𝑦𝑦 𝑃⁄ ) near the area of receding contact. The black 

dot at the FGM-substrate interface denotes the boundary of 

the receding contact. 𝑎 ℎ1⁄ = 1, ℎ2 ℎ1⁄ = 1, 𝜇3 𝜇1⁄ = 1, 

𝛽ℎ2 = 1, ∫ �̅�(𝑠)𝑑𝑠
𝑎 ℎ1⁄

−𝑎 ℎ1⁄
= 1 

 

 

reflecting the receding nature of the composite laminate. 

Nonetheless, most of the displacements were contributed by 

rigid-body movements. A moderate level of downward 

deflection is found in regions near the area of receding 

contact. The major contribution comes from strain 

deformation, with the maximum value lying directly along 

the axis of symmetry. The displacement field in the 

substrate becomes negligibly small in the domain far away 

from the contact area, as denoted by those blue arrows in 

the lower-right corner of Fig. 9. Arguments regarding the 

direction of the displacements can also be confirmed from 

the nephogram of vertical displacement component, as 

shown in Fig. 10. The center of the displacement vortex is 

clearly a critical point across which the vertical 

displacement reverses its sign. 

Figs. 11 and 12 show the distribution of normal (𝜎𝑦𝑦) 

and shear (𝜎𝑥𝑦)  stress components near the area of 

receding contact, respectively. As mentioned in Section 3, 

in FE analysis the FGM layer is modeled by ten sublayers, 

each assigned by a distinct but constant modulus of 

elasticity (Table 1). As a result, stresses inevitably lose 

continuity across the interfaces separating individual 

sublayers. In the post-processing of FE results, the stress 

value of an interfacial node is assigned as the average value 

of four neighboring quadrilateral elements that share the 

node. In this way the nodal stress is smoothened and the 

continuity of stresses at the sublayer interfaces are 

guaranteed. 

As can be expected, maximum normal stresses occur 

along the axis of symmetry, particularly in the 

inhomogeneous composite. For regions away from the 𝑦 

axis, the normal stress component quickly drop to zero (Fig. 

11). The shear stress, on the other hand, shows a drastically 

different distribution. For the composite laminae, 

significant shear stresses appear in regions approximately 

below the perimeter of the applied uniform surface traction. 

The shear stress component in the substrate is most 

significant in the area directly underneath the boundary of 

the receding contact. This difference should be instructive, 

provided that the shear strength of such a multilayered 

strucure is of the primary concern. 

 

 

5. Conclusions 
 

In this paper, we performed a comparison study on the 

receding contact between an inhomogeneous laminate and a 

half-plane substrate, pressed against each other by uniform 

surface tractions. The composite laminate is composed of a 

homogeneous elastic and an FGM layer, perfectly bonded 

along their interface. The receding contact pressure and 

contact length were solved by both a semianalytical 

approach and an FE modeling implemented in commercial 

software ABAQUS/Standard. By employing the standard 

Fourier transform technique, the former method converted 

the governing equations and boundary conditions of the 

problem into a singular integral equation which is then 

numerically integrated by Gauss-Chebyshev quadrature. In 

FE modeling, the FGM strip was modeled by a number of 

sublayers with distinct and constant modulus of elasticity 

and the nodal stresses on sublayer interfaces were averaged 

over surrounding elements in post-processing. In addition, 

the surface-to-surface discretization method and finite 

sliding formulation were adopted. A few observations and 

conclusions can be inferred from the extensive parametric 

studies implemented in both methods. 

• The semianalytical solution and FE analysis results 

successfully validated against each other with high 

accuracy, indicating the effectiveness of both the 

semianalytical solution algorithm and the proposed FE pre- 

and post-processing techniques. 

• For the three-layer structure proposed in Fig. 1, the 

most important contact parameter, namely the peak 

pressure, behaves a decreasing function of the FGM 

inhomogeneity index in the interval [−1 ≤ 𝛽ℎ2 ≤ 1]. The 

opposite is true for the receding contact length. A point of 

inflection, however, is found near  𝛽ℎ2 = −2. In addition, 

soft substrates, thick FGM layers and widening the 

coverage of statically equivalent surface tractions all help to 

reduce the peak contact pressure. 

• The semianalytical solution algorithm is able to 

accurately predict the receding contact parameters, 

particularly the contact length, whereas FE modeling is 

good at determining the panoramic elastic field of the whole 

structure without additional efforts. The interesting course 

of contact loss between the composite laminate and the 

half-plane substrate is revealed by a vector plot of the 

displacement field. 

The present study primarily focuses on the comparative 

study of the receding contact in a concrete three-layer 

inhomogeneous structure. Future work could entail the 

functional dependence of receding contact behavior in 

multilayered structures on more contributory factors such as 

the position of the FGM layer, substrates of finite thickness, 

friction, three-dimensional geometry, and the experimental 

validation of theoretical analysis and FE modeling. 
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Appendix A 
 

This appendix outlines the expressions of 𝑚1, ⋯ ,𝑚4 

and 𝑛1, ⋯ , 𝑛4 introduced in Eqs. (5) and (6). 

𝑚1(𝜆) =
1

2

(

 
 
𝛽 +√𝛽2 + 4𝜆2 − 4𝑖𝛽𝜆√

3 − 𝜅

1 + 𝜅

)

 
 

 (22a) 

𝑚2(𝜆) =
1

2

(

 
 
𝛽 −√𝛽2 + 4𝜆2 − 4𝑖𝛽𝜆√

3 − 𝜅

1 + 𝜅

)

 
 

 (22b) 

𝑚3  and 𝑚4 are complex conjugates of 𝑚1  and 𝑚2 , 

respectively, and 

 

𝑛𝑘(𝜆) =
(𝜅 − 1)𝑚𝑘

2 − 𝛽(𝜅 − 1)𝑚𝑘 − 𝜆
2(𝜅 + 1)

𝑖𝜆(2𝑚𝑘 − 𝛽(𝜅 − 1))
,

𝑘 = 1,2,3,4 
(23) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 
 

In this appendix, we present the solutions to unknown 

functions C1, ⋯ , C10 appeared in the Fourier transforms of 

displacements and stresses. 

𝐶𝑘(𝜆) = (−1)
𝑘 (
𝐷1𝑘
𝐷
�̃� +

𝐷7𝑘
𝐷
�̃�) , 𝑘 = 1,⋯ ,8 (24a) 

𝐶9(𝜆) =
(2|𝜆|ℎ2 − 1 + 𝜅)𝜇1𝑒

(|𝜆|+𝛽)ℎ2

4𝑖𝜆𝜇3(𝜅 − 1)
�̃� (24b) 

𝐶10(𝜆) =
𝜇1𝑒

(|𝜆|+𝛽)ℎ2

2𝑖𝜇3(𝜅 − 1)
sgn(𝜆)�̃� (24c) 

where 

�̃�(𝜆) =
1

2𝜋𝜇1
∫ 𝑝(𝑡)𝑒𝑖𝑡𝜆𝑑𝑡
𝑎

−𝑎

 (25a) 

�̃�(𝜆) =
𝜅 − 1

2𝜋𝜇1𝑒
𝛽ℎ2

∫ 𝑞(𝑡)𝑒𝑖𝑡𝜆𝑑𝑡
𝑏

−𝑏

 (25b) 

and 𝐷𝑗𝑘  is the determinant of the submatrix of 

𝐷 = [𝐷′ 𝑂
𝑂 𝐷′′

] (26) 

obtained by removing its 𝑗𝑡ℎ row and 𝑘𝑡ℎ column. In the 

block matrix 𝐷 , both submatrices 𝑂  represent a 2 × 4 

zero matrix and 

 

(27a) 

 

(27b) 

with 

∆𝑘= −𝑖𝜆(3 − 𝜅) + (1 + 𝜅)𝑚𝑘𝑛𝑘 , 𝑘 = 1,⋯ ,4 (28a) 

𝛬𝑘 = 𝑚𝑘 − 𝑖𝜆𝑛𝑘, 𝑘 = 1,⋯ ,4 (28b) 
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