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1. Introduction 
 

The concept of functionally graded materials (FGMs) 

was initially proposed in 1984 by scientists in Japan 

(Koizumi 1997). FGM is a type of composite materials that 

presents continuous distribution of material characteristics 

from one surface to another and hence eliminates the 

concentration of stress encountered in laminated structures. 

Generally, the FGM is fabricated with a mixture of a metal 

and a ceramic. FGMs are widely employed in different 

structural applications such as aerospace, mechanical, civil, 

and automotive (Zine et al. 2018, Meksi et al. 2018, Attia et 

al. 2018, Sekkal et al. 2017a, Barati and Shahverdi 2016, 

Bousahla et al. 2016, Kar et al. 2016, Ahouel et al. 2016, 

Hadji et al. 2015, Larbi Chaht et al. 2015, Zidi et al. 2014, 

Bouderba et al. 2013). When the use of FGMs increases, 

more accurate models are required to predict their 

behaviors.  

Since the shear deformation influences are more found 

in thicker plates or plates fabricated from FGMs, shear 

deformation models like FSDT (Al-Basyouni et al. 2015) 

and HSDTs should be utilized to investigate FG plates. The 

FSDT provides acceptable numerical results, but use a shear 

correction coefficient (Mousavi and Tahani 2012 ,  
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Malekzadeh and Monajjemzadeh 2013, Bouderba et al. 

2016, Bellifa et al. 2016, Arani and Kolahchi 2016, 

Beldjelili et al. 2016, Kolahchi et al. 2016b, Madani et al. 

2016, Zamanian et al. 2017, Kolahchi et al. 2017a, Zarei et 

al. 2017, Shokravi 2017a).  

Whereas, the HSDTs (Touratier 1991, Soldatos 1992, 

Redd 2000, Karama et al. 2003, Zenkour 2006, Pradyumna 

and Bandyopadhyay 2008, Mantari and Guedes Soares 

2012, Thai and Kim 2013, Ahmed 2014, Kar and Panda 

2016, Mahapatra et al. 2016, Akavci 2016, Kolahchi et al. 

2016a, Bilouei et al. 2016, Baseri et al. 2016, Hachemi et 

al. 2017, Klouche et al. 2017, Kolahchi and Cheraghbak 

2017, Kolahchi 2017, Shokravi 2017b, c, d, Kolahchi and 

Bidgoli 2016, Houari et al. 2016, Boukhari et al. 2016, 

Bellifa et al. 2017a, b, Benadouda et al. 2017, Zidi et al. 

2017, Kolahchi et al. 2017b, c, Hajmohammad et al. 2017, 

Bakhadda et al. 2018) do not employ a shear correction 

coefficient, but their governing equations are more difficult 

than those generated by the FSDT. Recently, novel plate 

models, which consider only four unknown variables and 

yet take into consideration shear deformations, are proposed 

by Tounsi et al. (2013), Barati and Shahverdi (2016) and 

Bounouara et al. (2016). These theories are based on the 

idea of partitioning the vertical displacements into the 

bending and shear components as is firstly proposed by 

Huffington (1963), and later adopted by Krishna Murty 

(1987) and Senthilnathan et al. (1987). The thickness 

stretching effect is recently studied by several researchers 
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for beams and plates structures (Benchohra et al. 2018, 

Abualnour et al. 2018, Sekkal et al. 2017b, Bouafia et al. 

2017, Sekkal et al. 2017a, Akavci 2016, Bennoun et al. 

2016, Draiche et al. 2016, Bourada et al. 2015, Hamidi et 

al. 2015, Belabed et al. 2014, Fekrar et al. 2014, Bousahla 

et al. 2014, Bessaim et al. 2013). However, a new idea is 

proposed initially by Mantari and Granados (2015) by 

considering undetermined integral terms in in-plane 

displacements to construct a new FSDT. This idea is 

improved recently by Merdaci et al. (2016), Besseghier et 

al. (2017), Chikh et al. (2017), Khetir et al. (2017), 

Menasria et al. (2017) and El-Haina et al. (2017) to develop 

new HSDTs.   

The purpose of this work is to improve the theory 

proposed by Mantari and Granados (2015) by considering 

the influences of shear deformation and thickness stretching 

in FG plates. The kinematic of the Mantari and Granados 

(2015) is modified by assuming a new hyperbolic variation 

of the vertical displacement within the thickness, and thus, 

the thickness stretching influence is taken into 

consideration. Thus, the highlight of this theory is that, in 

addition to including the thickness stretching effect ( 0z 

), the displacement field is modeled with only 5 unknowns. 

Analytical solutions for bending and dynamic problems are 

determined for a simply supported rectangular plate. 

Numerical examples are presented to check the accuracy of 

the proposed method. 

 

 

2. Kinematics 
 

The displacement field of the conventional HSDT is 

given by (Mahi et al. 2015)  
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0 0 0, , , ,x yu v w   Are the five unknown displacement of 

the mid-plane of the plate. By considering that (Fahsi et al. 
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The new shape function f(z) is given as follows 
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The kinematic relations can be obtained as follows 
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The integrals used in the above equations shall be 

resolved by a Navier type method and can be given as 

follows 
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Where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier. 

Therefore, 'A , 'B , k1 and k2 are expressed as follows 
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Where 

e μ and β are used in Eq. (24). 

 

 

3. Constitutive relations 
 

The linear constitutive relations of a FG plate can be 

expressed as 
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The Cij(i,j=1, 2, 4, 5, 6) expressions in terms of 

engineering constants are given below 
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4. Equations of motion 
 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Ait Amar Meziane et al. 2014, Taibi et 

al. 2015, Zemri et al. 2015, Attia et al. 2015, Belkorissat et 

al. 2015, Ait Yahia et al. 2015, Taibi et al. 2015, Mouffoki 

et al. 2017, Abdelaziz et al. 2017)  

0
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Where δU is the variation of strain energy; δV is the 

variation of potential energy; δK is the variation of kinetic 

energy. 

The variation of strain energy of the plate is calculated 

by 
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Where A is the surface; and stress resultants N, M, and S 

are defined by 
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The variation of potential energy of the applied loads 

can be expressed as 
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Where q is the distributed transverse load. 

The variation of kinetic energy of the plate can be 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t; and (I0, I1, 

J1, I2, J2, K2, K2
s) are mass inertias defined as 
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Substituting the expressions of δU, δV and δK from Eqs. 

(12), (14), and (15) into Eq. (11) integrating by parts, and 

collecting the coefficients of δu0, δv0, δw0, δθ, and δfz, the 

following equations of motion of the plate are obtained 
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By substituting Eq. (7) into Eq. (9) and the subsequent 

results into Eq. (13), the stress resultants are obtained as 
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By substituting Eq. (18) into Eq. (17), the equations of 

motion can be expressed in terms of displacements (δu0, 

δv0, δw0, δθ, δfz) as  
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5. Exact solution for simply supported FG plate 
  

Rectangular plates are generally classified according to 

the type of support used. This paper is concerned with the 

exact solutions of Eqs. (21a)-(21e) for a simply supported 

FG plate. 

The following boundary conditions are imposed at the 

edges 
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Table 1 Material properties of the FG plate 

Properties 
Metal Ceramic 

Al Al2O3 ZrO2 

E (GPa) 70 380 211 

υ 0.3 0.3 0.3 

ρ (kg/m3) 2,702 3,800 4,500 

 

 

Following the Navier solution procedure, the authors 

assume the following solution from for u0, v0, w0, θ and fz 

that satisfies the boundary conditions given in Eq. (22) 
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Where Umn, Vmn, Wmn, Xmn and Φmn are arbitrary 

parameters to be determined, ω is the is the natural 

frequency; and λ, μ are defined as 
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The transverse load q is also expanded in the double-

Fourier sine series as 
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For the case of a sinusoidally distributed load, it is  
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Where q0= intensity of the load at the plate center. 

For the case of a uniformly distributed load (UDL), it is 
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Substituting Eqs. (23) and (25) into Eq. (21), the 

analytical solutions can be obtained from 
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6. Numerical results 
 

In this section, various numerical examples are 

presented for bending and free vibration analyses of a  

simply supported FG plate. 

The proposed model for bending and free vibration of 

FG plate will be first validated through the comparison with 

the existing data available in literature. For this, two types 

of FGMs plates are considered: Al/Al2O3 and Al/ZrO2. 

Table 2 Effect of normal strain εz on dimensionless stresses and transversal displacement for isotropic square plate 

subjected to uniformly distributed load (U.D.L) (a/h=10) 

Theory ˆ ( / 2, / 2,0)w a b  ˆ ( / 2)x h  ˆ ( / 2)y h  ˆ ( / 2)xy h  ˆ (0, / 2,0)xz b  ˆ ( / 2,0,0)yz a  

Present εz≠0 4.628 0.268 0.268 0.194 0.491 0.491 

Hebali et al. (2014) εz ≠0 4.631 0.276 0.276 0.197 0.481 0.481 

Shimpi et al. (2003) εz ≠0 4.625 0.307 0.307 0.195 0.505 0.505 

Exact 3D (Srinivas et al. 1970a) 4.639 0.290 0.290 — 488 — 

Table 3 Effects of volume fraction exponent on the dimensionless stresses and deflections of a FG square plate subjected 

to Sinusoidal Load 

 
(0)w  ˆ (1/ 2)x  ˆ (1/ 3)y  

Present Hebali et al. (2014) Present Hebali et al. (2014) Present Hebali et al. (2014) 

k εz≠0 εz ≠0 εz ≠0 εz ≠0 εz ≠0 εz ≠0 

Ceramic 0.2936 0.2937 1.8599 1.9076 1.3604 1.3451 

1 0.5685 0.5689 2.8296 2.9105 1.5176 1.4954 

2 0.7220 0.7220 3.3322 3.4198 1.4195 1.3953 

3 0.7980 0.7972 3.5830 3.6729 1.2975 1.2729 

4 0.8421 0.8413 3.7654 3.8569 1.2021 1.1779 

5 0.8732 0.8729 3.9354 4.0273 1.1285 1.1049 

6 0.8991 0.8983 4.1024 4.1954 1.0692 1.0462 

7 0.9215 0.9211 4.2671 4.3619 1.0192 0.9976 

8 0.9424 0.9416 4.4293 4.5251 0.9763 0.9546 

9 0.9614 0.9606 4.5876 4.6846 0.9396 0.9203 

10 0.9796 0.9793 4.7396 4.8388 0.9077 0.8908 

Metal 1.5936 1.5942 1.8599 1.9076 1.3604 1.3451 
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The material properties of FG plates are reported in 

Table 1. 

For convenience, the following dimensionless forms are 

used 

3 4
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2 2 2 2
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a
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6.1 Bending analysis 
 

The Young’s modulus and Poisson’s ratio used for this 

example are 210 GPa and 0,3 respectively. 

In order to prove the validity of the present improved 

higher shear deformation theory, comparisons are made 

between the results obtained from this theory and those 

obtained by Hebali et al. (2014), Shimpi et al. (2003), exact 

solution developed by Srinivas et al. (1970a), quasi-3D 

theory given by Neves et al. (2012) and finite-element 

approximations presented by Carrera et al. (2011). 

As a first example, an isotropic plate subjected to a 

uniformly distributed load is studied. 

Displacement results and stress are compared with the 

quasi-three-dimensional (3D) hyperbolic shear deformation  
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Fig. 1 The transverse displacement w  through the 

thickness of FG plate (a/h=4) subjected to sinusoidal load 

 

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

-0,9 -0,6 -0,3 0,0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 2,4

 
x

 z

 Ceramic

 k=1

 k=4

 k=10

 Metal

 

Fig. 2 Variation of axial stress x through-the-thickness of 

square FG plate (a/h=4) subjected to sinusoidal load 

 

 

theory given by Hebali et al. (2014), solutions given by 

Shimpi et al. (2003), and the exact solution presented by  

Table 3 Effect of normal strain σz on dimensionless in-plane longitudinal 
x  stresses and displacement w  for FG 

square plate subjected to Sinusoidal Load 

  ( / 3)x h  ( / 2, / 2,0)w a b  

k Theory a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100 

1 

Present εz ≠0 0,6018 1,5180 15,200 0,6965 0,5685 0,5438 

Carrera et al. (2011) εz =0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625 

Carrera et al. (2011) εz ≠0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625 

Neves et al. (2012) εz ≠0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624 

Hebali et al. (2014) εz ≠0 0.5952 1.4954 14.963 0.6910 0.5686 0.5452 

4 

Present εz ≠0 0,4581 1,2020 12,120 1,1080 0,8421 0,7912 

Carrera et al. (2011) εz =0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286 

Carrera et al. (2011) εz ≠0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286 

Neves et al. (2012) εz ≠0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286 

Hebali et al. (2014) εz ≠0 0.4507 1.1779 11.871 1.0964 0.8413 0.7926 

10 

Present εz ≠0 0,3380 1,9077 9,2060 1,3500 0,9796 0,9090 

Carrera et al. (2011) εz =0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361 

Carrera et al. (2011) εz ≠0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361 

Neves et al. (2012) εz ≠0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286 

Hebali et al. (2014) εz ≠0 0.3325 0.8889 8.9977 1.3333 0.9791 0.9114 
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Fig. 3 Variation of transverse shear stress 

xz through-the-

thickness of square FG plate (a/h=4) subjected to sinusoidal 

load 
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Fig. 4 Variation of in-plane tangential stress xy through-

the-thickness of square FG plate (a/h=4) subjected to 

sinusoidal load 
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Fig. 5 Variation of transverse normal stress

z through-the-

thickness of square FG plate (a/h=4) subjected to sinusoidal 

load 
 

 

Srinivas et al. (1970a). 

It can be observed from the results listed in Table 2 that 

our results are in a good agreement with the others. 

The second example studied is that of a thick AL/AL2O3 

plate subjected to a sinusoidal load.  

The results of the stresses and displacement are given 

for three values of the power index k as shown in Table 3. 

According to the results presented in this table, it can be 

seen that the results of the present improved method are in 

very great agreement with those of the solutions taking into 

account the stretching effect (ɛz≠0) namely those of Carrera  

Table 4 Natural frequencies ˆ h E   of an Isotropic Plate 

with υ=0.3, a/h=10 and a/b=1 

m n Present 
Hebali et al. 

(2014) εz ≠0 

Srinivas et al. 

(1970b) (3D) 

Reddy and 

Phan (1985) 

Whitney and 

Pagano (1970) 

1 1 
0.0930 

 

0.0933 

 
0.0932 0.0931 0.0930 

1 2 0.2229 0.2228 0.2226 0.2222 0.2220 

2 2 0.3425 0.3422 0.3421 0.3411 0.3406 

1 3 0.4176 0.4173 0.4171 0.4158 0.4149 

2 3 0.5243 0.5240 0.5239 0.5221 0.5206 

3 3 0.6893 0.6890 0.6889 0.6862 0.6834 

2 4 0.7513 0.7512 0.7511 0.7481 0.7447 

1 5 0.9270 0.9268 0.9268 0.9230 0.9174 

4 4 1.0891 1.0890 1.0889 1.0847 1.0764 

 
 

et al. (2011) and Hebali et al. (2014) and whether it is for 

displacement or stress. Also, an existing difference between 

the results of this method and those of Carrera et al. (2011) 

for the case where the stretching effect is neglected (εz=0) is 

noted. This can be explained by the fact that the stretching 

effect has great influence in the results of thick plates. 

In Table 4, a third comparison of the results of the 

present method with those of Hebali et al. (2014). 

The displacement and the calculated stresses are those 

of a rectangular FG plate subjected to a sinusoidal load. 

Again, the results of this improved method are very 

consistent with those of Hebali et al. (2014). 

After this series of results comparison, it can be said that 

the present method is accurate for the analysis of the 

bending of FG plates. 

The influence of the volume fraction index k on the 

variation of the transverse displacement w  through the 

thickness direction is showed in Fig. 1 for a FG plate 

subjected to sinusoidal load. It can be seen from this figure 

that the displacement of metal plates is larger than the 

corresponding one of ceramic plates and that the 

displacement increases as the power law index k increases. 

Fig. 2 plots the variation of axial stress x through the 

thickness of square FG plate (a/h=4) subjected to sinusoidal 

load. It can be observed that the axial stress x is tensile at 

the top surface and compressive at the bottom surface and 

the homogeneous ceramic or metal plate gives the 

maximum stresses at the bottom surface and the minimum 

tensile stresses at the top surface of the plate. 

In Fig. 3, we present the variation of transverse shear 

stress xz through the thickness of square FG plate (a/h=4) 

subjected to sinusoidal load. 

As can be seen in Fig. 3, the distribution of the 

transverse shear stresses xz  is parabolic for the cases of 

homogeneous ceramic or metal and this is not the case for 

other types of plates. 

Fig. 4 depicts the variation of the stress
xy through the 

thickness of square FG plate subjected to sinusoidal load. 

The same observation establishes for the case of axial stress 

x remains valid for this case namely, the stresses xy are  
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tensile at the top surface and compressive at the bottom 

surface and the isotropic ceramic or metal plate gives the 

maximum stresses at the bottom surface and the minimum 

tensile stresses at the top surface of the plate. 

In Fig. 5, we have plotted the through the thickness 

distributions of the transverse shear stresses z . 

It can be concluded from this figure that the transverse 

normal component z cannot be neglected for the present 

problem. 

 

6.2 Free vibration analysis 
 

Other examples to verify the accuracy of the present 

theory in predicting the natural frequency of FG AL/ZrO2 

plates are reported in Tables 4 and 5. 

Table 4 gives a comparison of the natural frequencies 

̂  of square rectangular think plates (a/h = 10) between 

the present results and those of the quasi-three-dimensional 

(3D) hyperbolic shear deformation theory given by Hebali 

et al. (2014), the three-dimensional (3D) elasticity solutions 

developed by Srinivas et al. (1970b), the higher-order shear 

deformation theory presented by Reddy and Phan (1985), 

and with the first shear deformation theory of Whitney and 

Pagano (1970). 

An excellent agreement between the different results is 

obtained, particularly between the present theory and 3D 

hyperbolic shear deformation theory and the 3D elasticity 

solutions. 

It should be noted that the slight difference that exists 

between the present solution and the two other amounts to 

the fact that the latter neglect the stretching effect. 
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Fig. 6 Variation of the Non-dimensional fundamental 

natural frequency  of simply supported FG plate 

rectangular plates (b=2a) versus the power law index k 
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Table 5a Natural frequencies of rectangular FG (a/h=10 and a/b=0.5) 

 k=0 k=0.5 

Mode(m,n) Present Hebali et al. (2014) Jha et al. (2012) 
Shahrjerdi et al. 

(2011) 
Present Hebali et al. (2014) Jha et al. (2012) 

Shahrjerdi et al. 

(2011) 

1(1,1) 3.6628 3.6959 3.6911 3.6983 3.3584 3.3877 3.3664 3.3713 

2(1,2) 5.7889 5.8392 5.8323 5.8498 5.3118 5.3564 5.3238 5.3359 

3(2,1) 11.8820 11.9752 11.965 12.0345 10.9247 11.0079 10.946 10.9940 

4(2,2) 13.8275 13.9324 13.921 14.0144 12.7212 12.8149 12.745 12.8103 

5(2,3) 16.9850 17.1070 17.096 17.2325 15.6408 15.7500 15.668 15.7660 

6(3,2) 25.8985 26.0579 26.051 26.3462 23.9071 24.0503 23.941 24.1494 

7(3,3) 28.7071 28.8754 28.871 29.2257 26.5186 26.6697 26.554 26.8100 

Table 5b Natural frequencies of rectangular FG (a/h=10 and a/b=0.5) 

 k=1 k=2 

Mode(m,n) Present Hebali et al. (2014) Jha et al. (2012) Shahrjerdi et al. (2011) Present Hebali et al. (2014) Jha et al. (2012) 
Shahrjerdi et al. 

(2011) 

1(1,1) 3.2262 3.2550 3.1291 3.1354 3.1484 3.1757 3.1291 3.1354 

2(1,2) 5.1021 5.1460 4.9434 4.9594 4.9747 5.0157 4.9434 4.9594 

3(2,1) 10.4907 10.5720 10.137 10.1985 10.2037 10.2776 10.137 10.1985 

4(2,2) 12.2147 12.3062 11.794 11.8784 11.8721 11.9543 11.794 11.8784 

5(2,3) 15.0162 15.1225 14.481 14.6092 14.5786 14.6726 14.481 14.6092 

6(3,2) 22.9453 23.0833 22.059 22.3273 22.2125 22.3285 22.059 22.3273 

7(3,3) 25.4494 25.5947 24.446 24.7781 24.6163 24.7361 24.446 24.7781 
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Fig. 8 Variation of the Non-dimensional fundamental 

natural frequency  of simply supported FG plate versus 

the aspect ratio b/a (k=0.2) 
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In Table 5 (a and b), we present a comparison of the 

nondimensional frequencies   of a think AL/ZrO2 FG 

plates predicted by the present theory and the solution 

presented by Hebali et al. (2014), the higher-order shear 

and normal deformation theory given by Jha et al. (2012) 

and the second-order shear deformation theory developed 

by Shahrjerdi et al. (2011). 

Once again, a good agreement between the results is 

obtained for all vibration modes which confirm the 

accuracy of the present theory. 

The Fig. 6 illustrates the variation of the non-

dimensional fundamental natural frequency  of simply 

supported FG plate rectangular plates versus the power law 

index k and for three values of the side-to-thickness ratios 

a/h. It has seen a rapid increase of the non-dimensional 

fundamental natural frequency until a value of k = 2, Once 

exceeding this value, the natural frequency tends to keep a 

more or less constant shape. On the other hand, the increase 

in the A/h ratio tends to decrease frequencies. In other 

words, the thicker the plate becomes, the lower the 

frequencies. 

The Fig. 6 illustrates the variation of the non-

dimensional fundamental natural frequency   of simply 

supported FG plate rectangular plates versus the power law 

index k and for three values of the side-to-thickness ratios 

a/h. It has seen a rapid increase of the non-dimensional 

fundamental natural frequency until a value of k = 2, Once 

exceeding this value, the natural frequency tends to keep a 

more or less constant shape. On the other hand, the increase 

in the A/h ratio tends to decrease frequencies. In other 

words, the thicker the plate becomes, the lower the 

frequencies. 

The Fig. 6 illustrates the variation of the non-

dimensional fundamental natural frequency  of simply 

supported FG plate rectangular plates versus the power law 

index k and for three values of the side-to-thickness ratios 

a/h. It has seen a rapid increase of the non-dimensional 

fundamental natural frequency until a value of k = 2, Once 

exceeding this value, the natural frequency tends to keep a 

more or less constant shape. On the other hand, the increase 

in the A/h ratio tends to decrease frequencies. In other 

words, the thicker the plate becomes, the lower the 

frequencies. 

Fig. 7 plots the variation of the non-dimensional 

fundamental natural frequency  of simply supported FG 

plate rectangular plates as a function the side-to-thickness 

ratio (a/h). As can be seen, the increase in the a/h ratio 

increases the frequency and the increase in the power index 

k reduces them. Also, the homogeneous ceramic plate has 

the highest frequency. 

In Fig. 8 we present the variation of the non-

dimensional fundamental natural frequency  of simply 

supported FG plate versus the aspect ratio b/a and for 

different values of the side-to-thickness ratios a/h. The 

highest frequencies are obtained for a square plate (b/a = 1). 

The more rectangular the plate becomes, the frequencies 

relapse. 

In Fig. 9, we have plotted the same variation but for 

different values of the power law index k. 

The highest frequencies are obtained for a homogeneous 

ceramic plate and the lowest for a metal plate. The increase 

in index k decreases the frequencies. 

 

 

7. Conclusions 
 

In this study, bending and free vibration analysis of 

functionally graded plate is carried out by an improved 

higher shear deformation theory taking into account the 

influence of stretching effect. 

The kinematic of the present improved theory is 

modified by considering undetermined integral terms in in-

plane displacements which results in a reduced number of 

variables compared with other shear deformation theory of 

the same order. Navier solution was used to find the 

different parameters governing the bending and free 

vibration of these plates. Verification examples demonstrate 

that the developed theory is not only more accurate than the 

refined plate theory, but also comparable with the HSDTs 

which use more number of variables. 
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