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1. Introduction 
 

Passive control systems, due to their mechanical 

simplicity, have been used for many years to mitigate 

vibrations in civil engineering structures such as buildings, 

towers, bridges and industrial plants under the action of 

environmental forces such as wind and earthquakes and 

loads due to traffic and rotating machinery (Den Hartog 

1956, Soong and Dargush 1997, Korenev and Reznikov 

1993, Spencer and Nagarajaiah 2003). Among these 

systems, base isolation is considered to be the most 

appropriate system to improve the performance of 

structures during earthquakes (Kelly 1986, Villaverde 2009, 

Constantinou et al. 1998). However, the use of tuned mass 

dampers has been proposed as an efficient earthquake 

protective systems, especially when retrofitting existing 

structures, and designing high-performance structures such 

as hospitals and emergency response facilities (Kaynia et al. 

1981, Pinkaew et al. 2003, Hoang et al. 2008, Matta 2011, 

Matta 2015).   

The efficiency of the simultaneous use of base isolation 

and tuned mass damper has also been investigated (Petti et 

al. 2010, Xiang and Nishitani 2014).  

Tuned mass dampers can enhance structural safety and 

integrity allowing protection of not only structural and non-

structural elements but also building contents for 

considerably large earthquakes. Although the passive nature  
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can be seen as a limitation when compared to active and 

semi-active control systems, it is also a source of reliability 

since passive systems are not affected by discontinuous 

power supply during the seismic event and they have low 

maintenance requirements.  

Pendulum mass dampers or pendulum vibration 

absorbers can be used as tuned mass dampers to suppress 

undesirable vibrations in several mechanical, civil and 

aerospace structures. The pendulum has usually a low 

frequency and uses gravity instead of elastic stiffness force. 

The passive control of structures using a pendulum tuned 

mass damper has been extensively studied in the technical 

literature and used in tall buildings such as the Taipei 101 in 

Taiwan (Kourakis 2007, Li et al. 2010) and the Crystal 

Tower in Osaka (Nagase and Hisatoku 1992), where 

earthquakes and strong typhoons are common occurrences. 

Nagase and Hisatoku (1992) presented some intrinsic 

features of a pendulum-type tuned-mass damper installed in 

a 37-story office building Crystal Tower in Osaka using the 

ice thermal storage tanks for air conditioning as the moving 

mass of the damper to reduce the lateral vibration of 

buildings. Ertas (1996) proposed a simple pendulum 

mounted to a tip mass of a beam as a vibration absorber. 

The autoparametric interaction between the first two modes 

of the system is investigated. Vyas and Bajaj (2001) studied 

the dynamics of autoparametric vibration absorbers using 

multiple pendulums. This problem was also tackled by 

Gus’kov et al. (2008) and Náprstek and Fischer (2009). 

Pinheiro (1997) studied analytically the classical non-linear 

pendulum connected to the structure by a rotational spring. 

Changes in the shape of the classical pendulum were also 

suggested by the author. Battista et al. (2003) investigated 

the structural response of transmission line towers under 
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wind action and proposed the installation of non-linear 

pendulum-like dampers to reduce the along-wind 

displacements. Jankowski et al. (2004) analyzed the 

reduction of steel chimney vibrations with a pendulum 

damper. Gerges and Vickery (2005) derived the equations of 

motion for a translational single degree of freedom system 

equipped with a pendulum-type tuned mass damper. 

Through response minimization procedures, the optimum 

parameters of the TMD under random white noise 

excitations were determined. Lacarbonara and Ballerini 

(2009) proposed a passive vibration system to damp 

transverse vibrations of guyed masts, consisting of a 

number of pendula attached to the mast and tuned to the 

vibration modes to be controlled. By employing one 

pendulum only, tuned to the frequency of the lowest mode, 

the effectiveness of the passive system in reducing the 

motion and acceleration of the top section of the mast is 

demonstrated. Since detuning can sometimes lead to a 

significant loss of performance, Roffel et al. (2010) 

proposed a mechanical system to adjust the natural 

frequency and damping as an adaptive compensation for 

detuning in pendulum tuned mass dampers. Orlando and 

Gonçalves (2013) studied a hybrid system for vibration 

control of slender towers. The hybrid control is based on the 

simultaneous use of a pendulum absorber with an external 

force, dependent on the speed, on-off type, applied in the 

tower-pendulum connection, thus increasing the 

pendulum’s efficiency in controlling vibrations. Finally, 

Fallahpasand et al. (2015) investigated the use of a 

nonlinear pendulum vibration absorber to control the 

resonance peak of a linear primary system and derived 

optimum damping and natural frequency ratios by 

minimizing the maximum steady-state response of the 

primary system. 

Similar to a pendulum, a passive control system 

consisting of one or more spheres moving on a spherical 

surface at the top of the tower, creating a multidirectional 

damper, was studied by Chen and Georgakis (2013) to 

reduce the dynamic effects of wind on tall towers. A small-

scale model was tested on a vibrating table. This system had 

previously been studied by Pirner (2002), who carried out 

theoretical and experimental studies and installed a TMD 

composed of a sphere inside a spherical vessel in a 

television tower in the Czech Republic. 

As the frequency of the pendulum depends only on its 

length and the acceleration of gravity, to tune the frequency 

of the pendulum with that of the structure, the pendulum 

length is the only design variable. However, in many cases, 

the required length and the space required for its installation 

are not compatible with the project. In these cases, one can 

replace the classical pendulum by a virtual pendulum which 

consists of a mass moving over a curved surface, allowing 

thus for a greater flexibility in the absorber design, since the 

length of the pendulum becomes irrelevant and the shape of 

the curved surface can be optimized. 
Analytical and experimental work for the understanding 

of the oscillatory motions of a body on different types of 
curved surfaces was carried out in the recent past. Shaw and 
Haddow (1992) developed several roller coaster 
experiments to model nonlinear oscillators with quadratic or 
cubic nonlinearity. Gottwald et al. (1992) developed  

 

Fig. 1 Pendular tuned mass damper 
 
 

analytical and experimental studies with the objective of 
studying the behavior of the Duffing equation through a 
rigid body that travels on a curved surface with two 
potential wells, simulating the Duffing equation with loss of 
stiffness. Further, Gottlieb (1997) derived the potential 
function of a curved surface on which a sphere moves by 
the influence of gravity in order to reproduce a linear or 
non-linear oscillator. Matta and De Stefano (2009a) studied, 
using a numerical simulation, how a tuned mass damper, 
commonly used in flexible structures under wind excitation, 
can be used in a building under seismic excitation. In this 
work they show schematically different types of pendular 
absorbers, some already studied in the literature. 
Subsequently Matta et al. (2009b) studied the use of a 
pendulum system in two directions for the seismic 
protection of buildings. Legeza (2013) proposed a 
pendulum damper consisting of a classic inverted pendulum 
where the mass moves on an isochronous curve.  

Pendulum systems may present under severe loading 

conditions large amplitude oscillations, thus the linear 

assumption may lead to errors when oscillations become 

larger. The pendulum exhibits a softening behavior 

(Pasquetti and Gonçalves 2011) and may lead to various 

types of bifurcations and instabilities, as shown by Orlando 

and Gonçalves (2013). In order to limit the pendulum 

oscillations a pendular system with impact could be used, 

increasing the damping performance over a wide range of 

excitation frequencies and amplitudes (Bapat and Sankar 

1985, Duncan et al. 2005). Collette (1998) studied 

numerically and experimentally the efficiency of a 

combined tuned absorber and pendulum impact damper to 

reduce the vibrations of a system under random excitation. 

The effectiveness of the optimal combined absorber and its 

sensitivity to variations of the clearance between the impact 

damper and tuned absorber, restitution coefficient and the 

mass ratio were analyzed. 

The aim of the present work is to analyze the influence 

of a pendular tuned mass damper (PTMD) in the vibration 

control of structures, subjected to base motion, in particular 

harmonic and seismic loads. The pendular system consists 

of a mass that moves on a curved surface, generating forces 

similar to the classical pendulum. Several types of curve 

with hardening or softening characteristics are analyzed and 

compared with the circular case. This system has several 

advantages over existing systems such as ease of 

construction, returns naturally to the original position, have 

a small damping inherent to the system and easily enter in 

movement, leading to large reductions of displacements and 

accelerations. It should be noted that the technology for the 

construction of the pendulum system is well established; 

being the same used for the design of roller-coaters and 
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support devices for bridges and large structures, in 

particular roller bearings. To enhance the energy 

dissipations and/or prevent large pendulum oscillations the 

simultaneous use of a pendulum-impact system is also 

considered. The results show that the proposed damper can 

not only reduce sharply the displacements, and 

consequently the internal forces in the main structure, but 

also the accelerations, increasing user comfort. 

 

 

2. Formulation of the PTMD  
 

The main structure is modeled as a SDOF system with 

mass 𝑀𝑆, damping coefficient 𝐶𝑆, and lateral stiffness 𝐾𝑆, 

subjected to a time-dependent base displacement 𝑋𝑔(𝑡), 

where t is time. The horizontal displacement of the structure 

relative to the base is denoted by 𝑋𝑆. The pendular tuned 

mass damper proposed here, shown in Fig. 1, consists of a 

mass 𝑀𝑎 that moves on a curved surface with constant or 

variable curvature, described by a function 𝑍𝑎(𝑋𝑎(𝑡)), 

where 𝑍𝑎  and 𝑋𝑎  are, respectively, the vertical and 

horizontal displacement components of 𝑀𝑎. 𝐶𝑎 represents 

the viscous damping coefficient of the pendular device. The 

mass and inertia forces of the rollers are considered 

negligible. In addition, rolling without sliding is assumed in 

the trajectory direction, which is realistic for nearly all 

operation conditions (Pfeiffer et al. 2006). Also, the rolling 

friction in usually very small (Reynolds 1876), and the 

system may react swiftly to a short-term excitation. The 

number of wheels can be properly evaluated in order to 

distribute the weight of the mass 𝑀𝑎 of the tuned mass 

damper, decreasing the contact force at each point. For a 

multi-story building, the values of 𝑀𝑆,  𝐶𝑆,  and 𝐾𝑆 can 

be taken, in a first approximation, as the modal mass, 

damping and stiffness relative to the first vibration mode 

(Soong and Dargush 1997). 

This system generates nonlinear forces similar to those 

of the classical pendulum, but has the advantage of taking 

up little space, allowing simple variation of the radius of 

curvature, and, when destabilized, automatically return to 

the initial equilibrium position by the vertical component of 

the pendulum weight, which is not the case with many 

tuned mass dampers. Besides, being a smooth surface, it 

does not present discontinuities in the restoration forces, as 

it happens in sliding systems (stick-slip) and bases in the 

form of inclined planes. 

The kinetic energy of the system is given as 
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(1) 

where the /i iX dX dt  denotes velocity (the overdot 

indicate differentiation with respect to time). 

The total potential energy of the system is  

21

2
s s a aK X M g Z      (2) 

The Rayleigh function of the structure and pendular 

system, considering linear viscous damping, has the 

following form  
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 (3) 

By applying Hamilton’s principle, the Euler-Lagrange 

equations of motion of the controlled structure are given by 
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(5) 

Depending on the chosen function 𝑍𝑎(𝑋𝑎(𝑡)),  as 

observed in Eq. (5), inertial and geometric nonlinearities, as 

well as nonlinear damping forces, may appear in the 

equations of motion. 
 
 

3. Circular surface 
 

For a circular surface of constant radius of curvature Rc, 

the vertical and horizontal displacements of the mass can be 

written as a function of the rotation angle θ as (see Fig. 

1(a))  

 sina cX R   and   1 cosa cZ R    (6) 

and the differential equations of motion (4) and (5) take the 

form 
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Introducing the following parameters 
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where /a cg R   is the characteristic frequency of a 

pendulum and 𝜔𝑆  is the frequency of the structure, Eqs. 

(10) and (11) is rewritten in the dimensionless form as 
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The equations of motion in dimensionless form, Eqs. 

(10) and (11), are a function of four parameters, damping 

ratios of the structure and PTMD, 𝜉𝑠 and 𝜉𝑎, respectively, 

the mass ratio δ and ratio of natural frequencies, . The 

main variable in terms of design of a TMD is the mass ratio, 

, which is taken usually as a small percentage of the mass 

of the structure. A conventional TMD of a few percent mass 

ratio yields the control effect via resonance, implying a 

fairly large movement relative to the primary structure. 

However, some authors (Matta and De Stefano 2009a, De 

Angelis et al. 2012) have advocated the use of large mass 

ratios for systems under base excitation, and a broad range 

of  is considered in the present parametric analysis, to 

verify this hypothesis. Given the value of , the optimal 

values for 𝜉𝑠 , 𝜉𝑎  and  as a function of  can be 

calculated. 

 

 

4. Frequencies and vibration modes  
 

From the linearization of Eqs. (12) and (13), the 

following eigenvalue problem is obtained  
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where 𝜆 = 𝜔𝑖
2, and eigenvalues and eigenvectors represent 

respectively the natural frequencies and vibration modes of 

the system under analysis. The natural frequencies are given 

in dimensional form by 
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The two natural frequencies are a function of the mass 

and stiffness of the structure, acceleration of gravity and 

radius of curvature of the surface at the origin (Xa=0), 

which for a curved surface described by an arbitrary smooth 

continuous function Za(Xa) is given by 

3
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 (14) 

Considering the non-dimensional parameters (9), the 

natural frequencies are rewritten in dimensionless form as 

 
Fig. 2 Variation of the two dimensionless natural 

frequencies as a function of the dimensionless frequency 

ratio  for selected values of mass ratio  
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(15) 

which depends on the mass and frequency ratios only. 

Fig. 2 shows the variation of the two non-dimensional 

natural frequencies of the combined system (Eq. (15)) as a 

function of the frequency ratio  for selected values of the 

mass ratio, δ. For usual values of δ, the first frequency 

grows smoothly with , from zero (radius of curvature 

infinite, flat surface), while the second non-dimensional 

frequency remains practically constant and equal to unity 

until it reaches the value = 1, when the two normalized 

frequencies approach the unit value (ideal value for a 

classic TMD). From this point on, the two frequencies 

invert the behavior, with the second frequency growing in a 

practically linear fashion with , while the first one tends to 

a constant value smaller than one. 

The first vibration mode, considering a unit rotation for 

the PTMD, is given by  2 2 2

1 1 1( ) / ( ), 1.0
T

X      . 

For a given value of δ, the first term of the eigenvector 

increases with , as 1 increases (see Fig. 2). The structure 

moves in the same direction as the PTMD, in addition the 

mass of the PTMD has, for usual values of ,  a 

displacement much greater than the mass of the structure, 

illustrating the energy transfer from the main system to the 

damper. The second vibration mode of the structure-PTMD 

system is given by  2 2 2

2 2 2( ) / ( ), 1.0
T

X      . In 

this case the two masses move in opposite direction and the 

first term of the eigenvector decreases in magnitude with .  

 

 

5. Response under harmonic load 
 

Initially the response of the building under a harmonic 

base motion is conducted. The parametric analysis is 

focused on two parameters: the mass ratio, varying within 

range 0.01 ≤ 𝛿 ≤ 0.5 and natural frequency ratio, within a 

range of 0.1 ≤ ∆≤ 1.3. The damping ratio of the primary 

structure is taken into account by the representative value of 

ξS=2%. The harmonic excitation is given in dimensionless  
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Table 1 Optimum values of the parameters  and 
𝑆

. 

(Warburton and Ayonride 1980) 

Excitation 𝑅𝐷 ∆𝑜𝑝𝑡 ξ𝑎−𝑜𝑝𝑡 

𝐴𝑒𝑖Ω𝑡 

Harmonic force 
√1 +

2

𝛿
 

1

1 + 𝛿
 √

3𝛿

8(1 + 𝛿)
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acceleration 

√
2
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𝛿

2

1 + 𝛿
 

√
3𝛿

8(1 + 𝛿) (1 −
𝛿

2
)
 

Random force √
1 +

3𝛿

4

𝛿(1 + 𝛿)
 

√1 +
𝛿

2

1 + 𝛿
 

√
𝛿 (1 +

3𝛿

4
)

4(1 + 𝛿) (1 +
𝛿

2
)
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acceleration (1 + 𝛿)3/2√
1

𝛿
−

1

4
 

√1 −
𝛿

2

1 + 𝛿
 

√
𝛿 (1 −
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4
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4(1 + 𝛿) (1 −
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2
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form by 
2 2 2 20,01 ( )gd X d sin    . The 

nonlinear equations of motion are numerically integrated 

using the fourth-order Runge-Kutta method.  

Den Hartog (1956), considering an undamped structure, 

derived the following optimal parameters in terms of the 

mass ratio: Δ 1/1    and 3 / 8(1 )a    . 

Later Ayorinde and Warburton (1980) derived, analyzing 

several structural systems under different types of 

excitation, considering equivalent sdof models, the 

optimum values of the parameters  and 
𝑺

 shown in 

Table 1 (Warburton 1982). These results can also be found 

in Soong and Dargush (1997), among others. Hoang et al. 

(2008) also derived optimal tuned mass damper parameters 

for seismic applications considering the effect of 

characteristic ground frequency and damping of primary 

structure. It is found that, in all cases, the optimal tuning 

frequency decreases and the optimal damping ratio 

increases as the mass ratio increases. They also show that 

considering damping in the primary structure lowers the 

optimal tuning frequency while, to a lesser degree, raises 

the optimal damping ratio of TMD for large mass ratios. 

Optimal parameters for several passive systems can be also 

found in Korenev and Reznikov (1993). Fig. 3 shows the 

variation of maximum normalized displacement of the 

controlled and uncontrolled response of the structure in the 

steady state regime as a function dimensionless excitation 

frequency parameter   (resonance curves), for three 

selected values of the mass ratio, using for the PTMD the 

optimal values presented in Table 1. Since the resonance 

curves of forced nonlinear systems may display points of 

dynamic bifurcation (saddle-node, pitchfork or period-

multiplying bifurcations) and jumps, the resonances curves 

are obtained using numerical algorithms for the 

computation of bifurcation diagrams of the associated 

Poincaré map (Parker and Chua 1989, Orlando and 

Gonçalves 2013), with the dimensionless excitation 

frequency  as the control parameter. 

A perceptible decrease in the vibration amplitudes in the 

resonance region is observed, showing that the PTMD is a 

reliable means to suppress undesirable vibrations of  

 
Fig. 3 Bifurcation diagram of the controlled and 

uncontrolled structure, for 𝝃𝒔=2%, and optimum values of  

𝜉𝑎  and ∆ 

 

Table 2 Maximum displacements and accelerations of the 

structure without and with PTMD for optimum values of 

𝜉𝑎  and ∆, under harmonic base excitation 

Structure with PTMD 
Uncontrolled 

Reduction 

(%) Mass 

ratio 

 

Structure PTMD 

𝑋𝑆 𝑋̈𝑆  𝑋𝑆 𝑋̈𝑆 𝑋𝑆 𝑋̈𝑆 

1% 0.130 0.136 39.761 0.246 0.246 47.18 44.54 

3% 0.067 0.095 14.807 0.234 0.234 71.48 59.54 

5% 0.052 0.090 9.105 0.223 0.223 76.46 59.53 

 
 
structures caused by harmonic base excitations. The 

difference between the curves of the uncontrolled system is 

due to the adimensionalization process where the non- 

dimensional displacement is divided by the optimal value of 

the radius of curvature Rc, which is a function of the 

optimal frequency ratio that is a function of 𝜹  (

/Δ /a S S cg R   ). The maximum displacements 

and accelerations of the structure under harmonic base 

excitation without and with PTMD for optimum values of 

𝜉𝑎  and ∆ are shown in Table 2. As expected, the efficiency 

of the PTMD increases with 𝜹, showing a reduction of 

76,46% in the displacements and of 59,53% in the 

maximum acceleration for 𝜹 = 𝟓%. 
Observing the optimal values of the frequency ratio 

obtained by various authors, there is a definite trend for 

each value of 𝛽, with the tuning frequency decreasing with 

𝛿, followed by an increase in the damping ratio (see, for 

example, Table 1). So, in recent years researchers have 

proposed the use of TMDs with large mass ratio, 

comparable with the mass of the structure to be protected, 

to increase their seismic effectiveness (Matta and De 

Stefano 2009a, De Angelis et al. 2012). In order to avoid 

the introduction of an excessive additional weight, masses 

already present on the structure could be converted into 

tuned masses, retaining structural or architectural functions  
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Fig. 4 Bifurcation diagrams of the structure and PTMD, for 


𝑺
=2%, 

𝒂
=3.5% and Δ=0.9 

 

Table 3 Maximum displacements and accelerations of the 

structure and PTMD; for =0.9 𝜉𝑠 = 2% 𝑎𝑛𝑑 𝜉𝑠 = 3.5% 

Structure-PTMD 

Control 
 

Mass 

ratio 

 

Structure PTMD 

𝑋𝑆 𝑋̈𝑆  (°) 

PTMD 

Circular 

A 1% 0.169 0.173 34.00 

B 3% 0.127 0.136 24.87 

C 5% 0.106 0.119 19.59 

D 50% 0.123 0.084 9.30 

Uncontrolled E 
 

0.204 0.204 
 

Peak Reduction 

% 

E-A 
 

17.32 15.15 
 

E-B 
 

37.84 33.26 
 

E-C 
 

48.01 41.61 
 

E-D 
 

39.55 58.61 
 

 

 

beyond the mere control function. However, it must be 

pointed out that the optimal damping values are usually 

high (10.98% for 𝛿 = 5%)  and the installation of 

additional dampers may be necessary to attain the optimal 

response. This is not effective in reducing the initial 

transient response of structures or when the structure is 

subjected to a short duration excitation. 

Fig. 4 shows the variation of maximum displacement of 

the structure and maximum rotation angle of the PTMD 

during the steady state response as a function of the 

dimensionless excitation frequency 𝛽  (resonance curves) 

for =0.9, 
S
=2% and 

a
=3,5% considering four values of 

𝛿: 1%, 3%, 5% and 50%. The dashed vertical lines 

correspond to the two natural frequencies of the structure-

PTMD system. For the correct interpretation of the results it 

is worth remembering that the dimensionless excitation 

force is dependent on . Table 3 shows the maximum 

displacements and accelerations of the structure and 

rotation of the PTMD, as well as the reduction in the peak 

values when compared with the uncontrolled system. 

Comparing the results with those of the uncontrolled system 

and those of the controlled structure considering optimal 

parameters, even considering a small damping ratio for the 

PTMD, a robust decrease in the structural response is 

observed. The use of a large mass ratio (𝛿 = 50%) is 

shown to be a reliable solution, decreasing not only the 

maximum displacement of the primary structure but also 

the PTMD rotations. Also, it is observed that the maximum 

displacement and rotations are almost zero in a broad range 

of the forcing frequency parameter 𝛽 . Thus, the 

performance of the PTMD with a large mass ratio is not too  

 
(a) 𝛿 = 1% 

 
(b) 𝛿 = 50% 

Fig. 5 Reduction of the maximum steady-state 

displacements and accelerations as a function of  

 

 

sensitive to uncertainty in the system parameters. On the 

other hand, for small values of δ the performance becomes 

more sensitive if its parameters shift away from the design 

values. 

For the classical TMD the optimal values of frequency 

ratio are in the range 0.9 ≤ ∆≤ 1.0. However the exact 

value of ∆ is rather difficult to evaluate in a real structure 

or may vary due to deterioration, inadvertent changes to 

structure’s properties and increased dead loads, which can 

lead to a significant loss of performance in tuned mass 

dampers. So, it is desirable to study the variation of the 

efficiency of the PTMD with ∆ . Fig. 5(a) shows the 

reduction of the maximum displacement and acceleration of 

the structure with the frequency ratio, considering δ=1%, 


𝑆
=2% and 

𝑎
=3.5%. The PTMD can not only reduce the 

maximum displacement is a broad range of ∆, around the 

ideal value of ∆=1, increasing the safety of the structure, 

but also the maximum acceleration, increasing human 

comfort. Fig. 5(b) shows the results for δ=50%. These 

results, compared with those in Fig. 5(a), show that the 

PTMD with a large mass improves substantially the 

effectiveness of the damper, reducing considerably the 

displacements and accelerations in a much wider range of 

∆ , thus decreasing the sensitivity of the PTMD to the 

frequency ratio. This is particularly important for structures 

under seismic excitation where the frequency content of the 

signal is unknown a priori. 

Fig. 6 compare the time response of the uncontrolled  
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=0.9 

 
=1.0 

 
=1.1 

Fig. 6 Time response of the displacements of the 

uncontrolled and controlled structure at resonance. =1.0; 

=0.01, 
𝑺
=2% and 

𝒂
=3.5% 

 

 
Fig. 7 Time response of the displacements of the 

uncontrolled and controlled structure subjected to an initial 

displacement (Xs=0.1) for =0.01, =1.0 
𝑺

=2% and 


𝒂
=3.5% 

 

 

and controlled structure under harmonic base motion for 

three values of ∆ (0.9, 1.0, 1.1), considering =1.0 

(resonance of the primary system) and =1%. Although the 

mass ratio is rather small, the beneficial effect of the PTMD 

is observed just after a few cycles decreasing the vibrations 

amplitudes in the steady-state and transient regimes. To test 

the effectiveness of the damper in the transient regime, Fig. 

7 shows the time response of the uncontrolled and 

controlled structure subjected to an initial displacement (

=0.1sX ). As observed in the inset figure, just after a few  

 
Fig. 8 Comparison of the structure uncontrolled, linearized 

and non-linearized responses; for 
𝑺

=2%, 
𝒂

=3.5%, 

=0.01, =1.1 
𝑆
=2% and 

𝒂
=3.5% 

 

 

cycles the PTMD leads to a meaningful decrease in the 

displacements. Also, the energy dissipated by the mass 

damper is evident, with the structure converging swiftly to 

the static configuration, reducing the root-mean-square 

displacement response of the main structure. 

As the rotation of the pendular system increases, the 

influence of its nonlinearity increases, as illustrated in Fig. 

8 where the uncontrolled response is compared with the 

controlled response considering the non-linear and 

linearized equations of motion. The nonlinearity increases 

the efficiency of the control device reducing perceptibly the 

maximum displacement in the resonance region. 

 

 

6. Response under seismic excitation  
 

In practice, the earthquake excitation cannot be known a 

priori. Consequently a “true” optimal solution to control the 

structure under an unknown seismic excitation is 

impossible. Usually a base isolation system is preferable, 

but in many cases the installation of tuned mass dampers is 

a simple, effective, inexpensive, and reliable means to 

suppress undesirable vibrations. Under earthquake 

excitation, which is rather random, its performance, 

however, greatly depends on the characteristics of ground 

motion. Having this in mind, in the present analysis the N-S 

and E-W components of the El Centro earthquake and the 

E-W component of the Loma-Prieta earthquake are used to 

test the effectiveness of the PTMD. The maximum 

acceleration of the E-W Loma-Prieta accelerogram is 0.15 

g, while the maximum acceleration of the N-S and E-W 

components of the El-Centro signal are, respectively, 0.35 g 

and 0.21 g (Lin et al. 2009). Fig. 9 show the power 

spectrum of these three signals as a function of 𝛽. Fig. 10 

shows the time response of the displacements of the 

uncontrolled and controlled structure under seismic load 

(accelerogram of the EW component of the El Centro 

earthquake) for four selected values of the mass ratio 

δ, considering in each case the optimal  
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Fig. 9 Earthquake power spectrums in the region of interest 

 

 
(a) =1% 

 
(b) =3% 

 
(c) =5% 

 
(d) =50% 

Fig. 10 Time response of the displacements of the 

uncontrolled and controlled structure under seismic load 

(EW component of the El Centro) for three selected values 

of the mass ratio δ, considering in each case the optimal 

values of Δ and 𝜉𝑎. 𝜉𝑠 = 2 % 

Table 4 Maximum displacements and accelerations of the 

structure and maximum rotations of the PTMD under 

seismic excitation as a function of   

Earthquake 

Frequency 

ratio 

() 

Structure-PTMD 

 = 5% 
Uncontrolled 

Reduction 

(%) 
Structure PTMD 

(𝑋𝑠) (𝑋̈𝑠) (°) (𝑋𝑠) (𝑋̈𝑠) (𝑋𝑠) (𝑋̈𝑠) 

Loma Prieta-EW 

0.9 

0.111 0.109 34.356 0.146 0.134 24.092 18.155 

El Centro-EW 0.128 0.214 37.317 0.243 0.294 47.497 27.263 

Loma Prieta-EW 

1.0 

0.143 0.139 28.127 0.181 0.165 20.608 15.935 

El Centro-EW 0.168 0.247 48.708 0.300 0.363 44.072 32.135 

 

Table 5 Maximum displacements and accelerations of the 

structure and maximum rotations of the PTMD under 

seismic excitation as a function of   

9 

Mass 

ratio 

(d) 

Structure-PTMD- = 0.9 

Uncontrolled 
Reduction 

(%) 
Principal Structure PTMD 

(𝑋𝑠) 𝑋̈𝑠 (°) 𝑋𝑠 𝑋̈𝑠 𝑋𝑠 𝑋̈𝑠 

Loma Prieta-EW 

0.01 

0.128 0.12 44.226 0.146 0.134 12.299 10.527 

El Centro-EW 0.205 0.273 52.892 0.243 0.294 15.927 7.254 

Loma Prieta-EW 

0.03 

0.111 0.112 36.954 0.146 0.134 24.106 16.098 

El Centro-EW 0.133 0.239 42.801 0.243 0.294 45.262 18.714 

Loma Prieta-EW 

0.05 

0.111 0.109 34.356 0.146 0.134 24.092 18.155 

El Centro-EW 0.128 0.214 37.317 0.243 0.294 47.497 27.263 

 

 

values of Δ and  𝜉𝑎 obtained by Warburton and Ayonride 

for random base acceleration (see Table 1) and  𝜉𝑠 = 2 %. 
The beneficial effect of the PTMD on the response of the 

structure and its safety increases with the mass ration and 

the reduction in displacements occurs well before the 

uncontrolled structure reaches the maximum vibration 

amplitudes. For a large mass ratio, the PTMD becomes very 

effective in minimizing the primary structure response, 

increasing its safety under seismic excitation. 

Table 4 shows the maximum displacements and 

accelerations of the controlled and uncontrolled structure 

and maximum rotations of the PTMD under seismic 

excitation for two values of  (0.9 and 1.0) and the 

reductions observed in the maximum displacements and 

accelerations in both cases considering the E-W 

components of the El Centro and Loma Prieta earthquakes, 

while Table 5 display the same comparison for three values 

of the mass ratio, . Here, 𝜉𝑠 = 2 % and 𝜉𝑠 = 3.5 %). In 

all cases a reduction of displacements is observed, but in 

some examples a small increase in accelerations occurs. 

There is a great variability in the reduction of displacements 

and accelerations due to the different frequency content of 

the three signals used and their magnitude. This shows the 

lower APMS efficiencies in the presence of random loads 

since their performance depends on a good tuning between 

the different frequencies existing in the earthquake signals 

and the APMS-structure system. The largest reduction in 

displacements was 47% for the El Centro-EW earthquake 

and =0.9. The largest reduction in accelerations was 32%, 

also for the El Centro-EW earthquake, and =1.0. 
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Fig. 11 Functions describing the pendulum 

 
 

7. Pendular device with variable radius 
 

The radius of curvature of a curve described by any 

function Za(Xa) is given by 

3
2 12 2

2
1 a a

c

a a

dZ d Z
R

dX dX

    
      
     

 (16) 

To study the influence of the variable radius of 

curvature, three different types of surfaces defined below 

are used. Fist, a quadratic curve is considered 

2 / 4a aZ X f  (17) 

where f is the focal length. For comparison purposes, the 

radius of curvature at the origin (𝑋𝑎 = 0) is considered to 

be the same as that of the circular case, leading to f=Rc/2. 

Thus, a pendulum with increasing radius of curvature 

(length) is obtained, being given by 

  
3/2

2
( ) 1 /a c a cR X R X R  

 
. 

The second curve to be analyzed is a quadratic curve 

modified by one exponential term of the form  

 2 2

2 2

2

41
, with

4 4

c

a a a

c

mf R
Z X bX b

f fR





 
    (18) 

where 𝑚 and 𝜙 are pre-defined geometric parameters used 

to increase the radius of curvature away from the origin 

(Xa=0), decreasing the displacement of the pendulum for 

large vibration amplitudes (nonlinear hardening behavior). 

Again, f=Rc/2. In both cases, a concave track is obtained. 

The third curve to be analyzed is described by the 

following fourth order polynomial  

2 4

2 4

2
a a a

h h
Z X X

n n
   (19) 

with horizontal tangent line at Xa=0 and 
aX n   and 

passing through the points Za(±n)=h. To have at the origin a 

radius of curvature equal to the circular track, Rc=n2/4h. 

This polynomial is the potential energy of the softening 

nonlinear Duffing oscillator with negative cubic 

nonlinearity, having three equilibrium positions: Xa=0, 

which corresponds to a stable equilibrium position, a 

minimum, and Xa=±n that are unstable equilibrium  

 
Fig. 12 Bifurcation diagram of the: (a) Structure and (b) 

PTMD for the different types of curve (=1.0) 

 

Table 6 Maximum displacements and accelerations for each 

type of curve (=0.01; =1.0) 

Shape 
 

Structure PTMD 

𝑋𝑠 𝑋̈𝑠 𝑋𝑠 

Uncontrolled A 0.252 0.252  

Circular B 0.166 0.173 0.771 

Quadratic C 0.197 0.203 0.703 

M. Q.-=10 D 0.212 0.206 0.692 

M. Q.-=20 E 0.197 0.202 0.705 

M. Q. -=30 F 0.197 0.203 0.703 

Quartic G 0.220 0.223 0.582 

 
A-B 33.96 31.40  

 
A-C 21.56 19.51  

Reduction (%) A-D 15.62 18.21  

 A-E 21.73 19.68  

 A-F 21.56 19.51  

 A-G 12.51 11.22  

 

 

positions, two maxima. 

The three curves are compared with the circular profile 

in Fig. 11. For the modified quadratic curve and the quartic 

curve the parameters m=800, =10, H=0.25 and n=1 are 

adopted. These surfaces are described in terms of the 

coordinates (𝑋𝑎, 𝑍𝑎). For the purposes of comparison with 

the circular curve, its equations are rewritten in term of 

 𝑋𝑎  and 𝑍𝑎, that is 2 2

a c c aZ R R X   . 

Fig. 12 shows the bifurcation diagrams of the Poincaré 

map for the PTMD described by five different types of 

curve and compare the results with those for the 

uncontrolled case considering =0,01, 1  , 
𝑆
=2% and 


𝑎

=3,5%. For the modified quadratic track (M.Q.), two 

additional values of ϕ are adopted, ϕ=20 and ϕ=30. Table 9 

shows the maximum displacements and accelerations of the 

controlled and uncontrolled structure and maximum 

rotations of the PTMD. The resonance curves for the non-

circular curves exhibit discontinuities. These jumps are due 

to the additional nonlinear terms in the equations of motion 

due to the variable radius of curvature (compare Eq. (5) 

with Eq. (8)). However, since in all cases smooth curves are 

adopted, no abrupt changes are observed in the system 

dynamics. This would occur if the track where described by 

different curves or inclined planes (Pfeiffer et al. 2006). The 

most efficient pendulum profile is the circular one leading 

to a reduction of 33.96% in the maximum displacements 
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Fig. 13 Bifurcation diagram of: (a) structure and (b) PTMD 

with lim=15° 

 

 
Fig. 14 Phase plane of: (a) structure, (b) PTMD with and 

without impact for  =1.0 

 

 

and 31.40% in the maximum acceleration. The worst case is 

the quartic polynomial due to its softening characteristics 

(the curvature decreases as the vibration amplitude 

increases). The maximum displacement of the PTMD has in 

all cases the same order of magnitude. The variation of 

curvature leads to a pendulum with variable length. This is 

a highly nonlinear problem as shown by Belyakov et al. 

(2009) and Pasala and Nagarajaiah (2014). The oscillations 

of the PTMD in many cases, when its damping coefficient 

is small, may be large, but the technology for designing 

such systems is well known and has been used in the design 

of roller-coaster and other multibody systems (Tändl et al. 

2007, Pombo and Ambrósio 2007, Pombo and Ambrósio 

2003, Pfeiffer et al. 2006). 

 

 

8. Impact system 
 

As shown previously, the pendulum system can, in 

certain cases, display large rotations. Although this can be 

properly handled in the PTMD design, in certain 

circumstances this may be not desirable and barriers which 

limit its movement can be used, generating impact forces 

whose efficiency in vibration control is here briefly 

investigated. Consider that the maximum rotation permitted 

on the PTMD is controlled by two barriers located at a 

distance ±𝑋𝑚á𝑥  from the center of the surface. For the 

circular curve, the maximum horizontal displacement of the 

additional mass is thus defined in the dimensionless form as

 max limsinX  . The ratio of the final to initial velocity 

difference between the pendulum and the barrier after they 

collide is the coefficient of restitution, e, which normally 

ranges from 0 to 1 where 1 would be a perfectly elastic 

collision and a perfectly inelastic collision has a coefficient 

of restitution 0. In order to handle the collision, an adaptive 

stepsize control for the Runge-Kutta algorithm is used. 

Thus, the nonlinear vibro-impact system with a nonzero 

offset barrier is now studied (Babitsky 2013). Fig. 13 

shows, for =0.01 and =0.9, a comparison of the response 

of the uncontrolled system with the response of the 

controlled system with and without impact, considering 

lim=15° and a coefficient of restitution e=0.6. A 

considerable decrease of the maximum displacements in the 

main resonance region due to impact is observed, when 

compared with the controlled response without impact. To 

illustrate this, Fig. 14 shows the phase plane of the steady-

state response of the controlled system with and without 

impact, considering =1.0, where the reduction in 

displacements and velocities due to impact is observed. The 

discontinuity in the velocity during impact brings about a 

strong additional nonlinearity, which leads to not only 

discontinuities in the resonance curve (jumps) but also to 

period-multiplying bifurcations. This problem will be 

analyzed in more detail in a future publication. 
 

 

9. Conclusions 
 

A pendular tuned mass damper (PTMD), consisting of a 

mass that moves on a curved track, was investigated in the 

present work. The dimensionless nonlinear equations of 

motion are derived for the model considering an arbitrary 

curved track and used in parametric analysis. The 

performance of the PTMD was investigated in a large 

parameter space including a broad range of forcing 

frequencies, mass ratios, tuning frequency ratio, damping 

ratios, track profile and impact characteristics. The results 

show that the PTMD is quite effective when the structure is 

subjected to a base harmonic excitation. It can not only 

reduce sharply the displacements, and consequently the 

internal forces in the main structure, but also the 

accelerations, increasing user comfort. Also, although more 

sensitive to the varying frequency content of known 

earthquake signals, the PTMD was shown to be also 

effective under seismic excitation. The optimal PTMD with 

large mass ratio with a lower tuning frequency and higher 

damping ratio was shown to be very effective in minimizing 

the primary structure response in a broad range of excitation 

frequency while generating fairly small displacements of 

the damper, being thus very robust with respect to detuning 

due to deviation in the structural properties and uncertainty 

in the system parameters. The effectiveness of a PTMD 

with large mass was observed both under harmonic 

excitation and seismic ground motion time histories with 

different frequency contents. The mass of non-structural 

components could in this case be used to achieve an 

appropriate mass ratio. The nonlinearity of the damper has a 

beneficial effect decreasing the displacements of the 

structure when compared to the linearized model of the 

pendulum. The considered non-circular tracks gives rises to 

nonlinear inertia, damping and geometric nonlinearities not 

present in the circular case, leading to jumps and 

bifurcations in the response of the PTMD and primary 

structures. Tracks with softening characteristics decrease 
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the efficiency of the damper. Finally, the results show that 

the PTMD with impact can adequately dissipate the 

translational energy of the main structure, increasing the 

effectiveness of the damper, being this dependent on the 

specific values of clearance and restitution coefficient. 

Multiple tuned mass dampers with distributed natural 

frequencies using the present configuration can be easily 

designed, as well as bi-directional dampers. 
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