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1. Introduction 
 

Normally, the interest of researches in functionally 

graded materials (FGMs) has intensified considerably since 

their first introduction in mid-1980s by Japanese material 

scientists (Koizumi 1993). 

The FGMs are part of a relatively new trend in materials 

science. They are advanced composite materials with 

gradual and continuous variation in the volume fractions of 

each constituent, generating changes in the properties of the 

materials, eliminating discontinuities at the interfaces, while 

the characteristics of the constituent materials are 

preserved. They can thus combine the properties of the two 

totally different constituents without one making 

concessions for the benefit of the other. This new class of 

materials has attracted particular attention and interest in 

the last three decades. Their use is increasing in the 

aeronautics, aerospace, civil engineering and many other 

sectors where they can serve as thermal barriers to their rich 

ceramic composition. From the above, it is therefore 

necessary to develop accurate theories to describe and  
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understand the behavior of the structures made from these 

materials.  

Several FGM plate analysis were performed according 

to the classical plate theory (CPT), first-order shear 

deformation theory (FSDT) and higher order plate theory 

(HSDT). 

The most fundamental deformation theory is classical 

plate theory (CPT), the latter does not give precise results in 

the case of thick or relatively thick plates because it 

neglects the effects of shear deformation. On the other hand  

in the case of thin plates, it gives more or less precise 

results. 

Using CPT, Chi and Chung (2006a, 2006b) have 

developed analytical solution for simply supported FG 

plates subjected to mechanical loads. Chi and Chung (2006) 

presented an analytical formulation for simply supported 

rectangular FG plates subjected to transverse loading. Three 

different distribution of the volume fraction across the 

thickness were used. 

The FSDT was developed to overcome the limitation of 

the CPT. It gives acceptable results for moderately thick 

plates. On the other hand, it requires the introduction of a 

shear correction factor due to its violation the equilibrium 

conditions at the top and bottom surfaces of the plate. This 

factor corrects the unrealistic variation of transverse shear 

stresses and shear strain through the thickness (Fekrar et al. 

2014). Bellifa et al. (2016) have presented a new first-order 

shear deformation theory for bending and dynamic 
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behaviors of functionally graded plates. The number of 

unknowns is the least one comparing with the traditional 

first-order shear deformation theories. Ouled youcef et al. 

(2018) have developed an analytic non-classical model for 

the free vibrations of nano beams accounting for surface 

stress effects. 

In order to avoid the use of a shear correction factor, 

several Higher order Shear Deformation Theories (HSDT) 

have been developed and proposed. The HSDT theories can 

be developed in two ways: polynomial or non-polynomial. 

In the polynomial case, the effects of shear deformations are 

taken into account using a Taylor series development 

(Gupta and Talha 2017). These theories are laborious 

because they contain several unknowns (Gupta and Talha 

2017). For example, Reddy (2000) have developed a theory 

with seven unknowns and Talha and Singh (2010, 2011) 

with thirteen. 

In the case of the non-polynomial shear deformation 

theory, the number of unknowns is lower than the previous 

ones. We can cite as an example, Akavci (2014) present a 

five unknowns hyperbolic function and Neves et al. (2012) 

who proposed a hyperbolic theory with six unknowns. 

Also, many papers are published concerning with 

analysis of FGM structures based on HSDTs (see Bourada 

et al. 2012, Bousahla et al. 2014, Bennoun et al. 2016, 

Bellifa et al. 2016, Ait atmane et al. 2015, Bourada et al. 

2015 and Merazi et al. 2015). Recently, Tounsi and his co-

workers (Hadji et al. 2011, Houari et al. 2011, Abdelaziz et 

al. 2011, Merdaci et al. 2011, Bouderba et al. 2013 and 

Taibi et al. 2015, Ait Amar Meziane et al. (2014)) have 

developed a new four variable refined plate theory which 

involves only four unknown function for bending response, 

thermo-mechanical bending response, buckling and free 

vibration of simply supported FGM sandwich plate. 

Boukhari et al. (2016) have used the same theory to analyze 

the wave propagation of an infinite functionally graded 

plate in the presence of thermal environments. Using a new 

displacement field which includes undetermined integral 

variables, Bellifa et al. (2017) have proposed a simple 

refined theory for buckling analysis of functionally graded 

plates. Furthermore, Tounsi et al. (2016) presented a new 3-

unknowns non-polynomial plate theory for buckling and 

vibration of FG sandwich plate. Houari et al. (2016) have 

used the same theory to study the bending and free 

vibration analysis of functionally graded (FG) plates. 

One of the key assumptions of FSDT and HSDT is that 

the transverse displacement through the thickness of the 

plate is constant. This led to neglect the thickness 

stretching. However, this assumption is inadequate for thick 

FGM plates. 

To remedy this problem and in order to take into 

account the effects of the deformations due to the 

stretching, theories called Quasi-3D have appeared. These 

theories are HSDTs in which the transverse displacement is 

expressed as a high order variation through the thickness of 

the plate, and hence, thickness-stretching effect is captured 

(Huu-Tai et al. 2014). 
Using a Quasi-3D shear deformation theory, Farzam-

Rad et al. (2016) have studied the bending response of 
FGM plate with five unknowns. The static and free 
vibration analysis of the FG plates was studied by Hebali et 

al. (2014) using theory with the same numbers of 
unknowns. Bessaim et al. (2013) have presented a new 
higher-order shear and normal deformation theory for the 
bending and free vibration analysis of sandwich plates with 
FG face sheets. Based on a layer-wise approach, Brischetto 
(2014) has developed a 3-D solution for free vibration of 
multilayered and sandwich plates and shells. Abualnour et 
al. (2018) have developed a new shear deformation theory 
including the stretching effect for free vibration of the 
simply supported functionally graded plates. Draiche et al. 
(2016) have presented a refined theory with stretching 
effect for static flexure analysis of laminated composite 
plates. Benchohra et al. (2018) proposed a new quasi-3D 
sinusoidal shear deformation theory for functionally graded 
(FG) plates.  

In order to model FGM precisely, it is essential to know 

the effective or bulk material properties as a function of 

individual material properties and geometry, in particular at 

micromechanics level. 

In recent years, different models have been proposed to 

estimate the effective properties of FGMs with respect to 

reinforcement volume fractions (Shen HS and Wang ZX 

(2012), Jha DK et al. (2013)). Consequently, several 

micromechanical models have been used to study and 

analyze the behavior of FGM structures under different 

loading conditions. We cite as an example the work of 

Gasik (1998) in which he proposed a micromechanical 

model to study FGMs with a random distribution of 

constituents. The FGM microstructures were idealized by 

homogeneous materials (sub-cells) with cubic inclusions. 

Each substring corresponded to a fixed volume. Thereafter, 

the elastic constants as well as the coefficient of thermal 

expansion calculated from its model were compared with 

those obtained from the Mori-Tanaka Voigt, and Kerner’s 

models. 

The effective linear thermal conductivity and linear 

elastic constants of FGM fiber reinforced composites have 

been determined by Ostoja-Starzewski et al. (1996) by 

means of a micromechanical model. 

Using an appropriate micromechanical model, Yin et al. 

(2004) and Yin et al. (2007) have determined the 

expressions of the linear coefficient of thermal expansion, 

the Young’s moduli and the Poisson’s ratio. 

The heat conduction and the thermo-elastic 

deformations of the FGM have been studied by Aboudi et 

al. (1996, 1999) and Pindera et al. (2002) from the higher 

order micromechanical models based on the method of 

cells. The FGMs studied had one, two, and three graded 

directions. 
This study presents a micromechanical model for 

predicting the bending response of FGM plate. A new 
quasi-3D shear deformation theory with only four 
unknowns and thickness-stretching effect is presented. The 
number of unknowns of the present theory is only four 
which less than the other shear and normal deformation 
theories where we find five, six or more variables. 
Micromechanical models are used to determine through-
thickness the effective material properties of FGMs with 
power-law function distributions of volume fraction of a 
simply supported FG plates. Using an analytical method, 
the governing equations are treated and the effects of Voigt, 
Reuss, LRVE, Tamura and Mori-Tanaka models on 
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deflection and stress of the FG plate are investigated. 
 

 

2. Effective properties of FGMs 
 

Unlike traditional microstructures, in FGMs the material 

properties are spatially varying, which is not trivial for a 

micromechanics model (Jaesang and Addis 2014). 

A number of micromechanics models have been 

proposed for the determination of effective properties of 

FGMs. In what follows, we present some micromechanical 

models to calculate the effective properties of the FG plate. 
 

2.1 Voigt model 
 

The Voigt model is relatively simple; this model is 

frequently used in most FGM analyses estimates Young’s 

modulus E of FGMs as (Mishnaevsky 2007, Zimmerman 

1994) 

( ) ( )c c m cE z E V E 1 V= + −
 

(1) 

 

2.2 Reuss model 
 

Reuss assumed the stress uniformity through the 

material and obtained the effective properties as 

(Mishnaevsky 2007, Zimmerman 1994) 

( )
( )

c m

c c m c

E E
E z

E 1 V E V
=

− +
 

(2) 

 

2.3 Tamura model 
 

The Tamura model uses actually a linear rule of 

mixtures, introducing one empirical fitting parameter 

known as “stress-to-strain transfer” (Gasik 1995, Zuiker 

1995) 

1 2

1 2

q
 −

=
 − 

 
(3) 

Estimate for q=0 correspond to Reuss rule and with 

q=100 to the Voigt rule, being invariant to the consideration 

of with phase is matrix and which is particulate. The 

effective Young’s modulus is found as 

( ) ( )

( ) ( )
c m c c c m

c c c c m

(1 V ) E q E V E q E
E(z)

(1 V ) q E V E q E

− − + −
=

− − + −
 

(4) 

 

2.4 Description by a representative volume element 
(LRVE) 
 

The local representative volume element (LRVE) is 

based on a “mesoscopic” length scale which is much larger 

than the characteristic length scale of particles 

(inhomogeneities) but smaller than the characteristic length 

scale of a macroscopic specimen (Ju and Chen 1994). The 

LRVE is developed based on the assumption that the 

microstructure of the heterogeneous material is known. The 

input for the LRVE for the deterministic micromechanical 

framework is usually volume average or ensemble average 

of the descriptors of the microstructures. 

Young’s modulus is expressed as follows by the LRVE 

method (Akbarzadeh et al. 2015) 

( ) c

m
3

mc

c

V 1
E z E 1 , FE

EFE V 1
E

 
= + = 

 −  −

 

(5) 

 

2.5 Mori-Tanaka model 
 

The locally effective material properties can be provided 

by micromechanical models such as the Mori–Tanaka 

estimates. This method based on the assumption that a two-

phase composite material consisting of matrix reinforced by 

spherical particles, randomly distributed in the plate. 

According to Mori-Tanaka homogenization scheme, the 

effective Bulk Modulus (K) and the effective shear modulus 

(G) are given by (Mori and Tanaka 1973, Benveniste 1987) 

( )

( ) ( ) ( )

( )

( )( ) ( )

c c m

m

c c m m c

c c m

m

c c m m 1

V K K
K(z) K

1 1 V 3 K K / 3K 4K

V G G
G(z) G

1 1 V G G / G f

−
= +

+ − − +

−
= +

+ − − +
 

(6a) 

And 

m m m

1

m m

G (9K 8G )
f

6(K 2G )

+
=

+
 

(6b) 

The overall modulus of elasticity 

9K(z)G(z)
E(z)

3K(z) G(z)
=

+  

(6c) 

The effective Young’s modulus (E) in terms of 

constituents is given by (Belabed et al. 2014, Abualnour et 

al. 2018) 

( )
( )( )( ) ( )

c

m c m

c c m

V
E(z) E E E

1 1 V E / E 1 1 / 3 3

 
= + −   + − − +  −    

(6d) 

In all models outlined above, Ei, Vi (i=c,m) are the 

Young’s modulus and the volume fraction of the phase 

material respectively. The subscripts c and m refer to the 

ceramic and metal respectively. The volume fractions of the 

ceramic and metal phases are related by Vc+Vm=1, and Vc is 

expressed as 

c

z
V 0,5 ,

h

 
= +  
 

p

p 0

 

(7) 

The effective mass density ρ is given by the rule 

mixtures as (See Bessaim et al. 2013, Benachour et al. 

2011, Yaghoubi and Torabi 2013, Tounsi et al. 2013, Ould 

Larbi et al. 2013), regardless of the utilized 

micromechanical models 

c c m mV V =  +
 

(8) 
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Fig. 1 Geometry of rectangular FG plate and coordinates 
 

 

3. Kinematics 
 

Consider a rectangular FG plate, with total thickness h, 

length a, and width b, referred to the rectangular Cartesian 

coordinates (x, y, z), as shown in Fig. 1. The plate is 

subjected to a transverse distributed load q(x,y). 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at (x, 

y, ±h/2) on thes outer (top) and inner (bottom) surfaces of 

the plate, is given as follows 

( ) ( )

( ) ( )

( )

0

0

, , ,

, , ,

, , , ( )

 
= − +

 

 
= − +

 

= +

b s

b s

b s

w w
u x y z t u z f z

x x

w w
v x y z t v z f z

y y

w x y z t w g z w
 

(9) 

With 

2

2

4 1 ( )
( ) 1 , ( )

123

  
= − = 

   

z f z
f z z g z

zh
 

(10) 

Where u0(x,y), v0(x,y), wb(x,y) and ws(x,y) are the four 

unknown displacement functions of the middle surface of 

the plate. 

The kinematic relations can be obtained as follows 

( )

( ) ( )

0

0 0

0

0 0
'

0 0

, '( ) ,

      
             

= + + =       
       
              

         
= +     

         

x x xx

y y y y z z

xy xy xy xy

yz yz yz

xz xz xz

k

z k f z g z

k

f z g z

 
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  

  
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(11) 

where 

2

0
2

0

2
0 0

2

0

2
0 0

2

2

02

2 0

2
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s
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k
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k
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w
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w
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
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
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z s
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(12) 

4. Constitutive relations 
 

The linear constitutive relations are 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

    
    
    
    
   =  
    
    
    
        

x x

y y

z z

yz yz

xz xz

xy xy

Q Q Q

Q Q Q

Q Q Q

Q

Q

Q

 

 

 

 

 

 
 

(13) 

where ( x
, y

, z
, xy

, yz
, yx

) and ( x , y , 

z , xy
, yz

, yx
) are the stress and strain components, 

respectively. Using the material properties defined above, 

stiffness coefficients, Qij can be expressed as 

( )

( )( )

( )( )

( )

11 22 33

12 13 23

44 55 66

( ) 1
,

1 2 1

( )
,

1 2 1

( )

2 1

−
= = =

− +

= = =
− +

= = =
+

E z
Q Q Q

E z
Q Q Q

E z
Q Q Q



 



 


 

(14) 

 

 

5. Equations of motion 
 

Considering the static version of the principle of virtual 

work, the following expressions can be obtained 

(

) 0





+ + +

+ +  − =

 



x x y y z z xy xy

xz xz yz yz d dz q wd

       

    
 

(15) 

Where Ω is the top surface, q
 

is the distributed 

transverse load. 

Substituting Eqs. (11) and (13) into Eq. (15) and 

integrating through the thickness of the plate, we can obtain 





0 0
1 1 1 2 2 2

0 0 0 0 0
3 4 4 5 5

0
6 6 6 0





+ + + + +

+ + + + +

+ + + −  =





x x x y y y

z yz yz xz xz

xy xy xy

N M k P N M k P

R Q K Q K

N M k P d q wd

     

    

   
 

(16) 

The stress resultants N, M, P, Q and R are defined by 

( ) ( ) ( )

( ) ( ) ( )

( )

/2

/2

/2

'

/2

/2

/2

, , 1, , ( ) , 1, 2,6

, ( ), ( ) , 4,5

'( ) , 3

−

−

−

= =

= =

= =







h

i i i i

h

h

i i i

h

h

i i

h

N M P z f z dz i

K Q f z g z dz i

R g z dz i







 

(17) 
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The governing equations of equilibrium can be derived 

from eq. (16) by integrating the displacement gradients by 

parts and setting the coefficients where 

0 0, , ,b su v w w   
 zero. 

Thus, one can obtain the equilibrium equations 

associated with the present shear deformation theory 

61
0

6 2
0

22 2
61 2

2 2

22 2
61 2 4 4

2 2

5 5
3

: 0

: 0

: 2

: 2
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  

   
− − − + +

    

 
+ + − = −

 

b

s

NN
u

x y

N N
v

x y

MM M
w q

x yx y

PP P Q K
w

x y y yx y

Q K
R g z q

x x









 

(18) 

Using Eq. (13) in Eq. (17), the stress resultants of the 

sandwich plate can be related to the total strains by 

0 0

0 ' 0

0 0

' 0 ' 0

' 0 0

0 ' 0
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(20) 

By substituting Eqs. (19) into Eqs. (18), the equilibrium 

equations can be expressed in terms of displacements 
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6. Solution procedure 
 

The boundary conditions along the edges of the simply 

supported plate can be obtained as 

1 1 1

2 2 2

0,

0,

s
b s

s
b s

w
N M P v w w at x a

y
w

N M P u w w at x b
x


= = = = = = =




= = = = = = =
  

(22) 

To solve this problem, Navier presented the transverse 

mechanical loads q in the form of a double trigonometric 

series as 

0 sin( )sin( )q q x y =
 (23) 

Where q0 is constant, α = π/a, β = π/b. 

For the analytical solution of Eqs. (18), the Navier 

method is used under the specified boundary conditions. 

The displacement functions that satisfy the equations of 

boundary conditions (22) are selected as the following 

Fourier series 

( , ) cos( )sin( )

( , ) sin( )cos( )

( , ) sin( )sin( )

( , ) sin( )sin( )

   
   
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=   
   
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b b
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w x y W x y

w x y W x y

 

 

 

 
 

(24) 

By substituting Eqs. (24) and (23) into Eqs. (21), the 

following equation are obtained 

     =K Q
 

(25) 

Where {Δ}={U,V, Wb, Ws}t and {Q}={0,0,-q0,-

g(h/2)q0}t is the symmetric matrix given by 

 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

 
 
 =
 
 
 

a a a a

a a a a
K

a a a a

a a a a
 

(26) 

In which 
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(27) 

 

 

7. Numerical results and discussion 
 

In the present section, the effect of micromechanical 

models on bending analysis of FG plates using a new quasi- 

 

 

3D shear deformation theory is presented for investigation. 

In order to verify the accuracy of the present analysis, the 

results of this study were verified by comparing them with 

the various existing plate theories. The material properties 

used in the present study are: 

- Metal in bottom surface (Aluminium, Al): 
970 10ME =   N/m2; 0 3. = ; 2702M = kg/m3.  

- Ceramic in top surface (Alumina, Al2O3): 
9380 10CE =  ; N/m2; 0 3. = ; 3800C = kg/m3. 

For simplicity, the following non-dimensional 

parameters are used in the numerical examples 
3
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(28) 

Where 

x is in- plane longitudinal stress 

Table 1 Comparison of the dimensionless in-plane longitudinal stress x   and displacement w   for a FG square 

plate 

p Theory 
x (1/3) w

(0) 

a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100 

1 

Neves et al. (2011) 0.5925 1.4945 14.969 0.6997 0.5845 0.5624 

Ashraf and Zenkour (2013) 0.5944 1.4962 14.552 0.6828 0.5592 0.5459 

Present 

Voigt 0.5945 1.4965 14.557 0.6828 0.5592 0.5459 

Reuss 0.4664 1.2068 11.931 0.9950 0.7779 0.7421 

LRVE 0.5311 1.3566 13.323 0.8674 0.6944 0.6685 

Tamura 0.5252 1.3419 13.179 0.8634 0.6897 0.6637 

Mori-Tanaka 0.5000 1.2844 12.652 0.9188 0.7272 0.6971 

4 

Neves et al. (2011) 0.4404 1.1783 11.932 1.1178 0.8750 0.8286 

Ashraf and Zenkour (2013) 0.4321 1.1410 11.388 1.1001 0.8404 0.7933 

Present 

Voigt 0.4324 1.1416 11.395 1.1000 0.8404 0.7933 

Reuss 0.3552 0.9399 9.3895 1.3748 1.0285 0.9667 

LRVE 0.3601 0.9632 9.6600 1.2675 0.9424 0.8827 

Tamura 0.3690 0.9823 9.8338 1.2641 0.9449 0.8868 

Mori-Tanaka 0.3604 0.9577 9.5816 1.3112 0.9793 0.9192 

10 

Neves et al. (2011) 0.3227 1.1783 11.932 1.3490 0.8750 0.8286 

Ashraf and Zenkour (2013) 0.3154 0.8530 8.5853 1.3391 0.9806 0.9140 

Present 

Voigt 0.3156 0.8535 8.5914 1.3391 0.9806 0.9139 

Reuss 0.3525 0.9191 9.1335 1.5789 1.1972 1.1337 

LRVE 0.3133 0.8297 8.2911 1.4849 1.1075 1.0407 

Tamura 0.3253 0.8599 8.5886 1.4832 1.1075 1.0412 

Mori-Tanaka 0.3355 0.8814 8.7836 1.5244 1.1458 1.0805 

322



 

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory… 
 

 

 

 

y is the in- plane normal stress,   

z is the transverse normal stress, 

w is the transverse displacement, 

xz  is the transverse shear stress. 
 

7.1 Comparison between different micromechanical 
models 
 

A comparison between the Young’s modulus values 

calculated from the various micromechanical models is  
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Fig. 2 Effective Young’s modulus as function of volume 

fraction of ceramic for several micromechanical models 

Table 2 Comparison of the dimensionless stresses and displacements of a FG square plate (a=10h) 

p Theory w (0) x
(1/2) y

(1/3) yz
(1/6) xz

(0) xy
(-1/3) 

0 

Ashraf and zenkour (2013) 0.2881 2.0645 1.3456 0.2963 0.3335 0.6689 

Present 

Voigt 0.2881 2.0635 1.3458 0.2963 0.3333 0.6689 

Reuss 0.2881 2.0635 1.3458 0.2963 0.3333 0.6689 

LRVE 0.2881 2.0635 1.3458 0.2963 0.3333 0.6689 

Tamura 0.2881 2.0635 1.3458 0.2963 0.3333 0.6689 

Mori-Tanaka 0.2881 2.0635 1.3458 0.2963 0.3333 0.6689 

1 

Ashraf and zenkour (2013) 0.5592 3.1756 1.4962 0.3644 0.3335 0.5486 

Present 

Voigt 0.5592 3.1738 1.4965 0.3643 0.3333 0.5486 

Reuss 0.7779 4.0621 1.2068 0.3064 0.2655 0.5235 

LRVE 0.6944 3.6551 1.3567 0.3399 0.2852 0.5107 

Tamura 0.6897 3.6639 1.3419 0.3351 0.2869 0.5207 

Mori-Tanaka 0.7272 3.8231 1.2844 0.3229 0.2763 0.5205 

2 

Ashraf and zenkour (2013) 0.7158 3.6833 1.3775 0.3502 0.2797 0.4853 

Present 

Voigt 0.7158 3.6812 1.3780 0.3501 0.2796 0.4853 

Reuss 0.9081 4.7183 1.0466 0.2726 0.2456 0.5299 

LRVE 0.8301 4.1561 1.1558 0.2943 0.2397 0.5096 

Tamura 0.8285 4.2008 1.1577 0.2967 0.2477 0.5114 

Mori-Tanaka 0.8616 4.4012 1.1050 0.2848 0.2452 0.5193 

5 

Ashraf and zenkour (2013) 0.8729 4.2607 1.0651 0.2607 0.2110 0.5213 

Present 

Voigt 0.8729 4.2580 1.0657 0.2606 0.2108 0.5213 

Reuss 1.0683 5.9644 0.9216 0.2454 0.2529 0.5626 

LRVE 0.9793 5.1145 0.9142 0.2349 0.2309 0.5444 

Tamura 0.9818 5.1571 0.9390 0.2425 0.2337 0.5449 

Mori-Tanaka 1.0176 5.4838 0.9252 0.2428 0.2417 0.5523 

10 

Ashraf and zenkour (2013) 0.9806 5.0901 0.8530 0.2173 0.2281 0.5442 

Present 

Voigt 0.9806 5.0870 0.8535 0.2172 0.2279 0.5442 

Reuss 1.1972 7.2434 0.9191 0.2502 0.2777 0.5879 

LRVE 1.1075 6.3247 0.8297 0.2349 0.2598 0.5687 

Tamura 1.1075 6.3250 0.8599 0.2365 0.2593 0.5693 

Mori-Tanaka 1.1458 6.7133 0.8814 0.2424 0.2675 0.5772 

Metal 

Ashraf and zenkour (2013) 1.5642 2.0645 1.3456 0.2963 0.3335 0.6689 

Present 

Voigt 1.5642 2.0635 1.3458 0.2963 0.3333 0.6689 

Reuss 1.5642 2.0635 1.3458 0.2963 0.3333 0.6689 

LRVE 1.5642 2.0635 1.3458 0.2963 0.3333 0.6689 

Tamura 1.5642 2.0635 1.3458 0.2963 0.3333 0.6689 

Mori-Tanaka 1.5642 2.0635 1.3458 0.2963 0.3333 0.6689 
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shown in Fig. 2. The estimated results are depicted as a 

function of volume fraction of inclusions (ceramic). The 

first observation emerging from this figure is that the 

models of Voigt and Reuss give the values max and min of 

the Young’s modulus respectively. The second observation 

is that the models of Tamura (q=-100GPa) and LRVE give 

practically the same result in term of Young’s modulus and 

this whatever the value of the volume fraction. These Young 

modulus values are slightly higher than those calculated by 

the Mori-Tanaka model. 

 
7.2 Comparison studies 

 

Firstly, the example is performed in table 1 for a square 

plate with power law index p=1,4 and 10. Effective Young’s 

modulus is calculated using the aforementioned five 

micromechanical models. The obtained results are 

compared with quasi-3-dimensional (3D) theory developed 

by Ashraf and Zenkour (2013) and theory Neves et al. 

(2011) theory where εz=0. 

From this table two observations can be made. 

First, the results obtained from the present quasi 3D 

theory for the Voigt model are very close to those of Ashraf 

and Zenkour (2013) and this for the stress or the deflection. 

While a slight difference is observed after comparison with 

the results of the theory developed by Neves et al. (2011).  

This is due to the fact that the latter does not take into 

account the normal deformation (εz=0). Secondly, the 

results from the present method and calculated with the four 

other models, namely LRVE, Tamura, Mori-Tanaka and 

Reuss, are slightly different. This can be explained by the 

way who the Young's modulus is calculated. It should be 

noted that a comparison between the different values of the 

Young's modulus calculated by the different models was 

commented on in the previous paragraph. 

In Table 2, a second comparison is made between the 

results of the present quasi 3D theory with the various 

micromechanical models and those of Ashraf and Zenkour 

(2013). The results are given in terms of deflection and the 

various constraints. Here again we note the same 

observation that the results are very close for the model of 

Voigt and a slight difference is noticed compared to the 

others. 

 
7.3 Parametric studies 

 
In the present paragraph some results and considerations 

about the effect of the micromechanical models on the 

bending problem of functionally plates are presented. The 

analysis has been carried out by means of numerical 

procedures illustrated above. 

The influence of the volume fraction index “p” on the 

variation of the out-of-plane displacement w  through the 

thickness direction is showed in Fig. 3. It should be noted 

that the Voigt model was used in this example. It can be 

seen from Figure 3 that the transverse displacement w       

of metal plates is larger than the corresponding one of 

ceramic plates and in general, the transverse displacement 

increases as the volume fraction index “p” increases. 

In Fig. 4, the variations of the out-of-plane displacement  
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Fig. 3 The transverse displacement w  through the 

thickness of FG plates (a/h=10, a=2b). Voigt model 
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Fig. 4 The transverse displacement w  versus the power 

law index “p” of FG square plates for different 

micromechanical models (a/h=10) 
 

 

w  through the thickness direction of FG plate with the 

power law index “p” are given for different 

micromechanical models. It is seen from the figure that the 

increase of the power law index “p” produces an increase in 

the values of the displacement and this whatever the model 

used. 

In addition, the Reuss model has the highest 

displacement values compared to other models. While that 

of Voigt has the lowest values. The LRVE and Tamura 

models have the practically same results. 

Relative Percentage difference of the out-of-plane 

displacement w  between micromechanical models versus 

power law index “p” is shown in Fig. 5. 

The discrepancy between the estimated out-of-plane 

displacement w  of FGMs plate by Reuss, LRVE, Tamura 

and other micromechanical models depends considerably 

on the power law index “p”. 

The discrepancy between the Reuss model and other 

micro- mechanical models for the estimated value of the 

out-of-plane displacement reaches a maximum of 10% 

between Reuss-LRVE and Reuss-Tamura and it is 6%  
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Fig. 5 Relative percentage difference between the 

micromechanical models of the transverse displacement w

of FG square plates (a/h=10) 
 

 
Fig. 6 The in-plane longitudinal stress x  through the 

thickness of a FG rectangular plate (a/h=10) -Voigt model- 
 

 

between Reuss-Mori-Tanaka. 

The second comparison shown in this figure is the 

discrepancy between the values of the out-of-plane 

displacement between the Voigt model and other 

micromechanical models. The difference is insignificant 

between Voigt and Tamura and it reached a maximum of 

33% between Voigt and other models. Therefore, the 

necessity of the proper micromechanical modeling of FGMs 

is evident to accurately estimate the fundamental frequency. 

In Fig. 6, the in-plane longitudinal stress 𝜎𝑥 through 

the thickness is tensile at the top surface and compressive at  

the bottom surface. The homogeneous ceramic plate p=0 or 

metal plate p=∞ yields the maximum compressive stresses 

at the bottom surface and the minimum tensile stresses at 

the top surface of the FG plates. 

In Fig. 7, we present the variation of the in-plane 

longitudinal stress 𝜎𝑥 through the thickness for different 

micromechanical models. From this figure, it can be seen 

that all models give practically the same results in terms of 

axial stress except that of Voigt, which gives minimum  

 
Fig. 7 The in-plane longitudinal stress x  through the 

thickness of a FG rectangular plate for different 

micromechanical models (a/h=10, a=2b, p=1) 
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Fig. 8 The transverse shear stress xz  through the 

thickness of a FG rectangular plate (a/h=10, a=2b) -Voigt 

model- 
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Fig. 9 The transverse shear stress xz  through the 

thickness of a FG rectangular plate for different 

micromechanical models (a/h=10, a=2b, p=1) 
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tensile stresses at the top, and maximum compressive 

stresses at the bottom surface. 

In Fig. 8, we have plotted the variation of the transverse 

shear stress xz  through-the-thickness of a FG rectangular 

plate using the Voigt model. 

The through-the-thickness distributions of the transverse 

shear stresses are not parabolic in the case of non- 

homogenous plate as in the case of homogeneous plates 

(ceramic or metal). 

It can be observed that increasing the power-law index p 

leads to a reduction of the transverse shear stress in the skin 

of the plate. Also, it is found that the homogeneous plates 

that are either metal or ceramic give the same transverse 

shear stress 

The effect of the micromechanical models on the 

variation of the transverse shear stress xz  across the 

thickness is shown in Fig. 9. The Voigt model is the one, 

which gives the highest stresses compared with the others 

where the difference between the max stresses is minimal. 
 

 

8. Conclusions 
 

In this paper, we have developed a new refined quasi-

three-dimensional (3D) shear deformation theory for the 

solutions of static bending of FG plate. 

The theory accounts for parabolic distribution of the 

transverse shear strains and satisfies the zero traction 

boundary conditions on the surfaces of the functionally 

graded plate without using shear correction factors. The 

highlight of this theory is that, in addition to including the 

thickness stretching effect, the displacement field is 

modeled with only 4 unknowns, which is even less than the 

other shear and normal deformation theories where we find 

five, six or more variables. Different micromechanical 

models were used to determine the effective properties of 

the FG plates. The Navier method is used for the analytical 

solutions of the FG plate with simply supported boundary 

conditions. 

The results obtained using this new theory, are in a good 

agreement with reference solutions available in literature. 

Among the results that could be determined after the 

parametric study: 

- The discrepancy between the estimated out-of-

plane displacement w  of FGMs plate by Reuss, LRVE, 

Tamura and other micromechanical models depends 

considerably on the power law index “p”. 

- All micromechanical models give practically the 

same results in terms of axial stress except that of Voigt 

which gives minimum tensile stresses at the top and 

maximum compressive stresses at the bottom surface. 

- For the transverse shear stress the Voigt model is 

the one which gives the highest stresses compared with the 

others where the difference between the max stresses is 

minimal. 

From these results and comparisons between different 

micromechanical models, it has been found significant 

differences between some models. This proves the need for 

a proper micromechanical modeling of FGMs to accurately 

estimate the deflection and stress. 

Finally, it can be said that the proposed quasi 3D shear 

deformation theory can be extended to study thermal 

behavior on the basis of works of Bouderba et al. (2016), 

Bousahla et al. (2016), Bousahla et al. (2016), Chikh et al. 

(2017) and Khetir et al. (2017). 
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