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1. Introduction 
 

The Conventional design of buildings largely employs 

the linear analysis of structures. The interaction of lateral 

loading or uniaxial bending moment (UBM) or biaxial 

bending moment (BBM), combined with axial force in RC 

1D SMs, needs to be determined with care. RC 1D SMs are 

known to fail by brittle mode at peak axial loads and small 

lateral displacements (Sharma et al. 2014).  

The behavior of 1D SMs has been investigated by 

several researchers. Pham et al. (2010) presented a new 

finite Timoshenko beam element with a model for ultimate 

load computation of RC frames. The model combines the 

descriptions of the diffuse plastic failure in the BC followed 

by the creation of plastic hinges due to the failure or 

collapse of the concrete and or the reinforcements. 

A modified multi-scale analysis is performed in order to 

identify the parameters for the stress-resultant-based macro 

model. Special attention is paid to the influence of the axial 

force on the bending moment-rotation response. Mashaly et 

al. (2011) proposed a BC model for seismic analysis of RC 

frames. This model is a simplified version of the flexibility-

based fiber models, which is based on dividing the member 

length into small segments and dividing the cross section of 

each segment into concrete and steel fibers. In this model,  
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only the two end sections are subdivided into fibers. 

Uniaxial material models of steel and concrete under cyclic 

loading are assigned to the cross-section’s fibers. Morfidis 

et al. (2014) presented an inelastic model based on the 

nonlinear material response and the interaction relation 

between axial forces and bending moments of a BC 

member. The model is simple and is easy to implement in 

standard structural analysis codes, and avoids the 

complexities of expensive alternative analyses based on 

finite-element computations. 

Plastic hinges play a significant role in the behavioral 

response of BCs. In the majority of BC sub-assembly tests, 

the plastic hinges form in beams rather than in the columns. 

In RC structures, beam column connections are one of the 

most critical regions in areas with seismic susceptibility. 

Proper anchorage of reinforcements is vital to enhance the 

performance of beam column joints. Various models have 

been proposed by several researchers for predicting the 

exterior RC beam column joint strength. Most of these 

models were calibrated and verified with some limited 

experimental database. Among them, Parate and Kumar 

(2016) presented a detailed investigation of several 

analytical models to predict the shear strength of exterior 

beam column joint. The study shows the effect of each 

governing parameter on the joint’s shear strength predicted 

by various models. 

During the analysis and design of reinforced concrete 

frames, beam column joints are sometimes assumed as 

rigid. This simplifying assumption can be unsafe because it 

is likely to affect the distributions of internal forces and 

moments, reduce drift and increase the overall load-
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carrying capacity of the frame.  

The behavior of RC 1D SMs subjected to combined 

loading has been studied by several researchers. Among 

them, Yen (1991) considered the longitudinal reinforcement 

percentage and the neutral axis (NA) location as two main 

variables and proposed a method to analyze the RC sections 

subjected to biaxial bending moment (BBM). Several 

simplifications, employed in this method, have an 

unfavorable effect on the accuracy of the results. Yau et al. 

(1993) considered the longitudinal reinforcement 

percentage, and the distance between the point having 

maximum compressive stress and NA, as two main 

variables and proposed a method to analyze the ultimate 

strength of the RC sections subjected to BBM. Amziane and 

Dubé (2008) proposed an algorithm to simulate RC 

structures under the combined uniaxial cyclic bending and 

axial load. They employed this simulation algorithm to 

quantify the global structural damage based on the 

assessment of local material damage. Massumi and 

Monavari (2013) have proposed an energy-based method to 

obtain the target displacement for RC frames subjected to 

cyclic combined loading assuming that the capacity for 

absorbing the energy of the structures for both the pushover 

and cyclic analyses are equal. Massumi and Badkoubeh 

(2015) have presented a numerical procedure that provides 

the ultimate curvature and moment domains for the 

rectangular and circular cross-sections of the RC columns 

subjected to biaxial bending and axial loading. They have 

proposed a dimensionless formula that can be used for the 

sections with similar normalized geometric and mechanical 

properties. 

To analyze the RC sections subjected to cyclic biaxial 

bending moment and axial loading (BBMAL), the direct 

search procedure to determine the strain equilibrium plane 

is employed. In this case, the section is discretized into 

FRFE. This method can be used in both cyclic and 

monotonic loading cases. 

In this paper, an algorithm to simulate numerically the 

behavior of RC 1D SMs subjected to cyclic combined 

loading including the inclined lateral force at any direction 

perpendicular to the longitudinal axis of 1D SM, BBM or 

UBM together with the axial loading. In order to simulate 

the RC structural members under cyclic loading, the FRFE 

discretization type is adapted to discretize the critical 

sections. 

The main advantages of employing the proposed 

algorithm, compared to those given previously by other 

researchers, can be summarized as follows: 

• The aim of most researchers is to determine the 

ultimate strength of the 1D SMs while utilizing the 

proposed algorithm, the instantaneous strength of the 1D 

SMs together with much more information is calculated at 

any stage of loading from the intact state up to the failure of 

the 1D SMs. 
• In most researches, simplified strain-stress models for 

concrete and reinforcement are used, while the proposed 
algorithm employs the nonlinear models adapted to the 
actual behavior of the materials including the loss of 
concrete cover and the failure of confined concrete 
elements. 

• Contrary to some models, the proposed algorithm 

allows the user to cross over the peaks and inflection points 

when calculating the 1D SM’s response (see Fig. 6). By 

applying the proposed convergence search method to 

determine the equilibrium state, the convergence is 

guaranteed for any loading case.  

 

 

2. Structure of the proposed algorithm 
 

2.1 Overall specifications  
 

In the case that the 1D SM is a beam-column, it is 

decomposed into four Macro-Elements (MEs) located 

between the critical sections (i.e.,: maxim moments at the 

mid-span and at the supports) and the inflection points. Due 

to symmetry, there are only 2 sets of MEs with different 

lengths instead of four MEs (2 identical shorter MEs and 2 

identical longer MEs). In the case that the 1D SM is a 

column, it is decomposed into two MEs located between the 

critical sections (i.e.: maxim moments at the two ends of the 

column) and the inflection point. A Macro-Element (ME) is 

defined as a fixed end-free end 1D SM subjected to 

combined loading (i.e.: a cyclic biaxial bending moment or 

inclined lateral load together with axial force). Then the 

nonlinear behavior of MEs is analyzed and the MEs are 

assembled to form the 1D SM. An identical value of shear 

force in inflection point is applied to the ends of the MEs. 

By increasing the value of this shear force, the response of 

the 1D SMs at the fixed ends of MEs are calculated, while 

this shear force is increased from zero up to the failure of 

the member.    

In the case that the 1D SM is a BC it can easily be 

shown from a consideration of bending moments in a fixed 

end BC (for the cases of uniformly distributed loading and 

also in the case that one-way or two-way slabs are attached 

to the BC) that the points of inflection would be located at a 

distance of 0.21 L from each end, where L represents the 

span length of the BC. In the practical cases of partial fixity, 

as a reasonable approximation, the points of inflection may 

be assumed to lie at one-tenth of the span length from each 

end joint (Norris and Wilbur, 1960). In the case that the 1D 

SM is a column under combined load including the lateral 

load, the inflection point is considered at the middle of the 

column. 
In the proposed algorithm, the strain distributions at the 

sections are taken up to form a plane, which remains a 
plane during deformation due to loading. Uniaxial 
constitutive laws are used to simulate the stresses of the 
concrete and reinforcement elements. For the compressive 
confined and unconfined concrete elements the monotonic 
and cyclic constitutive laws proposed by Sadeghi and 
Nouban (2017), based on the experimental tests of Sadeghi 
(2001), have been used. Note that the highly-theoretical-
based concrete constitutive laws proposed by some 
researchers such as Lavassani et al. (2009) and Tasnimi and 
Lavasani (2011) require complicated expensive test input 
data, while the applied constitutive law in this research, 
needs the design characteristic strength of unconfined 
concrete together with the confining stirrups’ specifications 
and gives acceptable results adapted to the experimental 
results. For reinforcements, the cyclic model proposed by  
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Fig. 1 FRFE discretization of a 1D SM’s section 
 

 

Park et al. (1972) have been employed.  To simulate the 
behavior of tensile stress in concrete elements, a linear 
stress-strain model up to the tensile strength of concrete is 
employed. To limit the strains to the maximum values of the 
compressive strains in unconfined and confined concretes, 
the formulas proposed by CEB Code (1978) and Sheikh 
(1982) have been used, respectively. These formulas are 
employed to simulate the loss of concrete cover and the 
failure of confined concrete. Since the ACI318-11 criteria 
are based on the perfect bond assumption and also in most 
of the simulations the perfect bond between the 
reinforcements and concrete is assumed (Hashemi and 
Vaghefi 2015), in the proposed simulation, the bond 
between the longitudinal reinforcements and concrete is 
assumed as perfect bond. 

A “strain plane control process” method is adapted in 

the proposed algorithm to calculate the strains and then the 

stresses at the centers of the concrete and steel elements. A 

system of three as in three variables, applying a triple 

iteration process and a proposed difference-based Bisection 

numerical search method over the strains, is solved to verify 

the equilibrium state in each section. The equilibrium is 

justified over each section considering the law of “plane 

sections remain plane during deformation”. The 

computations are founded on the cyclic nonlinear behavior 

of concrete and reinforcement elements. In each concrete 

element ij (i, j) and in each steel element k, the stresses are 

determined in function of strains (ε). Different loading-

unloading stages are determined by means of saving the last 

three strain values. In order to reach equilibrium, three 

characteristic strains comprising: 𝜀𝐶  (the strain of the point 

C with the maximum compressive stress in the section), 𝜀𝑇 

(the strain of the point T with the maximum tensile stress in 

the section) and 𝜀𝑀  (the strain in the point M located at 

another corner of the section), as shown in Figs. 1 and 2, are 

employed as three main variables. For non-rectangular 

section cases the points C, T and M are located out of the 

structural member section and located on the discretizing 

mesh boundaries. 
 

2.2 Adapted discretization method 
 

The critical sections of RC 1D SMs are discretized into 

FRFE as shown in Fig. 1. In the proposed algorithm the  

 

Fig. 2 Situation of lateral load and NA on a 1D SM’s 

section 

 

 

FRFE discretization type with the fixed locations has been 

applied. This type of discretization, allows the loading-

unloading path to be continuously followed up in 

monotonic and cyclic loading cases. The center of the mesh 

is located in the geometry center of the cross-section. The 

orientation angles 𝛺  is the angle between the lateral force 

and the y-axis of the section, as illustrated in Fig. 2. 

 

2.3 Equilibrium principles 
 

The equilibrium of each section is achieved by equating 

the internal and external forces and moments 

𝑁𝑒𝑥𝑡 =  𝑁𝑖𝑛𝑡 (1) 

𝑀𝑥𝑒𝑥𝑡 =  𝑀𝑥𝑖𝑛𝑡  (2) 

𝑀𝑦𝑒𝑥𝑡 =  𝑀𝑦𝑖𝑛𝑡  (3) 

Eqs. (4) to (6) present the internal efforts 

𝑁𝑖𝑛𝑡 =  ∑ ∑ 𝐾𝑐𝑐𝑖𝑗

𝑛

𝑗

. 𝜎𝑐𝑐𝑖𝑗 . 𝐴𝑖𝑗

𝑚

𝑖

+ ∑ ∑ 𝐾𝑐𝑖𝑗 . 𝜎𝑐𝑖𝑗 . 𝐴𝑖𝑗

𝑛

𝑗

𝑚

𝑖

+ ∑ 𝜎𝑠𝑘 . 𝐴𝑠𝑘

𝑛𝑠

𝑘

 

(4) 

𝑀𝑥𝑖𝑛𝑡 =  ∑ ∑ 𝐾𝑐𝑐𝑖𝑗

𝑛

𝑗

. 𝜎𝑐𝑐𝑖𝑗 . 𝑦𝑖𝑗 . 𝐴𝑖𝑗

𝑚

𝑖

+ ∑ ∑ 𝐾𝑐𝑖𝑗 . 𝜎𝑐𝑖𝑗 . 𝑦𝑖𝑗

𝑛

𝑗

𝑚

𝑖

. 𝐴𝑖𝑗

+ ∑ 𝜎𝑠𝑘 . 𝑦𝑘

𝑛𝑠

𝑘

. 𝐴𝑠𝑘 

(5) 
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𝑀𝑦𝑖𝑛𝑡 =  ∑ ∑ 𝐾𝑐𝑐𝑖𝑗

𝑛

𝑗

. 𝜎𝑐𝑐𝑖𝑗 . 𝑥𝑖𝑗 . 𝐴𝑖𝑗

𝑚

𝑖

+ ∑ ∑ 𝐾𝑐𝑖𝑗 . 𝜎𝑐𝑖𝑗 . 𝑥𝑖𝑗

𝑛

𝑗

𝑚

𝑖

. 𝐴𝑖𝑗

+ ∑ 𝜎𝑠𝑘 . 𝑥𝑘

𝑛𝑠

𝑘

. 𝐴𝑠𝑘 

(6) 

Where: 

Next: external axial force, 

Nint: internal axial force, 

Mxext: external bending moment about x-axis (see Figs. 

1 and 2), 

Myext: external bending moment about y-axis (see Figs. 

1 and 2), 

Mxint: internal bending moment about x-axis, 

Myint: internal bending moment about y-axis,  

𝜎𝑐𝑐𝑖𝑗: stress in confined concrete element ij, 

𝜎𝑐𝑖𝑗: stress in unconfined concrete element ij, 

𝜎𝑠𝑘: stress in steel element k, 

Aij: area of concrete element ij, 

Ask: area of steel element k, 

Kccij: material existence indicator for confined concrete 

element ij (Kccij = 1, indicate the existence of a confined 

concrete element ij), 

Kcij: material existence indicator for unconfined 

concrete element ij (Kcij = 1, indicate the existence of an 

unconfined concrete element ij), 

ns: the total number of longitudinal steel bars in the 

section, 

m: number of elements in the y-direction (maximum 

value of i), 

n: number of elements in the x-direction (maximum 

value of j). 

Kccij = 0 and Kcij = 0 are employed to indicate a failed 

element or an imaginary element located out of the section, 

or in the hollow zone of the section (Sadeghi 1995) (see 

Fig. 1). 

The total external and internal bending moments “Mext 

and Mint” are determined as follows 

𝑀𝑒𝑥𝑡 = [(𝑀𝑥𝑒𝑥𝑡)2 + (𝑀𝑦𝑒𝑥𝑡)2]1/2 (7) 

𝑀𝑖𝑛𝑡 = [(𝑀𝑥𝑖𝑛𝑡)2 + (𝑀𝑦𝑖𝑛𝑡)2]1/2 (8) 

The equilibrium state is established by finding the 

resolution of a system with three equations and three 

variables by means of a triple iteration process and applying 

a proposed difference-based Bisection numerical research 

method over the characteristic strains.  

 

2.4 Calculation of strains  
 

The strains in the confined and unconfined concrete 

elements “𝜀𝑖𝑗” and steel elements “𝜀𝑠𝑘” are determined as 

follows 

𝜀𝑖𝑗   =  𝜀0 + 𝜙𝑥(𝑥𝑖𝑗 − 𝑥0) + 𝜙𝑦(𝑦𝑖𝑗 −  𝑦0) (9) 

𝜀𝑠𝑘  =  𝜀0 + 𝜙𝑥(𝑥𝑠𝑘 − 𝑥0) +  𝜙𝑦(𝑦𝑠𝑘 − 𝑦0) (10) 

With 

𝜀0   =  𝜀𝐶 −  𝜙𝑥 (
𝑏

2
) −  𝜙𝑦(ℎ/2) (11) 

Where: 

𝜀0: strain at the center of gravity of the section (see Fig. 

1), 

(𝑥𝑖𝑗 , 𝑦𝑖𝑗) : coordinates of the center of gravity of 

concrete elements, 

(𝑥𝑠𝑘 , 𝑦𝑠𝑘): coordinates of the center of gravity of steel 

elements, 

(𝑥0, 𝑦0) : coordinates of the center of gravity of the 

section, 

𝜙𝑥: curvatures in the x-direction, 

𝜙𝑦: curvatures in the y-direction. 

 

2.5 Calculation of curvatures 
 

The curvatures in the x- and y-directions are determined 

by employing the following equations 

𝜙𝑥 =  
(𝜀2 − 𝜀0)

(𝑏 2⁄ )
 (12) 

𝜙𝑦 =  
(𝜀1 − 𝜀0)

(ℎ 2⁄ )
 (13) 

With 

𝜀2 =  
𝜀𝐶 + 𝜀𝑀

2
 (14) 

𝜀1 =  𝜀𝐶 +  
 𝜀𝑇

2
−  

 𝜀𝑀

2
 (15) 

Where 

𝜀𝐶   =  𝜀0 +  𝜙𝑥(𝑏/2) +  𝜙𝑦(ℎ/2) (16) 

𝜀𝑇   =  𝜀0 − 𝜙𝑥(𝑏/2) −  𝜙𝑦(ℎ/2) (17) 

𝜀𝑀   =  𝜀0 + 𝜙𝑥(𝑏/2) −  𝜙𝑦(ℎ/2) (18) 

The b and h dimensions, as well as the locations of 𝜀1 

and 𝜀2, are illustrated in Fig. 1. 

The overall curvature “𝜙” is given as 

𝜙 =  √𝜙𝑥
2 +  𝜙𝑦

2
 (19) 

 

2.6 Neutral axis location 
 

The coordinates of NA intersections with the axes of x 

and y are calculated using the following equations 

𝑥𝑛 =
𝑏

2
+ (

ℎ

2
) (

𝜙𝑦

𝜙𝑥

) −
𝜀𝐶

𝜙𝑥

 (20) 

𝑦𝑛 =
ℎ

2
+ (

𝑏

2
) (

𝜙𝑥

𝜙𝑦

) −
𝜀𝐶

𝜙𝑦

 (21) 
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The neutral axis line passes through the points E(xn, 0) 

and F(0, yn) (see Fig. 2). 

 

2.7 ME loading history recording 
 

Every loading step is saved and is compared to the two 

preceding steps. 

During every loading step p, on each critical section l , 

for the imposed force (moment) “𝑀𝑒𝑥𝑡(𝑝, 𝑙)” or imposed 

displacement (curvature) “𝜙(𝑝, 𝑙)”, the difference factors 

“ 𝑑𝑀1  and 𝑑𝑀2 ”, or “ 𝑑𝜙1  and 𝑑𝜙2 ” are calculated, 

respectively. The difference factors indicate the loading 

cases.  

 

2.7.1 For the case of imposing force (moment) on ME 

𝑑𝑀1 =  𝑀𝑒𝑥𝑡(𝑝 − 1, 𝑙) −  𝑀𝑒𝑥𝑡(𝑝 − 2, 𝑙) (22) 

𝑑𝑀2 =  𝑀𝑒𝑥𝑡(𝑝, 𝑙) − 𝑀𝑒𝑥𝑡(𝑝 − 1, 𝑙) (23) 

Loading cases are identified as: 

• It is a loading case if 

[𝑑𝑀1 ≥ 0 and 𝑑𝑀2 > 0] (24) 

• It is an unloading just after a loading case if 

[𝑑𝑀1 ≥ 0 and 𝑑𝑀2 < 0] (25) 

• It is an unloading after an unloading case if 

[𝑑𝑀1 < 0 and 𝑑𝑀2 < 0] (26) 

• It is a reloading after unloading case if 

[𝑑𝑀1 < 0 and 𝑑𝑀2 > 0] (27) 

 

2.7.2 For the case of imposing displacement 
(curvature) on ME 

𝑑𝜙1 =  𝜙(𝑝 − 1, 𝑙) −  𝜙(𝑝 − 2, 𝑙) (28) 

𝑑𝜙2 =  𝜙(𝑝 − 1, 𝑙) −  𝜙(𝑝 − 2, 𝑙) (29) 

Loading cases are identified as follows: 

• It is a loading case if 

[𝑑𝜙1 ≥ 0 and 𝑑𝜙2 > 0] (30) 

• It is an unloading just after a loading case if 

 

[𝑑𝜙1 ≥ 0 and 𝑑𝜙2 < 0] (31) 

• It is an unloading after an unloading case if 

[𝑑𝜙1 < 0 and 𝑑𝜙2 < 0] (32) 

• It is a reloading after unloading case if 

[𝑑𝜙1 < 0 and 𝑑𝜙2 > 0] (33) 

 

2.8 Concrete elements loading history recording 
 

During the recording of the loading history, the three 

last stress and strain values for each concrete element ij are 

saved to compare with those recorded in the preceding 

steps. For every concrete element ij discretized on section 𝑙, 

in the step p of loading, the difference factors “𝑑𝜀1 and 

𝑑𝜀2” are calculated. 

𝑑𝜀1 =  𝜀(𝑝 − 1, 𝑙, 𝑖, 𝑗) −  𝜀(𝑝 − 2, 𝑙, 𝑖, 𝑗) (34) 

𝑑𝜀2 =  𝜀(𝑝, 𝑙, 𝑖, 𝑗) −  𝜀(𝑝 − 1, 𝑙, 𝑖, 𝑗) (35) 

The loading cases on the strain-stress curve of each 

concrete element are identified by the following conditions: 

• It is a loading case if 

[𝑑𝜀1 ≥ 0 and 𝑑𝜀2 > 0] (36) 

• It is an unloading just after a loading case if 

[𝑑𝜀1 ≥ 0 and 𝑑𝜀2 < 0] (37) 

• It is an unloading after an unloading case if 

[𝑑𝜀1 < 0 and 𝑑𝜀2 < 0] (38) 

• It is a reloading after unloading case if 

[𝑑𝜀1 < 0 and 𝑑𝜀2 > 0] (39) 

 
2.9 Recording the steel elements loading history 

 

During the recording of the loading history, the three 

last stress and strain values for each steel element k are 

saved to compare with those recorded in the preceding 

steps. For every steel element k discretized on section 𝑙, in 

the step p of loading, the difference factors “𝑑𝜀1 and 𝑑𝜀2” 

are calculated. 

𝑑𝜀1 = 𝜀(𝑝 − 1, 𝑙, 𝑘) −  𝜀(𝑝 − 2, 𝑙, 𝑘) (40) 

𝑑𝜀2 = 𝜀(𝑝, 𝑙, 𝑘) −  𝜀(𝑝 − 1, 𝑙, 𝑘) (41) 

These parameters allow fixing the limits given for the 

iteration process needed to research the equilibrium 

parameters. The four different typical cases are identified as 

follows: 

• It is a loading case if 

[𝑑𝜀1 ≥ 0 and 𝑑𝜀2 > 0] (42) 

• It is an unloading just after a loading case if 

[𝑑𝜀1 ≥ 0 and 𝑑𝜀2 < 0] (43) 

• It is an unloading after an unloading case if 

[𝑑𝜀1 < 0 and 𝑑𝜀2 < 0] (44) 

• It is a reloading after unloading case if 

[𝑑𝜀1 < 0 and 𝑑𝜀2 > 0] (45) 

 

2.10 Regulating the characteristics strains ( 𝜀𝐶 , 𝜀𝑇 

and 𝜀𝑀)   
 

A proposed bisection method is applied to find the 

equilibrium state in each section of 1D SM that 

repeatedly bisects an interval and then selects a subinterval 

in which a root must lie for further processing. The method 

is applicable for numerically solving the equation f(x) = 0 

for the real variable x, where f is a continuous function 

defined on an interval [a, b]. The interval [a, b] for the 
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following strains are [(𝜀𝐶𝑚𝑖𝑛 , 𝜀𝐶𝑚𝑎𝑥 ], [𝜀𝑇𝑚𝑖𝑛, 𝜀𝑇𝑚𝑎𝑥 ] and 

[(𝜀𝑀𝑚𝑖𝑛 , 𝜀𝑀𝑚𝑎𝑥], respectively (See also Section 2.13.1). 

The extreme compressive strain (in point C) (see Figs. 1 

and 2) 

𝜀𝐶 =  (𝜀𝐶𝑚𝑖𝑛  + 𝜀𝐶𝑚𝑎𝑥)/2 (46) 

The extreme tensile strain (in point T) (see Figs. 1 and 

2) 

𝜀𝑇 =  (𝜀𝑇𝑚𝑖𝑛  + 𝜀𝑇𝑚𝑎𝑥)/2 (47) 

The strain in the point M located at the third corner of 

the section (see Figs. 1 and 2) 

𝜀𝑀 =  (𝜀𝑀𝑚𝑖𝑛  + 𝜀𝑀𝑚𝑎𝑥)/2 (48) 

The initial values for 𝜀𝑀𝑚𝑖𝑛  and 𝜀𝑀𝑚𝑎𝑥  can be 

considered as 𝜀𝑇 and 𝜀𝐶, respectively.   

In loading or reloading cases 

𝜀𝑇 ≤  𝜀𝑀 ≤  𝜀𝐶 (49) 

In unloading cases 

𝜀𝑇 ≥  𝜀𝑀 ≥  𝜀𝐶 (50) 

 

2.11 Equilibrium verification in equilibrium state 
 

To achieve the equilibrium state, a set of successive 

iteration processes is followed to satisfy the following three 

conditions: 

 

2.11.1 Orientation angle verification 
The external and internal orientation angles 𝛺  (the 

angle between the lateral force and the y-axis of the section, 

as illustrated in Fig. 2) must be balanced.  This is verified 

by an iteration process over the strains of point M (𝜀𝑀) for 

the given values of 𝜀𝐶 and 𝜀𝑇 as demonstrated below 

𝜀𝑀𝑚𝑎𝑥 = 𝜀𝑀  (for 𝛺𝑖𝑛𝑡  >  𝛺𝑒𝑥𝑡) (51) 

𝜀𝑀𝑚𝑖𝑛 = 𝜀𝑀  (for 𝛺𝑖𝑛𝑡  <  𝛺𝑒𝑥𝑡) (52) 

In the following trial, an average strain value is 

employed, as given by the following equation 

𝜀𝑀(𝑖+1) =  (𝜀𝑀𝑚𝑖𝑛(𝑖)  + 𝜀𝑀𝑚𝑎𝑥(𝑖))/2 (53) 

The following condition must be satisfied for the 

orientation angle 

𝛺𝑒𝑥𝑡 =  𝛺𝑖𝑛𝑡 (54) 

Where 

𝛺𝑒𝑥𝑡 =  𝛺 =  𝑇𝑎𝑛−1 (𝑀𝑦𝑒𝑥𝑡/𝑀𝑥𝑒𝑥𝑡) (55) 

𝛺𝑖𝑛𝑡 =  𝑇𝑎𝑛−1 (𝑀𝑦𝑖𝑛𝑡/𝑀𝑥𝑖𝑛𝑡) (56) 

 

2.11.2 Verification of axial forces in equilibrium state  
During a second iteration process over the extreme 

tensile strains at point T (𝜀𝑇) for the given value of 𝜀𝐶, the 

equilibrium between the external and internal axial forces is 

verified as illustrated below 

𝜀𝑇𝑚𝑎𝑥 = 𝜀𝑇  (for 𝑁𝑖𝑛𝑡  >  𝑁𝑒𝑥𝑡) (57) 

𝜀𝑇𝑚𝑖𝑛 = 𝜀𝑇  (for 𝑁𝑖𝑛𝑡  <  𝑁𝑒𝑥𝑡) (58) 

The average strain value is employed in the following 

trial 

𝜀𝑇(𝑖+1) =  (𝜀𝑇𝑚𝑖𝑛(𝑖)  + 𝜀𝑇𝑚𝑎𝑥(𝑖))/2 (59) 

The following condition must be satisfied for the axial 

force 

𝑁𝑒𝑥𝑡 =  𝑁𝑖𝑛𝑡 (60) 

 

2.11.3 Verification of bending moments in equilibrium 

state  
During a third iteration process over the extreme 

compressive strain (in point C), the equilibrium between the 

external and internal bending moments is verified as shown 

below 

𝜀𝐶𝑚𝑖𝑛 = 𝜀𝐶  (for 𝑀𝑖𝑛𝑡  >  𝑀𝑒𝑥𝑡) (61) 

𝜀𝐶𝑚𝑎𝑥 = 𝜀𝐶  (for 𝑀𝑖𝑛𝑡  <  𝑀𝑒𝑥𝑡) (62) 

The average strain value is employed in the following 

trial 

𝜀𝐶(𝑖+1) =  (𝜀𝐶𝑚𝑖𝑛(𝑖)  + 𝜀𝐶𝑚𝑎𝑥(𝑖))/2 (63) 

The following condition must be satisfied for the 

bending moment 

𝑀𝑒𝑥𝑡 =  𝑀𝑖𝑛𝑡 (64) 

 

2.12 Convergence tolerances for the equilibrium state 
 

The reasonably accurate convergence tolerances given 

below are employed in the proposed algorithm for the 

equilibrium state 

|𝛺𝑒𝑥𝑡 −  𝛺𝑖𝑛𝑡|  ≤ 0.1° (65) 

|𝑁𝑒𝑥𝑡 − 𝑁𝑖𝑛𝑡|  ≤ 0.001 |𝑁𝑒𝑥𝑡| (66) 

|𝑀𝑒𝑥𝑡 − 𝑀𝑖𝑛𝑡|  ≤ 0.001 |𝑀𝑒𝑥𝑡| (67) 

 
2.13 Convergence procedure to achieve the 

equilibrium state in a section 
 

2.13.1 Applied proposed bisection method 
A proposed bisection method (also called the interval 

halving method, the binary search method, or 

the dichotomy method) is applied as a root-finding 

method that repeatedly bisects an interval and then selects a 

subinterval in which a root must lie for further processing. 
The method is applicable for numerically solving the 

equation f(x) = 0 for the real variable x, where f is 
a continuous function defined on an interval [a, b] which 
are said to bracket a root. Contrary to the Bisection 
method of Bolzano f(a) and f(b) have not to have opposite 
signs. In the Bolzano Bisection method, the product of the 
functions should be negative and it is a product-based 
method and approach to the solution from two sides to zero, 
while the proposed Bisection method is a difference- based 
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method and approaches to the solution from one side.   
At each step, the method divides the interval in two by 

computing the midpoint c = (a+b)/2 of the interval and the 
value of the function f(c) at that point. The method selects 
the subinterval that is guaranteed to be a bracket as the new 
interval to be used in the next step. The process is continued 
until the interval is sufficiently small or the desired 
accuracy tolerances achieved. 

The input for the method is a continuous function f, an 
interval [a, b], and the function values f(a) and f(b). Each 
iteration performs these steps: 

1. Calculate c, the midpoint of the 
interval, c = a + b/2. 

2. Calculate the function value at the midpoint, f(c). 
3. If convergence is satisfactory (that is, c-a is 

sufficiently small, or |f(c)| is sufficiently small), return c and 
stop iterating. 

4. Examine the value of f(c) and replace either 
(a, f(a)) or (b, f(b)) with (c, f(c)) so that there is a new c 
within the new interval. 

During the implementation of the method on the 
computer program, there are problems with finite precision, 
so there are convergence acceptance tolerance limits of the 
function under question. Additionally, the difference 
between a and b is limited by the floating point precision; 
i.e., as the difference between a and b decreases, at some 
point, the midpoint of [a, b] will be numerically identical to 
(within floating point precision of) either a or b. 

In the proposed algorithm, the method is written 
in pseudocode and for the three loops of iteration processes 
the following variables, function, and tolerances are 
adapted: 

Input:  

Function f: Ωext −  Ωint , endpoint values a, b: εMmin , 

εMmax, tolerance (TOL): 0.1°  

Function f: Next −  Nint , endpoint values a, b: εTmin , 

εTmax, TOL: 0.001 |Next| 
Function f: Mext − Mint , endpoint values a, b: εCmin , 

εCmax, TOL: 0.001 |Mext| 
Output: value which differs from a root of f(x) = 0 by 

less than TOL. 
 

2.13.2 Flowchart for the convergence procedure part 
Fig. 3 presents the flow chart for the part of the 

convergence procedure to achieve the equilibrium state in a 

section of 1D SM. 
 

2.14 Determination of displacements 
 

The traditional double integration method is applicable 
mainly for the members with the homogeneous material and 
in the elastic range, it underestimates the deflection in the 
post-elastic phase. Two options for the calculation of 
displacements are considered in SMNLAP: “Double 
Integration Method” (DIM) and “Elastic-Plastic Method” 
(EPM).  

In DIM option, a numerical double integration on ϕx and 

ϕy is carried out. In this option, Eqs. (68) to (71) are 

employed 

𝛿𝑥𝑙 =  ∑ 𝑑ℎ[𝜃𝑥𝑖 + (𝜙𝑥𝑖 + 2𝜙𝑥(𝑖−1))𝑑ℎ/6]

𝑖=𝑙

𝑖=1

 (68) 

𝛿𝑦𝑙 =  ∑ 𝑑ℎ[𝜃𝑦𝑖 + (𝜙𝑦𝑖 + 2𝜙𝑦(𝑖−1))𝑑ℎ/6]

𝑖=𝑙

𝑖=1

 (69) 

𝜃𝑥𝑙 =  ∑ 𝑑ℎ[(𝜙𝑥𝑖 + 2𝜙𝑥(𝑖−1))/2]

𝑖=𝑙

𝑖=1

 (70) 

𝜃𝑦𝑙 =  ∑ 𝑑ℎ[(𝜙𝑦𝑖 + 2𝜙𝑦(𝑖−1))/2]

𝑖=𝑙

𝑖=1

 (71) 

Where: 

dh: L/p (L and p are the length and the number of 

sections of ME, respectively), 

𝜙𝑥𝑖: curvature in x-direction in section 𝑖, 
𝜙𝑦𝑖: curvature in y-direction in section 𝑖, 

𝜙𝑥(𝑖−1): curvature in x-direction in section 𝑖 − 1, 

𝜙𝑦(𝑖−1): curvature in y-direction in section 𝑖 − 1, 

𝛿𝑥𝑙: displacement in x-direction in section l, 

𝛿𝑦𝑙: displacement in y-direction in section l, 

𝜃𝑥𝑙: rotation in x-direction in section l, 

𝜃𝑦𝑙: rotation in y-direction in section l. 

The resultant of 𝛿𝑥𝑙 and 𝛿𝑦𝑙, projected in the direction 

of the applied lateral force gives the displacement sought. 

This method is time-consuming and underestimates the 

deflection in post-elastic phase in comparison with elastic-

plastic method (EPM) proposed by Priestley and Park 

(1991).  

The EPM is based on the evidence that a column is 

highly affected in the critical zone when a lateral load, 

UBM or BBM is applied. The main bending effect is due to 

the curvature registered at critical sections. 

In this paper, the column deflections were determined 

using the EPM that considers mainly the curvature at the 

critical section and the length of the column in the elastic 

phase. Immediately following the peak value of the 

“moment-curvature” (M-ϕ) curve at the critical section, a 

very important local effect occurs at the critical section 

where a pseudo-plastic hinge appears. Once the peak has 

passed, curvature enhancement is concentrated in the 

critical zone. While in the other regions, the cracks start to 

be closed and the curvatures decrease rapidly to near zero.  

The EPM option (Eqs. (72) and (73)), proposed by 

Priestley and Park (1991) is preferred when a pseudoplastic 

hinge appears in a critical section. 

𝛿 = (
𝜙

3
 𝐿2)  (for 𝜙 ≤ 𝜙𝑝) (72) 

𝛿 = (
𝜙𝑝

3
 𝐿2) + (𝜙 − 𝜙𝑝)(𝐿𝑝)(𝐿 −  0.5 𝐿𝑝)                             

(for 𝜙 ≥ 𝜙𝑝) 
(73) 

Where: 

𝛿: relative displacement at the end of ME, 

𝜙: curvature at critical section, 

𝜙𝑝: curvature when plastic hinge is performed, 

L: length of ME, 

Lp: length of the plastic hinge. 
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Start

Loading Increment

εC = (εCmax + εCmin) / 2

εT = (εTmax + εTmin) / 2

εMmax = εC, εMmin = εT

εM = (εMmax + εMmin) / 2

Calculation of curvatures (ϕx, ϕy) 

Ωext - Ωint

Calculation of Nint

Next - Nint

Mint - Mext

Next Loading?

End

εMmin = εMεMmax = εM

εTmin = εTεTmax = εT

εCmin = εCεCmax = εC

0.1° >

0.001 |Next| >

> 0.1° 

> 0.001|Next|

Assigning initial εCmax, εTmax, εMmax, εcu and εccu 

No

Yes

Calculation of strains of concrete and steel FE (εij, εsk) 

Calculation of  stresses of concrete and steel FE (σccij, σcij, σsk) 

Calculation of internal bending moments (Mxint, Myint, Mint) 

Equilibrium in the section is verified

Saving the obtained results

Otherwise

Yes

No

εc < εccu ?

Otherwise

Otherwise

0.001 |Mext| > > 0.001|Mext|

 

Fig. 3 Convergence procedure to achieve the equilibrium 

state in a section of 1D SM 

 
 
2.15 Calculation of equivalent viscous damping ratio 

 

The energy dissipated in a cycle equals the area of the 

force-displacement (dissipation hysteresis) loop. For 

reasons of convenience, an equivalent viscous damping, 

dissipating the same energy per cycle, is employed. Its 

relative value (relative to the critical damping) is given as 

an equivalent viscous damping ratio (EVDR) shown by “𝜉” 

as submitted in Eq. (74) 

𝜉 =  
𝑊𝐷

4 𝜋𝑊𝑆

 (74) 

Where:  

𝑊𝐷 : damping energy dissipated per cycle (Area of a 

hysteresis loop),   

𝑊𝑆 : peak elastic energy stored in the secant stiffness 

system for the same elastic displacement (Area of a 

triangle).  

 

 
3. Computer program 

 
A computer program called structural members 

nonlinear analysis program (SMNLAP) has been prepared 

by the authors to simulate the response of reinforced 

concrete 1D SMs subjected to cyclic combined loading 

including inclined lateral load, UBM or BBM together with 

the axial loading. The Main sub-programs of SMNLAP are:  

 

Fig. 4 Overall assemblage of the experimental test 

performed at the University of Nantes (Sadeghi 1995) 

 

 

BBCS (biaxial bending column simulation), CCS (confined 

concrete simulation), UCS (unconfined concrete 

simulation), RS (reinforcement simulation), NALS (neutral 

axis location simulation), DS (displacement simulation), 

BM-AL ID (bending moment-axial load interaction 

diagram), DSS (damping and stiffness simulation) and DIS 

(damage index simulation).  

SMNLAP is capable of simulating the failure, the 

internal local behavior of critical sections (strain and stress 

in concrete and steel elements, NA location, material loss 

and local damage (Sadeghi and Nouban (2017)) and the 

external global behavior of the 1D SM (displacement, 

curvature, damping ratio, stiffness and global damage) 

(Sadeghi 2011, Sadeghi and Nouban 2016), etc.). The 

concrete confinement due to the transverse reinforcement 

and the loss of the concrete cover is also taken into account 

in SMNLAP. 

 

 

4. Experimental test data 
 

The proposed algorithm has been validated by the 

experimental tests performed by Garcia Gonzalez (1990) 

and Park et al. (1972). The Garcia Gonzalez tests were 

performed at the University of Nantes on full-scale columns 

under cyclic lateral oriented loading and axial force 

(CLOLAF), and monotonic lateral oriented loading and 

axial force (MLOLAF)). The characteristics of the tested 

physical model are summarized as follows: rectangular 

section (18 cm × 25 cm), column height = 1.75 m, four 

longitudinal reinforcements with a diameter of 12 mm 

(percentage of steel ρ = 1%), concrete of strength  𝑓𝑐
′ = 42 

MPa, stirrups of 6 mm diameter with 9 cm spacing, yield 

stress of steel bars: Fy = 470 MPa. The column was fixed at 

the bottom, free at the top. The lateral loads, through 

different orientation angels 𝛺  (see Fig. 2), were applied to 

the top of the columns. In this paper, this tested physical 

model is called “reference model” and its critical section is 

called “reference section”. 

The tests were performed for each angle of applied 

lateral load 𝛺 , ranging between 0º and 90º in 15º steps. 

Each column was subjected simultaneously to a 500 kN 

vertical constant loading and a lateral displacement applied 
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to the top level of the column. The loading was performed 

employing two jacks as described below: 

• A static jack, type LOS DZN-100, having a capacity of 

1000 kN with a maximum amplitude of 250 mm that 

imposed the vertical force. This jack was connected to a 

control panel, type PK-SRG 5000 with the automatic 

control of unloading at the point of failure of the column.  

• A dynamic jack, type LOS 250, having a capacity of 

250 kN that imposed the lateral displacement. 

These two jacks were installed on the test gantry and were 

fed by a controlled hydraulic system. 

Fig. 4 illustrates the overall assemblage of the 

experimental test.  

The column under test was connected rigidly to a 

support fixed to the test platform, using a circular steel plate 

that can rotate about the vertical axis. The rotatable circular 

plate allows the orientation of the column in the direction 

required to apply the lateral force. The dynamic jack was 

fixed horizontally to the gantry and was supported by two 

oblique legs that were prestressed to the test slab in two 

opposite directions in the plane of the gantry. A hooped 

elastomer of Freyssinet was employed to transfer the axial 

load to the top of the column. It is composed of a Teflon 

block-support and a sliding plate which was connected to 

the static jack. The principal characteristic of this support 

was to transmit the axial force continuously, permitting the 

lateral displacement of the top of the column. The dynamic 

jack-column connection was composed of a metallic cap, a 

mechanical screed, a metal rod, a ball joint, a universal joint 

and a connecting sleeve.  

Automatic measurements were made using a computer, 

linked to Burr-Brown data acquisition system unit and 

Labtech Notebook software. This system enabled both the 

calibration of sensors and gauges, and visualization of the 

evolution of real-time parameters on the computer screen. 

The results (forces, displacements, and strains) were then 

treated using different programs to correct the parasitic 

effects of the system and to calculate the moments, 

curvatures, stiffness, dissipated energies and damping 

factors. 

The forces transmitted by the static and dynamic jacks 

were measured by a load cell in the static jack and a 

pressure sensor in the dynamic jack. A digital voltmeter, 

installed on each jack control panel showed the load growth 

in real time at any moment. At the same time, the data 

acquisition system recorded the evolution of these forces 

automatically on a disk. The values of the applied lateral 

load were then corrected by deducting the friction force 

induced by the sliding support. The vertical load values 

were taken without further treatment. 

The displacements were measured as follows: 

• The displacements associated with the jacks were 

recorded using two LVDT sensors associated with dynamic 

and static jacks. 

• The displacements at the top and at 2/3 of the height of 

the column, in the two principal axes of inertia, were 

recorded with LVDT RDP D5-2000 sensors. 
• The displacements at 1/3 of the height of the column, 

in the two principal axes of inertia, were recorded with 
LVDT RDP D5-1000 sensors. 

Measurement of the strains of the reinforcements was  

 

Fig. 5 Moment-curvature response, cyclic combined 

loading case 
 

 

Fig. 6 Force-displacement response of the reference model, 

MLOLAF, 𝛺 = 45˚ 

 

 

Fig. 7 Average stiffness, CLOLAF, 𝛺 = 30˚ and 45˚ 

 

 

performed employing FL-5-11 gauges. To calculate the 

associated curvatures, three gauges per column were used 

so as to record two measurements of strains of the 

longitudinal reinforcements in each of the main axes of the 

column.  

Park et al. (1972) performed a test on rectangular RC 

1D SM under a cyclic combined loading. They tested a 1D 

SM under cyclic monoaxial bending moment and a 

compression axial loading of 160 kN, having a section of 

30.5 cm×15.2 cm with four longitudinal reinforcement of 

type mild steel with yielding stress of 345 MPa and steel 

percentage of 2.4% (ρ = 2.4%). The used concrete had a 

compression ultimate stress of 34 MPa. See Fig. 5 for the 

moment-curvature response of the tested RC member. 
 

 

5. Verification of the proposed algorithm 
 

Figs. 5 to 8 demonstrate the comparison of the results  
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Fig. 8 Equivalent viscous damping ratios (EVDR), 

CLOLAF, 𝛺 = 30˚ 

 

 

Fig. 9 Interaction diagram of reference section, MLOLAF, 

different 𝛺 
 

 

Fig. 10 Ultimate strain at extreme compression fiber “𝜀𝑢”, 

MLOLAF 
 

 

obtained from the numerical simulation applying the 

proposed algorithm and the experimental test results. As can 

be seen from these figures, there is a close agreement 

between the simulation (using the proposed algorithm) and 

the experimental test results. 

Fig. 5 shows the comparison of the results obtained 

from the proposed simulation and the experimental 

test/simulation of Park et al. (1972) performed on an RC 1D 

SM subjected to cyclic combined loading. For the sake of 

clarity, only the first cycle of loading is shown in this 

figure. 

Fig. 6, shows the comparison of the results obtained 

from the proposed simulation and the experimental test of 

Garcia Gonzalez (1990) on the reference model under 

MLOLAF with the orientation of 𝛺 = 45°.  

In Figs. 7 and 8, the results of the proposed simulation 

and the experimental test of Garcia Gonzalez (1990) for the 

average stiffness and equivalent viscous damping ratio 

(EVDR) for CLOLAF, are compared.  

As illustrated in Fig. 7, the logarithmic trendline type 

matches very well with the variation of stiffness. For the 

reference columns under CLOLAF the simulation give the 

following relation for the average stiffness for the 

orientation of loading of 𝛺 = 30° 

𝐾𝑎𝑣. = 5.63 − 1.39 ln(𝑎) (75) 

And gives the following relation for the orientation of 

loading of 𝛺 = 45° 

𝐾𝑎𝑣. = 4.70 − 1.14 ln(𝑎) (76) 

Where:  

𝐾𝑎𝑣.: Average stiffness in kN/mm, 

𝑎: Amplitude in mm. 

In Fig. 8, the exponential trendline type matches very 

well with the variation of EVDR. 

For the reference column under CLOLAF the simulation 

gives the following relation for the EVDR “ 𝜉 ” for the 

orientation of loading of 𝛺 = 30° 

𝜉 = 0.1 exp(0.035𝑎) (77) 

Where:  

𝑎: Amplitude in mm. 
 

 

6. Interaction diagram 
 

Fig. 9 illustrates the normalized axial force-bending 
moment interaction diagram of the reference section 
subjected to different applied lateral force orientations. The 
ultimate resisting moments of the section (Mmax) under 
different axial loads and the lateral loads in different 
orientation angles are normalized to the maximum ultimate 
resisting moment of the section when the lateral load is 
applied in the direction of the main axis of the section 
(Mmax0). This figure illustrates that in the reference 
section, for all orientations, the balance point occurs when 
the applied axial force is about 38% of Nmax. At the 
balance point, the increase of the ultimate resisting moment 
is about 320%, 245%, 305% and 315% compared to the 
case of no axial load is applied for the lateral load 
orientations of 0°, 30°, 60° and 90°, respectively. Among 
these values, the minimum enhancement of ultimate 
strength occurs when 𝛺 = 30°, while for the other cases the 
ultimate strength of the section is enhanced by a factor of 
more than three. In general, the minimum enhancement of 
the ultimate strength of the section due to axial force is 
observed when the lateral load is applied in the direction of 
the diagonal of the section (the diagonal orientation of 
reference section is 𝛺  = Tan-1 (h/b) = 36°). The 
enhancement factor due to axial load for all of the lateral 
load orientations, ranges between 2.4 and 3.2. 
 

 

7. Evolution of ultimate strain at extreme 
compression fiber (𝜺𝒖) 
 

In Fig. 10, the evolution of ultimate strain at extreme 

314



 

An algorithm to simulate the nonlinear behavior of RC 1D structural members… 
 

 

compression fiber 𝜀𝑢 (at the corner C) of a rectangular RC 

section due to the ultimate moment versus applied 

normalized axial force (N/Nmax) for three different 

orientations of lateral loading are shown. As the obtained 

results and their linear adapted trendlines show, strain 

decreases with increasing the axial force and it generally, 

ranges from 0.0024 to 0.0038. Therefore, the 0.003 value 

given by ACI-318 code for maximum strain in the design in 

extreme compression fiber, is not conservative and valid for 

the combined load cases with significant values of axial 

force (i.e., when N/Nmax > 0.70). 

 

 

8. Conclusions 
 

An algorithm together with a finite element computer 

program has been proposed to simulate numerically the 

nonlinear behavior of RC 1D SMs under combined loading, 

CLOLAF and MLOLAF as well as monotonic or cyclic 

BBMAL. The proposed algorithm has been validated by 

experimental test data.  The interaction diagrams for 

rectangular sections under different lateral load orientations 

indicates that an axial force increases the strength of 1D SM 

up to the "balance point" for any lateral load orientation 

angle at approximately the same value of the axial load.  

The evolution of ultimate strain at extreme compression 

fiber of a rectangular RC section due to the ultimate 

moment and applied normalized axial force for different 

orientations of lateral loading shows that the ultimate strain 

decreases with increasing the axial force. In the examined 

cases, this ultimate strain ranges from 0.0024 to 0.0038. 

Therefore, the 0.003 value given by ACI-318 code for 

ultimate strain, is not conservative and valid for the 

combined load cases with significant values of axial force 

(i.e., when N/Nmax > 0.70). 
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