
Structural Engineering and Mechanics, Vol. 66, No. 2 (2018) 237-248 

DOI: https://doi.org/10.12989/sem.2018.66.2.237                                                                 237 

Copyright © 2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

In recent years, a new invention in material science have 

gained an enormous attention of many researchers. This 

novel type of materials, named functionally graded materials 

(FGMs), are of giant importance in various engineering 

applications, particularly cases which involve heavy thermo-

mechanical loadings. Indeed, FGMs are consist of two 

mainly different layers with various mechanical properties 

and this new feature helps to attaining flexible material 

properties through the thickness of structures. Even though, 

in lots of engineering fields it is important to utilize materials 

which have the ability of energy transformations. In many 

applications, structural elements are subjected to electric, 

magnetic or electro-magnetic fields. In one types of smart 

materials this issue is considered by mixing both electro-

magnetic and mechanical properties of structures. These 

materials are a combination of piezo-electric and piezo-

magnetic materials and this mixture makes it possible to a 

large diversity of energy conversions from each of electric, 

magnetic and elastic to the other one (Ebrahimi and Barati 

2016a, Barati et al. 2016). These materials are called 

magneto-electro-elastic materials (MEEMs) which are able to 

exchange a magnetic field to mechanical one and vice versa. 

Hence, it is crucial to investigate the mechanical behaviors of 

MEE-FG structures (Huang et al. 2007, Li et al. 2008, 

Kattimani et al. 2015).  

Lately, nanotechnology and nanostructures have gained  
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an unbelievable role in the modern engineering and the rate 

of nanostructures’ employment in various micro/nano 

electro-mechanical-systems (MEMS/NEMS) is rising with a 

high speed. Therefore, such structures must be analyzed 

properly in different mechanical aspects and this process 

cannot be performed using classical continuum theory. The 

mechanical responses of nanosize structures are completely 

different from those in the macro scale and this is the main 

issue of developing size-dependent continuum theories. In 

these theories, small scale effects are considered by means of 

defining scale parameters. It is common to use the nonlocal 

elasticity of Eringen (Eringen 1972, 1983) in the most of 

articles to capture the size influences on bending, buckling 

and vibration analysis of nanostructures (Reddy 2007, Thai et 

al. 2012, Li et al. 2010, Akgoz and Civalek 2016, Civalek 

and Demir 2016). Moreover, lots of researches are performed 

by different scientists on wave propagation problem analysis 

of nanostructures based on nonlocal elasticity theory. For 

example, Narendar and Gopalakrishnan (2009) showed the 

effect of nonlocal scale parameter on the wave propagation of 

multi-walled carbon nanotubes. Investigation of size effects 

on the flexural wave propagation behavior of nanoplates 

resting on elastic medium is performed by Wang et al. 

(2010). Narendar et al. (2012) investigated the effect of 

longitudinal magnetic field on wave propagation behaviors of 

equivalent continuum structure of single-walled carbon 

nanotubes rested in elastic medium using nonlocal elasticity. 

The electro-magneto wave propagation analysis of 

viscoelastic sandwich nanoplates is examined by Arani et al. 

(2016) considering surface effects.  

With the rapid development of technology, it is now 

common to use FG beams and plates in 
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micro/nanoelectromechanical systems (MEMS/NEMS), such 

as the components in the form of shape memory alloy thin 

films with a global thickness in micro-or nano-scale (Fu et al. 

2003, Witvrouw and Mehta 2005, Lü et al. 2009), electrically 

actuated MEMS devices (Hasanyan et al. 2008), and atomic 

force microscopes (AFMs) (Rahaeifard et al. 2009). Eltaher 

et al. (2012) studied free vibration analysis of size-dependent 

FG nanobeams employing finite element method. Likewise, 

the size-dependent static buckling characteristics of FG 

nanobeams is investigated based on the nonlocal elasticity 

theory by Eltaher et al. (2013). Thermal vibration 

characteristics of FG nanobeams exposed to different thermal 

loadings is studied by Ebrahimi et al. (2015 b). Ebrahimi and 

Barati (2016a) performed a new analysis on the free vibration 

of FG nanobeams using a higher-order beam theory. 

Ebrahimi and Barati (2016b) examined nonlocal effects on 

hygro-thermal vibration of FG nanoscale beams. In another 

work, Ebrahimi and Barati (2016c) presented a unified 

formulation for dynamic analysis of nonlocal FG nanobeams 

in hygro-thermal environment. Barati et al. (2016) discussed 

thermal buckling behavior of an embedded FG nanoplate in 

different types of thermal environments via a refined plate 

model. Also, Ghadiri et al. (2016) examined the surface 

effects on vibration response of rotating FG nanobeams 

based on Eringen’s nonlocal elasticity. 

Moreover, it is worth mentioning that magneto-electro-

mechanical behavior of nanostructures with piezomagnetic 

properties must be exactly analyzed in order to increase the 

quality and reliability of the modern engineering designs in 

MEMS/NEMS. Ke et al. (2014) explored free vibration 

characteristics of homogenous MEE nanoplates based on the 

nonlocal elasticity and Kirchhoff plate theory. Also, Ansari et 

al. (2015) examined nonlinear forced vibration behavior of 

magneto-electro-thermo-elastic Timoshenko nanobeams 

according to the nonlocal elasticity theory. Recently, 

Ebrahimi and Barati (2016d, e, f) investigated vibration and 

buckling behavior of nonlocal MEE-FG beams under 

magneto-electrical field. Based on the text, just a few works 

can be mentioned related to the wave dispersion analysis of 

piezoelectric and magneto-electro-elastic nanobeams and 

nanoplates.  

Investigation of wave propagation in a homogeneous 

piezoelectric nanoplate with consideration of the surface 

piezoelectricity and small-scale effects is done by Zhang et 

al. (2014). The propagation characteristics of the longitudinal 

waves in a piezoelectric nanoplate is studied by Zang et al. 

(2014). Zhang et al. (2015) investigated the propagation 

behaviors of the flexural wave of piezoelectric FG nanobeam 

with surface and thermal effects. Narendar (2016) has 

recently shown the dispersion of elastic waves in functionally 

graded magneto-electro-elastic rods based on nonlocal 

elasticity. The wave propagation analysis of a functionally 

graded nano-rod made of magneto-electro-elastic material 

subjected to an electric and magnetic potential is discussed 

by Arefi (2016).  
Although the nonlocal elasticity theory can predict the 

mechanical responses of nanostructures, in this theory it is 
only paid attention to the stiffness-softening effect on such 
structures. In other words, some researchers proved a 
stiffness enhancement on mechanical behavior of 
nanostructures which is neglected in all papers in which 

nonlocal elasticity theory is employed (Lim et al. 2009). 
Recently, nonlocal strain gradient theory (NLSGT) is 
introduced to obtain more accurate responses of 
nanostructures, while both stiffness-softening and stiffness-
hardening effects are involved (Lim et al. 2015). In fact, only 
one scale parameter is introduced in nonlocal elasticity theory 
to describe size-dependency of nanostructures. But, in 
nonlocal strain gradient theory two scale parameters are 
introduced related to nonlocal stress field and strain gradients 
stress field to provide more accurate prediction of mechanical 
behavior of nanostructures. Recently, a number of authors 
have been applied the nonlocal strain gradient theory in their 
researches. 

Buckling analysis of Euler-Bernoulli nanobeams using 

nonlocal strain gradient theory is performed by Li and Hu 

(2015). Li et al. (2015) examined the flexural wave 

propagation behaviors of FG nanobeams based on nonlocal 

strain gradient theory. They reported that if strain gradient 

effect is neglected in wave propagation analysis of 

nanobeams, the wave frequencies become underestimated. 

Farajpour et al. (2016) has recently used the NSGT to study 

the buckling characteristics of nanoplates in thermal 

environment. Free vibration analysis of nonlocal strain 

gradient nanobeams constructed from FGMs is investigated 

by Li et al. (2016a). Nonlinear bending and free vibration 

analysis of nonlocal strain gradient FG nanobeams is 

performed by Li et al. (2016b). Most recently, Ebrahimi et al. 

(2016) analyzed the wave dispersion characteristics of a 

temperature-dependent heterogeneous nanoplates employing 

nonlocal strain gradient theory. Therefore, it can be 

concluded that no effort has been allocated to the wave 

propagation analysis of a magneto-electro-elastic FG 

nanobeam via the nonlocal strain gradient theory. 

Herein, nonlocal strain gradient theory is utilized to 

analyze the wave propagation behavior of MEE-FG 

nanobeams under magneto-electrical field based on the 

Euler-Bernoulli beam model. The present theory contains 

two scale parameters to describe size-dependency of MEE-

FG nanobeam much accurately. The power-law function is 

applied to describe the material property distribution of 

nanobeam across the thickness. Hamilton’s principle is used 

to develop the nonlocal governing equations of MEE-FG 

nanobeam. These equations are solved analytically to find 

wave frequency, escape frequency and phase velocity as 

functions of wave number. Finally, by changing different 

parameters including nonlocal parameter, length scale 

parameter, material graduation, magnetic and electric 

potentials, the wave propagation characteristics of MEE-FG 

nanobeam affected by these parameters are discussed in 

detail. 

 

 

2. Theory and formulation 
 

2.1 The material properties of MEE-FG nanobeam 
 

A magneto-electro-elastic functionally graded (MEE-

FG) nanobeam with length L and thickness of h, shown in 

Fig.1 is assumed to be subjected to a magnetic potential 

Υ(𝑥, 𝑧, 𝑡) and an electric potential Φ(𝑥, 𝑧, 𝑡) here. The 

MEE-FG nanobeam is made of 𝐵𝑎𝑇𝑖𝑂3  and 𝐶𝑜𝐹𝑒2𝑂4  
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Fig. 1 Geometry of FG nanobeam under applied magneto-

electric field 

 

Table 1 Magneto-electro-elastic coefficients of material 

properties (Ramirez et al. 2006) 

Properties BaTiO3 CoFe2O4 

c11 (GPa) 166 286 

c55 43 45.3 

e31 (Cm−2) -4.4 0 

e15 11.6 0 

q31 (N/Am) 0 580.3 

q15 0 550 

s11 (10−9 C2m−2N−1) 11.2 0.08 

s13 12.6 0.093 

χ11 (Ns2C−2/2) 5 -590 

χ33 10 157 

d11=d33 0 0 

ρ (kgm−3) 5800 5300 

 

 

with the properties established in Table 1. The material 

properties of MEE-FG nanobeam is considered to vary 

gradually in the thickness direction via modified power-law 

distribution. So, the material properties can be expressed by 

𝑃𝑐𝑉𝑐 + 𝑃𝑚𝑉𝑚 = 1 (1) 

In above equation 𝑃𝑚  and 𝑃𝑐  denote metal and 

ceramic material properties, respectively and their volume 

fractions are related to each other as follows 

𝑉𝑐 + 𝑉𝑚 = 1 (2) 

The volume fraction of ceramic can be calculated in a 

desired thickness as follows 

𝑉𝑐 = (
𝑧

ℎ
+
1

2
)𝑝 (3) 

Here p is gradient index which controls the smooth 

distribution of material through the thickness of the beam 

and z is the distance from neutral plane of the FG 

nanobeam. Now, substituting Eqs. (2) and (3) inti Eq. (1) 

results in an equation for equivalent material properties of 

FG beam 

𝑃(𝑧) = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝑃𝑚 (4) 

It is worth mentioning that the top surface of MEE-FG 

nanosize beam (𝑧 = +ℎ 2⁄ ), is fully 𝐶𝑜𝐹𝑒2𝑂4, whereas the 

bottom surface (𝑧 = −ℎ 2⁄ ), is fully 𝐵𝑎𝑇𝑖𝑂3. 

2.2 Kinematic relations 
 

Employing Euler-Bernoulli beam model, the 

displacement field at each point of FG beam can be written 

as follows 

𝑢𝑥(𝑥, 𝑧) = 𝑢(𝑥) − 𝑧
𝜕𝑤

𝜕𝑥
 (5a) 

𝑢𝑧(𝑥, 𝑧) = 𝑤(𝑥) (5b) 

In above equations, u and w are the displacement 

components in the mid-plane along the coordinates x and z, 

respectively. In order to convince Maxwell’s equation in the 

quasi-static estimation, a combination of a cosine and linear 

variation is considered to simulate the electric and magnetic 

potential distributions along the thickness direction as 

follows (Ebrahimi and Barati 2016f) 

Φ(𝑥, 𝑧, 𝑡) = −𝑐𝑜𝑠(𝜉𝑧)ϕ(𝑥, 𝑧, 𝑡) +
2𝑧

ℎ
𝑉 (6) 

Υ(𝑥, 𝑧, 𝑡) = −𝑐𝑜𝑠(𝜉𝑧)γ(𝑥, 𝑧, 𝑡) +
2𝑧

ℎ
Ω (7) 

where 𝜉 = 𝜋 ℎ⁄ . In above equations, V and Ω are the 

external applied electric voltage and magnetic potential, 

respectively. Based on the Euler-Bernoulli beam theory, the 

only nonzero strain of the nanobeam can be shown as 

follows 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
(0)
+ 𝑧𝜀𝑥𝑥

(1)
 (8) 

where 

𝜀𝑥𝑥
(0)
=

𝜕𝑢

𝜕𝑥
          ,          𝜀𝑥𝑥

(1)
= −

𝜕2𝑤

𝜕𝑥2
 (9) 

Now, based on Eq. (6), the relation between electric 

field (𝐸𝑥 , 𝐸𝑧) and electric potential (Φ), can be stated as 

(Ebrahimi and Barati 2016f) 

𝐸𝑥 = −Φ,𝑥 =  𝑐𝑜𝑠(𝜉𝑧)
𝜕ϕ

𝜕𝑥
 (10) 

𝐸𝑧 = −Φ,𝑧 = −𝜉 𝑠𝑖𝑛(𝜉𝑧)ϕ −
2𝑉

ℎ
 (11) 

Also, according to Eq. (7), the relation between 

magnetic field (𝐻𝑥 , 𝐻𝑧) and magnetic potential (Υ), can be 

noted as 

𝐻𝑥 = −Υ,𝑥 =  𝑐𝑜𝑠(𝜉𝑧)
𝜕γ

𝜕𝑥
 (12) 

𝐻𝑧 = −Υ,𝑧 = −𝜉 𝑠𝑖𝑛(𝜉𝑧)ϕ −
2Ω

ℎ
 (13) 

Now according to the Hamilton’s principle it is tried to 

find the Euler-Lagrange equations of the MEE-FG 

nanobeam 

∫ 𝛿(Π𝑆 − Π𝐾 + Π𝑊)𝑑𝑡
𝑡

0

= 0 (14) 

where, Π𝑆 is strain energy, Π𝐾 is kinetic energy and Π𝑊 

is the work done by external energy. The variation of strain 
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energy is expressed as 

𝛿Π𝑆 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 − 𝐷𝑥𝛿𝐸𝑥

ℎ
2

−ℎ2

𝐿

0

− 𝐷𝑧𝛿𝐸𝑧 − 𝐵𝑥𝛿𝐻𝑥 − 𝐵𝑧𝛿𝐻𝑧)𝑑𝑧𝑑𝑥 

(15) 

Substituting Eq. (8) in Eq. (15) yields 

𝛿Π𝑆 = ∫ (𝑁𝛿𝜀𝑥𝑥
(0) +

𝐿

0

𝑀𝛿𝜀𝑥𝑥
(1))𝑑𝑥+∫ ∫ (−𝐷𝑥𝑐𝑜𝑠(𝜉𝑧)𝛿 (

𝜕ϕ

𝜕𝑥
) +

ℎ
2

−ℎ2

𝐿

0

𝐷𝑧𝜉 𝑠𝑖𝑛(𝜉𝑧)𝛿𝜙 − 𝐵𝑥𝑐𝑜𝑠(𝜉𝑧)𝛿 (
𝜕γ

𝜕𝑥
) +

𝐵𝑧𝜉 𝑠𝑖𝑛(𝜉𝑧)𝛿𝛾)𝑑𝑧𝑑𝑥 

(16) 

in which N and M are axial force and bending moment, 

respectively, and can be expressed as 

𝑁 = ∫𝜎𝑥𝑥𝑑𝐴 ,           

𝑀 = ∫𝜎𝑥𝑥𝑧𝑑𝐴 
(17) 

The variation of virtual work done by external applied 

forces can be expressed in the following form 

𝛿Π𝑊 = ∫ ([𝑁𝐸 + 𝑁𝐻]
𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
) 𝑑𝑥

𝐿

0

 (18) 

where 𝑁𝐸 and 𝑁𝐻 are normal in-plane forces generated 

due to electric voltage and magnetic potential, respectively, 

and can be defined in the following form 

𝑁𝐸 = −∫ 𝑒̃31
2𝑉

ℎ
𝑑𝑧

ℎ
2

−ℎ2
 , 

𝑁𝐻 = −∫ 𝑞̃31
2Ω

ℎ
𝑑𝑧

ℎ
2

−ℎ2

 

(19) 

The first variation of kinetic energy can be expressed as 

𝛿Π𝐾 = ∫[𝑢𝑥̇𝛿𝑢𝑥̇ + 𝑢𝑧̇𝛿𝑢𝑧̇]𝜌(𝑧)𝑑𝑉

= ∫ ∫ (𝐼0[𝑢̇𝛿𝑢̇ + 𝑤̇𝛿𝑤̇]

ℎ
2

−
ℎ
2

𝐿

0

− 𝐼1 [𝑢̇
𝜕𝛿𝑤̇

𝜕𝑥
+ 𝑤̇

𝜕𝛿𝑢̇

𝜕𝑥
]

+ 𝐼2 [
𝜕𝑤̇

𝜕𝑥

𝜕𝛿𝑤̇

𝜕𝑥
]) 

(20) 

In all of the equations the dot-superscript denotes the 

differentiation with respect to time; and the mass inertias 

used in above equations are supposed to be in the following 

form 

(𝐼0, 𝐼1, 𝐼2) = ∫ (1, 𝑧, 𝑧2)𝜌(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

 (21) 

By substituting Eqs. (16), (18), and (20) into Eq. (14) 

and setting the coefficients of δu, δw, 𝛿𝜙 and 𝛿𝛾 to zero, 

the Euler-Lagrange equations of MEE-FG nanobeam can be 

written as 

𝜕𝑁

𝜕𝑥
= 𝐼0𝑢̈ − 𝐼1

𝜕𝑤̈

𝜕𝑥
 (22) 

𝜕2𝑀

𝜕𝑥2
− (𝑁𝐸 + 𝑁𝐻)

𝜕2𝑤

𝜕𝑥2
= 𝐼0𝑤̈ + 𝐼1

𝜕𝑢̈

𝜕𝑥
− 𝐼2

𝜕2𝑤̈

𝜕𝑥2
 (23) 

∫ (𝑐𝑜𝑠(𝜉𝑧)
𝜕𝐷𝑥
𝜕𝑥

+ 𝜉𝑠𝑖𝑛(𝜉𝑧)𝐷𝑧) 𝑑𝑧 = 0

ℎ
2

−
ℎ
2

 (24) 

∫ (𝑐𝑜𝑠(𝜉𝑧)
𝜕𝐵𝑥
𝜕𝑥

+ 𝜉𝑠𝑖𝑛(𝜉𝑧)𝐵𝑧) 𝑑𝑧 = 0

ℎ
2

−
ℎ
2

 (25) 

 

2.2 The nonlocal strain gradient theory for MEE 

materials 
 

According to the nonlocal strain gradient theory, the 

stress field takes into consider the effects of nonlocal elastic 

stress field besides strain gradient stress field. So, the theory 

can be expressed as follows for magneto-electro-elastic solids 

(Ebrahimi et al. 2016, Li et al. 2016) 

[1 − (𝑒1𝑎)
2∇2][1 − (𝑒0𝑎)

2∇2]𝜎𝑖𝑗
= [1 − (𝑒1𝑎)

2∇2](𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙
− 𝑒𝑚𝑖𝑗𝐸𝑚 − 𝑞𝑛𝑖𝑗𝐻𝑛) 

−𝑙2[1 − (𝑒0𝑎)
2∇2]∇2(𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑚𝑖𝑗𝐸𝑚 − 𝑞𝑛𝑖𝑗𝐻𝑛) 

(26) 

[1 − (𝑒1𝑎)
2∇2][1 − (𝑒0𝑎)

2∇2]𝐷𝑖
= [1 − (𝑒1𝑎)

2∇2](𝑒𝑖𝑘𝑙𝜀𝑘𝑙
+ 𝑠𝑖𝑚𝐸𝑚 + 𝑑𝑖𝑛𝐻𝑛) 

−𝑙2[1 − (𝑒0𝑎)
2∇2]∇2(𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑠𝑖𝑚𝐸𝑚 + 𝑑𝑖𝑛𝐻𝑛) 

 

(27) 

[1 − (𝑒1𝑎)
2∇2][1 − (𝑒0𝑎)

2∇2]𝐵𝑖
= [1 − (𝑒1𝑎)

2∇2](𝑞𝑖𝑗𝑘𝜀𝑘𝑙
+ 𝑑𝑖𝑚𝐸𝑚 + 𝜒𝑖𝑛𝐻𝑛) 

−𝑙2[1 − (𝑒0𝑎)
2∇2]∇2(𝑞𝑖𝑗𝑘𝜀𝑘𝑙 + 𝑑𝑖𝑚𝐸𝑚 + 𝜒𝑖𝑛𝐻𝑛) 

 

(28) 

By discarding the terms of order O(∇2 ) and also 

assuming 𝑒 = 𝑒0 = 𝑒1, and defining the Laplacian operator 

as ∇2=
𝜕2

𝜕𝑥2
, the simplified constitutive relation can be 

written as follows 

(1 − µ2
𝜕2

𝜕𝑥2
)𝜎𝑖𝑗 = (1 − 𝜆2

𝜕2

𝜕𝑥2
) (𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

− 𝑒𝑚𝑖𝑗𝐸𝑚 − 𝑞𝑛𝑖𝑗𝐻𝑛) 
(29) 

(1 − µ2
𝜕2

𝜕𝑥2
)𝐷𝑖 = (1 − 𝜆

2
𝜕2

𝜕𝑥2
) (𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑠𝑖𝑚𝐸𝑚

+ 𝑑𝑖𝑛𝐻𝑛) 
(30) 

(1 − µ2
𝜕2

𝜕𝑥2
)𝐵𝑖 = (1 − 𝜆

2
𝜕2

𝜕𝑥2
) (𝑞𝑖𝑗𝑘𝜀𝑘𝑙 + 𝑑𝑖𝑚𝐸𝑚

+ 𝜒𝑖𝑛𝐻𝑛) 
(31) 
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Therefore, the stress-strain equations can be defined as 

follows 

(1 − µ2
𝜕2

𝜕𝑥2
)𝜎𝑥𝑥

= (1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝑐1̃1𝜀𝑥𝑥 − 𝑒̃31𝐸𝑧

− 𝑞̃31𝐻𝑧) 

(32) 

(1 − µ2
𝜕2

𝜕𝑥2
)𝐷𝑥 = (1 − 𝜆

2
𝜕2

𝜕𝑥2
) (𝑠̃11𝐸𝑥 + 𝑑̃11𝐻𝑥) (33) 

(1 − µ2
𝜕2

𝜕𝑥2
)𝐷𝑧 = (1 − 𝜆2

𝜕2

𝜕𝑥2
) (𝑒̃31𝜀𝑥 + 𝑠̃33𝐸𝑧

+ 𝑑̃33𝐻𝑧) 
(34) 

(1 − µ2
𝜕2

𝜕𝑥2
)𝐵𝑥 = (1 − 𝜆2

𝜕2

𝜕𝑥2
) (𝑑̃11𝐸𝑥 + 𝜒11𝐻𝑥) (35) 

(1 − µ2
𝜕2

𝜕𝑥2
)𝐵𝑧 = (1 − 𝜆

2
𝜕2

𝜕𝑥2
) (𝑞̃31𝜀𝑥 + 𝑑̃33𝐸𝑧

+ 𝜒33𝐻𝑧) 
(36) 

where µ=ea, λ=l are nonlocal and length scale parameters, 

respectively. Also, 𝑐̃𝑖𝑗 , 𝑑̃𝑖𝑗 , 𝑒̃𝑖𝑗 , 𝑠̃𝑖𝑗 , 𝑞̃𝑖𝑗  and 𝜒𝑖𝑗  are 

reduced coefficients of FG nanobeam when it is subjected 

to a plane stress state (Ke et al. 2014) 

𝑐̃11 = 𝑐11 −
𝑐13

2

𝑐33
  ,  𝑠̃11 = 𝑠11 

 

𝑒̃31 = 𝑒31 −
𝑐13𝑒33

𝑐33
  ,  𝑞̃31 = 𝑞31 −

𝑐13𝑞33

𝑐33
  ,  

𝑑̃11 = 𝑑11  ,  𝜒11 = 𝜒11 

 

𝑑̃33 = 𝑑33 −
𝑒33𝑞33

𝑐33
  ,  𝑠̃33 = 𝑠33 −

𝑒33
2

𝑐33
  ,  𝜒33 =

𝜒33 −
𝑞33

2

𝑐33
 

(37) 

Now, the force-strain and moment-strain equations of 

the nonlocal FG beam can be developed by integrating from 

Eqs. (32)-(36) across the cross-section area of the beam 

(1 − µ2
𝜕2

𝜕𝑥2
)𝑁 = (1 − 𝜆2

𝜕2

𝜕𝑥2
) (𝐴𝑥𝑥

𝜕𝑢

𝜕𝑥
+ 𝐴31

𝑒 𝜙

+ 𝐴31
𝑚 𝛾) − (𝑁𝐸 +𝑁𝐻) 

(38) 

(1 − µ2
𝜕2

𝜕𝑥2
)𝑀 = (1 − 𝜆2

𝜕2

𝜕𝑥2
) (𝐵𝑥𝑥

𝜕𝑢

𝜕𝑥
+ 𝐸31

𝑒 𝜙

+ 𝐸31
𝑚𝛾) − (𝑀𝐸 +𝑀𝐻) 

(39) 

∫ (1 − µ2
𝜕2

𝜕𝑥2
)𝐷𝑥 cos(𝜉𝑧) 𝑑𝑧

ℎ

2

−
ℎ

2

=(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐸15

𝑒
𝜕𝑤

𝜕𝑥
+ 𝐹11

𝑒
𝜕𝜙

𝜕𝑥

+ 𝐹11
𝑚
𝜕𝛾

𝜕𝑥
) 

(40) 

∫ (1 − µ2
𝜕2

𝜕𝑥2
)𝐷𝑧𝜉 sin(𝜉𝑧) 𝑑𝑧

ℎ

2

−
ℎ

2

=(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐴31

𝑒
𝜕𝑢

𝜕𝑥
− 𝐹33

𝑒 𝜙

− 𝐹33
𝑚𝛾) 

(41) 

∫ (1 − µ2
𝜕2

𝜕𝑥2
)𝐵𝑥 cos(𝜉𝑧) 𝑑𝑧

ℎ

2

−
ℎ

2

=(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐸15

𝑚
𝜕𝑤

𝜕𝑥

+ 𝐹11
𝑚
𝜕𝜙

𝜕𝑥
+ 𝑋11

𝑚
𝜕𝛾

𝜕𝑥
) 

(42) 

∫ (1 − µ2
𝜕2

𝜕𝑥2
)𝐵𝑧𝜉 sin(𝜉𝑧) 𝑑𝑧

ℎ

2

−
ℎ

2

=(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐴31

𝑚
𝜕𝑢

𝜕𝑥
− 𝐹33

𝑚𝜙

− 𝑋33
𝑚𝛾) 

(43) 

in which 

{𝐴𝑥𝑥, 𝐵𝑥𝑥 , 𝐷𝑥𝑥} = ∫ 𝑐̃11{1, 𝑧, 𝑧
2}𝑑𝑧

ℎ

2

−
ℎ

2

 (44) 

{𝐴31
𝑒 , 𝐸31

𝑒 , 𝐹31
𝑒 } = ∫ 𝑒̃31𝜉 sin(𝜉𝑧) {1, 𝑧, 𝑧

3}𝑑𝑧

ℎ
2

−ℎ2

 (45) 

{𝐹11
𝑒 , 𝐹33

𝑒 } = ∫ {𝑠̃11𝑐𝑜𝑠
2(𝜉𝑧), 𝑠̃33𝜉

2𝑠𝑖𝑛2(𝜉𝑧)}𝑑𝑧

ℎ
2

−ℎ2

 (46) 

{𝐴31
𝑚 , 𝐸31

𝑚 , 𝐹31
𝑚} = ∫ 𝑞̃31𝜉 sin(𝜉𝑧) {1, 𝑧, 𝑧

3}𝑑𝑧

ℎ
2

−ℎ2

 (47) 

{𝐹11
𝑚, 𝐹33

𝑚} = ∫ {𝑑̃11𝑐𝑜𝑠
2(𝜉𝑧), 𝑑̃33𝜉

2𝑠𝑖𝑛2(𝜉𝑧)}𝑑𝑧

ℎ
2

−ℎ2

 (48) 

{𝑋11
𝑚 , 𝑋33

𝑚} = ∫ {𝜒11𝑐𝑜𝑠
2(𝜉𝑧), 𝜒33𝜉

2𝑠𝑖𝑛2(𝜉𝑧)}𝑑𝑧

ℎ
2

−ℎ2

 (49) 

Moreover, the normal moments, made by electro-

magnetic field, used in Eq. (39) can be developed by 

following equations 

𝑀𝐸 = −∫ 𝑒̃31
2𝑉

ℎ
𝑧𝑑𝑧

ℎ
2

−
ℎ

2

   ,   

 𝑀𝐻 = −∫ 𝑞̃31
2Ω

ℎ
𝑧𝑑𝑧

ℎ
2

−
ℎ

2

 

(50) 
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The nonlocal governing equations of a MEE-FG 

nanobeam can be attained by substituting Eqs. (38)-(43) into 

Eqs. (22)-(25) as follows 

(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐴𝑥𝑥

𝜕2𝑢

𝜕𝑥2
− 𝐵𝑥𝑥

𝜕3𝑤

𝜕𝑥3
+ 𝐴31

𝑒
𝜕𝜙

𝜕𝑥

+ 𝐴31
𝑚
𝜕𝛾

𝜕𝑥
)

+ (1 − µ2
𝜕2

𝜕𝑥2
) (−𝐼0𝑢̈ + 𝐼1

𝜕𝑤̈

𝜕𝑥
)

= 0 

(51) 

(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐵𝑥𝑥

𝜕3𝑢

𝜕𝑥3
− 𝐷𝑥𝑥

𝜕4𝑤

𝜕𝑥4
+ 𝐸31

𝑒
𝜕2𝜙

𝜕𝑥2

+ 𝐸31
𝑚
𝜕2𝛾

𝜕𝑥2
)

+ (1 − µ2
𝜕2

𝜕𝑥2
)(−𝐼0𝑤̈ − 𝐼1

𝜕𝑢̈

𝜕𝑥

+ 𝐼2
𝜕2𝑤̈

𝜕𝑥2
− (𝑁𝐻 +𝑁𝐸)

𝜕2𝑤

𝜕𝑥2
) = 0 

(52) 

(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐴31

𝑒 (
𝜕𝑢

𝜕𝑥
) − 𝐸31

𝑒
𝜕2𝑤

𝜕𝑥2
+ 𝐹11

𝑒
𝜕2𝜙

𝜕𝑥2

+ 𝐹11
𝑚
𝜕2𝛾

𝜕𝑥2
− 𝐹33

𝑒 𝜙 − 𝐹33
𝑚𝛾) = 0 

(53) 

(1 − 𝜆2
𝜕2

𝜕𝑥2
) (𝐴31

𝑚 (
𝜕𝑢

𝜕𝑥
) − 𝐸31

𝑚
𝜕2𝑤

𝜕𝑥2
+ 𝐹11

𝑚
𝜕2𝜙

𝜕𝑥2

+ 𝑋11
𝑚
𝜕2𝛾

𝜕𝑥2
− 𝐹33

𝑚𝜙 − 𝑋33
𝑚𝛾) = 0 

(54) 

 
 
3. Solution procedure 
 

The displacement fields of the waves propagating in the 

x-z plane are supposed to be in the following form: 

{

𝑢(𝑥, 𝑧, 𝑡)

𝑤(𝑥, 𝑧, 𝑡)
𝜙(𝑥, 𝑧, 𝑡)

𝛾(𝑥, 𝑧, 𝑡)

}=

{
 

 
𝑈 𝑒𝑥𝑝[𝑖(𝑘𝑥 − 𝜔𝑡)]

𝑊 𝑒𝑥𝑝[𝑖(𝑘𝑥 − 𝜔𝑡)]

Φ 𝑒𝑥𝑝[𝑖(𝑘𝑥 − 𝜔𝑡)]

Υ 𝑒𝑥𝑝[𝑖(𝑘𝑥 − 𝜔𝑡)] }
 

 
 (55) 

where U, W, 𝛷 and 𝛶 are the unknown coefficients, k is 

the wave number of propagated waves along x direction 

respectively, and finally 𝜔  is frequency of propagated 

waves. Substituting Eq. (55) to Eqs. (51)-(54) yields 

([𝐾] − 𝜔2[𝑀]){∆} = {0} (56) 

In Eq. (56), the unknown parameters can be expressed 

as 

{∆} = {𝑈,𝑊𝛷, 𝛶}𝑇 (57) 

 

Table 2 Comparison of frequencies of MEE-FG nanobeam 

for different nonlocal parameters 

µ p=0.2  p=1  p=5  

 
Ebrahimi and 

Barati 2016a 
present 

Ebrahimi and 

Barati 2016a 
present 

Ebrahimi and 

Barati 2016a 
present 

0 9.30465 9.37202 8.44476 8.49624 7.86815 7.91150 

1 8.8769 8.94118 8.05654 8.10565 7.50644 7.54651 

2 8.50319 8.56476 7.71737 7.76441 7.19042 7.22881 

3 8.17302 8.23220 7.41771 7.46293 6.91123 6.94812 

 

 

[K]=[ 

𝑎11 𝑎12
𝑎21 𝑎22

𝑎13 𝑎14
𝑎23 𝑎24

𝑎31 𝑎32
𝑎41 𝑎42

𝑎33 𝑎34
𝑎43 𝑎44

] 

[M]=[

𝑚11 𝑚12

𝑚21 𝑚22

𝑚13 𝑚14

𝑚23 𝑚24
𝑚31 𝑚32

𝑚41 𝑚42

𝑚33 𝑚34

𝑚43 𝑚44

 ] 

(58) 

where 𝑎𝑖𝑗 , 𝑚𝑖𝑗 are as given in appendix. The matrix given 

by Eq. (56) stands for the coefficient matrix and the wave 

frequency can be developed by solving the following 

eigenvalue equation 

|[𝐾] − 𝜔2[𝑀]| = 0 (59) 

Now, the wave frequency can be derived by solving Eq. 

(59) for ω. This derived wave frequency can be showed as a 

function of wave number as follows 

𝜔 = 𝑀(𝑘) (60) 

The expressed frequency shows the wave frequency of 

MEE-FG nanobeam. Also, phase velocity of nanobeam, 

which is wave frequency divided by wave number, can be 

showed in the following form as a function of wave number 

𝑐𝑝 =
𝜔

𝑘
 (61) 

whenever wave number is tended to infinity, the escape 

frequency of FG nanobeam can be developed. As a 

predictable phenomenon, if the frequency of waves 

propagating through a nanobeam reaches to the escape 

frequency, the flexural waves do not spread anymore. 
 

 

4. Results and discussion 
 

In this part, nonlocal strain gradient theory is employed 

for wave dispersion analysis of an MEE-FG nanobeam 

made of 𝐵𝑎𝑇𝑖𝑂3 and 𝐶𝑜𝐹𝑒2𝑂4 subjected to an external 

electric voltage and magnetic potential. In the presented 

results, the variation of wave frequency and phase velocity 

and also escape frequency of MEE-FG nanobeam under 

different wave numbers, nonlocal parameters, length scale 

parameters, magnetic potentials, electric voltages and 

gradient indices are shown in detail. The thickness of 

nanobeam is h=50 nm. The frequencies of MEE-FG 

nanobeam are validated with those presented by Ebrahimi 

and Barati (2016a) for various nonlocal parameters and a 

good agreement can be seen as tabulated in Table 2. In this 

table it is considered that V=Ω=0.  
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(a) λ=0 nm 

 

 
(b) λ=0.5 nm 

 
(c) λ=1 nm 

 
(d) λ=1.5 nm 

Fig. 2 Variation of wave frequency of MEE-FG nanobeam 

versus wave number for various nonlocal and length scale 

parameter (p=1, V=Ω=0) 
 

 
(a) p=0.2 

 
(b) p=0.5 

 
(c) p=1 

 
(d) p=2 

Fig. 3 Variation of phase velocity of MEE-FG nanobeam 

versus wave number for various nonlocal parameters and 

gradient indices (λ=0.5, V=Ω=0) 
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Small scale influence on the wave frequency of MEE-

FG nanobeam versus wave number (k) is investigated in the 

framework of nonlocal strain gradient theory in Fig. 2 for 

various length scale parameters at p=1, V=Ω=0. It is 

observed that the value of wave frequency doesn’t change if 

wave number reaches to 10 × 109 once the length scale 

parameter is set into zero and the nonlocal parameter has a 

nonzero value. 

In spite of mentioned situation, the wave frequency 

enormously tends to infinity when the strain gradient effect 

is considered (𝜆 ≠ 0). Such observation is not reported in 

all previous works on wave propagation analysis of smart 

nanobeams based on nonlocal elasticity theory. Also, 

influence of nonlocal parameter on wave frequency is not 

sensible at small wave numbers. However, nonlocal 

parameter has a decreasing effect on the wave frequency of 

MEE-FG nanobeam, particularly in wave numbers larger 

than 0.3 × 109 . This is due to stiffness-softening effect 

introduced by nonlocal elasticity. The influence of length 

scale parameter is different from the nonlocal parameter. 

In fact, by increasing the amount of length scale 

parameter, the wave frequency rises. This is related to 

stiffness-hardening effect introduced by strain gradient 

theory. Moreover, the more the length scale parameter is, 

the more the wave frequency slope is; that emphasizes on 

the increasing effect of this parameter on the wave 

frequency of MEE-FG nanobeams. So, it can be concluded 

that a change in the value of nonlocal and length scale 

parameters affects significantly the wave frequency of 

MEE-FG nanobeams, especially at larger wave numbers. 

So, it is crucial to consider both nonlocal and length scale 

parameters for more accurate analysis of wave propagation 

behavior of smart nanobeams. 

The variation of phase velocity of MEE-FG nanobeams 

versus wave number for various nonlocal parameters and 

gradient indices (p) is illustrated in Fig. 3 when the length 

scale parameter is set into 0.5 nm. It can be interpreted that 

once the nonlocal parameter is zero, the curve has a turning 

point and will tends to infinity for all gradient indices. At 

first, the amount of phase velocity rises with an increase in 

the wave number value and then it starts to diminish once 

arrived to its peak. It is worth mentioning that there is not a 

unique wave number available in which phase velocity 

arrives to its peak amount in it for various nonlocal 

parameter values. This peak wave number is moving to the 

left if the nonlocality increases. Also, gradient index has a 

reducing impact on phase velocity of MEE-FG nanobeams. 

Because, by increase of gradient index the portion of metal 

phase in structure increases. Moreover, increase of gradient 

index decreases the maximum value of phase velocity for 

every value of nonlocal parameter.  
In addition, the distribution of phase velocity versus 

wave number for various length scale parameters and 
gradient indices is plotted in Fig. 4 when µ=1 nm, V=Ω=0. 
In this figure the effect of length scale parameter is divided 
into three forms. Whenever the length scale parameter is 
equal to nonlocal parameter, the phase velocity rises to its 
maximum and after that remains constant. On the other 
hand, this trend is completely different whether the length 
scale parameter is larger or smaller than nonlocal parameter. 
If this parameter is smaller than nonlocal parameter, after  

 
(a) p=0.2 

 
(b) p=0.5 

 
(c) p=1 

 
(d) p=2 

Fig. 4 Variation of phase velocity of MEE-FG nanobeam 

versus wave number for various length scale parameters 

and gradient indices (µ=1 nm, V=Ω=0) 
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(a) λ=0.5 nm 

 
(b) λ=1.5 nm 

Fig. 5 Variation of phase velocity of MEE-FG nanobeam 

versus wave number for various electric voltages (p=1, µ=1 

nm) 
 
 

achieving the peak value, phase velocity decreases 
smoothly; and if the length scale parameter is larger than 
nonlocal parameter, the trend is increasingly, means, an 
increase in the value of wave number results in a raise in 
the magnitude of phase velocity. For all these case, phase 
velocity is not affected by larger values of wave number. 
Once again, it can be clearly seen that gradient index has a 
decreasing effect on the phase velocity of MEE-FG 
nanosize beams for every value of length scale parameter. 

The influences of electric voltage and magnetic 

potential are on phase velocity of MEE-FG nanobeams are 

respectively plotted in Figs. 5 and 6 when µ=1 nm and p=1. 

In these figures to cases are considered as λ>µ and λ<µ. If 

the length scale parameter is set into a value smaller than 

nonlocal parameter, the magnitude of phase velocity 

increases to its peak and then starts to be damped for every 

value of magnetic potential and electric voltage. But, when 

the length scale parameter is larger than nonlocal parameter, 

the phase velocity increases significantly with the rise of 

wave number until it becomes constant at large wave 

numbers. It can be figured out that increasing the applied 

voltage/ magnetic potential from their negative to positive 

values results in decreasing/increasing the amount of phase 

velocity. Such phenomena are only important at smaller 

wave numbers. So, if the wave number becomes greater 

than 0.5 × 109 , phase velocity remains constant for all 

values of electric voltage and magnetic potential.  

  
(a) λ=0.5 nm 

 
(b) λ=1.5 nm 

Fig. 6 Variation of phase velocity of MEE-FG nanobeam 

versus wave number for various magnetic potentials (p=1, 

µ=1 nm) 

 

 

Fig. 7 Variation of escape frequency of MEE-FG nanobeam 

versus length scale parameter for various gradient indices 

(µ=1 nm) 

 

 

Also, variation of escape frequency versus length scale 

parameter for various gradient indices is illustrated in Fig. 7 

when µ=1 nm. In this figure, escape frequency is obtained 

by setting the wave number to infinity. It is observed that 

when the length scale parameter increases, the escape 

frequency rises significantly for every value of gradient 

index. The gradient index is assumed to be changed and it is 

clear that at a constant value of length scale parameter, the 

escape frequency value is greater at smaller gradient indices 

which shows the decreasing influence of gradient index on 

escape frequency. 

Effect of electric voltage on the escape frequency of  
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Fig. 8 Variation of escape frequency of MEE-FG nanobeam 

versus applied voltage for various nonlocal parameters 

(λ=0.5 nm, p=1) 

 

 

MEE-FG nanobeam for different nonlocal parameters is 

depicted in Fig. 8 at λ=0.5 nm, p=1. A decreasing effect of 

nonlocality on the escape frequency of MEE-FG 

nanobeams is observed, regardless of the value of applied 

voltage. A usual outcome of this figure is the independency 

of escape frequency from the applied electric voltage. 

Because, escape frequencies are derived when wave 

number is set to infinity and in this region electric voltage 

has no effect on wave frequencies. 

 

 

5. Conclusions 
 

Present paper develops a nonlocal strain gradient-based 

magneto-electro-elastic functionally graded (MEE-FG) 

beam model to study the flexural waves propagating in 

nanobeams. To capture size-dependency of such nanobeam, 

two scale parameters related to nonlocal stress field and 

strain gradients are considered in one theory. Material 

properties are distributed along the thickness according to 

the power-law rule of mixture. Exploiting the Hamilton’s 

principle, the nonlocal governing equations are derived and 

solved by implementing and analytical solution. It is 

deduced that effects of nonlocal and length scale parameters 

are significant at larger wave umbers. However, nonlocal 

and length scale parameters introduce stiffness-softening 

and stiffness-hardening effects, therefore, respectively 

reduces and increases the wave frequencies and phase 

velocities of MEE-FG nanobeam. Also, it is found that 

effect of electric voltage and magnetic potential is only 

important at smaller wave numbers. In fact, negative 

voltages and magnetic potentials respectively give larger 

and smaller phase velocities. Also, it is concluded that 

gradient index has a reducing impact on phase velocity and 

wave frequencies. Furthermore, it is noticed that escape 

frequency of MEE-FG nanobeams is independent of electric 

voltage and magnetic potential.  
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Appendix 
 

In Eqs. (57) an (58) 𝑎𝑖𝑗  and 𝑚𝑖𝑗  , (𝑖, 𝑗 = 1,2,3,4) are 

defined as follows 

𝑎11 = −(1 + 𝜆2𝑘2)𝐴𝑥𝑥𝑘
2 

 

𝑎12 = 𝑖𝐵𝑥𝑥(1 + 𝜆
2𝑘2)𝑘3 

 

𝑎13 = 𝑖𝑘(1 + 𝜆2𝑘2)𝐴31
𝑒  

 

𝑎14 = 𝑖𝑘(1 + 𝜆2𝑘2)𝐴31
𝑚  

 

𝑎21
= −𝑖𝐵𝑥𝑥(1 + 𝜆

2𝑘2)𝑘3 

 

𝑎22
= −(1 + 𝜆2𝑘2)𝐷𝑥𝑥𝑘

4

+ (1
+ 𝜇2𝑘2)[(𝑁𝐸 +𝑁𝐻)𝑘2] 
 

𝑎23 = −𝐸31
𝑒 (1 + 𝜆2𝑘2)𝑘2 

 

𝑎24 = −𝐸31
𝑚(1 + 𝜆2𝑘2)𝑘2 

𝑎31 = 𝑖𝑘(1 + 𝜆2𝑘2)𝐴31
𝑒  

 

𝑎32 = 𝐸31
𝑒 (1 + 𝜆2𝑘2)𝑘2 

 

𝑎33
= −(1 + 𝜆2𝑘2)(𝐹33

𝑒

+ 𝐹11
𝑒 𝑘2) 

 

𝑎34
= −(1 + 𝜆2𝑘2)(𝐹33

𝑚

+ 𝐹11
𝑚𝑘2) 

 

𝑎41 = 𝑖𝑘(1 + 𝜆2𝑘2)𝐴31
𝑚  

 

𝑎42 = 𝐸31
𝑚(1 + 𝜆2𝑘2)𝑘2 

 

𝑎43
= −(1 + 𝜆2𝑘2)(𝐹33

𝑚

+ 𝐹11
𝑚𝑘2) 

 

𝑎44
= −(1 + 𝜆2𝑘2)(𝑋33

𝑚

+ 𝑋11
𝑚𝑘2) 

(A.1) 

and  

𝑚11 = −𝐼0(1 + µ
2𝑘2) 

 

𝑚12 = 𝑖𝑘𝐼1(1 + µ
2𝑘2) 

 

𝑚13 = 𝑚14 = 0 

 

𝑚21 = 𝑖𝐼1𝑘(1 + µ
2𝑘2) 

𝑚22

= −(𝐼0 + 𝑖𝐼2𝑘)(1
+ µ2𝑘2) 

 

𝑚23 = 𝑚24 = 0 

 

𝑚31 = 𝑚32 = 𝑚33

= 𝑚34

= 0 

 

𝑚41 = 𝑚42 = 𝑚43

= 𝑚44

= 0 

(A.2) 
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