
Structural Engineering and Mechanics, Vol. 66, No. 1 (2018) 45-59 

DOI: https://doi.org/10.12989/sem.2018.66.1.045                                                                  45 

Copyright © 2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

A safe and reliable use of the modern high-speed 

underground trains and other types of underground moving 

wheels requires theoretical investigations of corresponding 

dynamical problems, one of which is the problem related to 

the dynamics of the ring moving load acting on the interior 

of the hollow cylinder surrounded with elastic or 

viscoelastic medium. This is because, underground 

structures into which such high-speed wheels move are 

modelled as infinite hollow cylinders surrounded by an 

elastic or viscoelastic medium. In order to improve the 

adequacy of the theoretical results to the real cases it is 

necessary to take into account the reference particularities 

of these systems in these investigations. One of these 

particularities is the initial stresses which appear in the 

constituents of the system “hollow cylinder + surrounding 

elastic medium”.  Namely, the investigation the influence 

of the initial stresses which appear under unidirectional 

compression (stretching) of the system “hollow cylinder + 

surrounding elastic medium” in the load moving direction  
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on the critical velocity of this load and interface stresses 

which also appear as a result of this load, is the subject of 

the present paper.  

For determination significance and contribution of the 

investigations made in the present work we attempt to make 

a brief review of the studies related to the dynamics of the 

moving load and we begin this review with the paper by 

Achenbach et al. (1967). Note that in this paper the 

dynamic response of the system consisting of the covering 

layer and half plane to a moving load was investigated 

under which the motion of the plate was described with the 

use of the Timoshenko theory, however, the motion of the 

half-plane was described by using the exact equations of the 

theory of linear elastodynamics and the plane-strain state 

was considered. Later investigations started in the paper by 

Achenbach et al. (1967), are developed in the papers by 

Dieterman and Metrikine (1997) and by Metrikine and 

Vrouwenvelder (2000) and many others listed therein. The 

review of the related investigations is also considered in the 

paper by Ouyang (2011). 

It should be noted that up to now, a certain number of 

investigations have also been made for the dynamics of the 

moving load acting on initially stressed systems. As an 

example, for earlier investigation in this type it can be take 

the paper by Kerr (1983) in which the influence of the 

initial stresses on the values of the critical velocity of the 

moving load acting on an ice plate resting on water were 
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taken into account. In this paper, the motion of the plate is 

described by employing the Kirchhoff plate theory. 

In the paper by Metrikin and Dieterman (1999), under 

investigation of the lateral vibration of the beam on an 

elastic half-space due to a moving lateral time-harmonic 

load acting on the Euler-Bernoulli beam, the initial axial 

compression of this beam is also taken into consideration.  

The influence of the initial stresses acting on the 

stratified half-plane on the critical velocity of the moving 

load which acts on the plate was studied in the papers by 

Babich et al. (1986, 1988, 2008a, b), in which the plane 

strain state was considered and the motion of the half-plane 

was written within the scope of the three-dimensional 

linearized theory of elastic waves in initially stressed bodies 

(see Guz 1999, 2004). At the same time, the motion of the 

covering layer, which does not have any initial stresses, as 

in the paper by Achenbach et al. (1967), was written by 

employing the Timoshenko plate theory.  

Furthermore, in recent years it was made series 

investigations on the dynamics of the moving load acting on 

the layered systems and under these investigations not only 

the motion of the half-plane but also the motion of the 

covering layer was written within the scope of the exact 

equations of the three-dimensional linearized theory of 

elastic waves in initially stressed bodies. Now we review 

some of them and begin this review with the paper by 

Akbarov et al. (2007) in which the influence of the initial 

stresses in the covering layer and half-plane on the critical 

velocity of the moving load acting on the plate covering the 

half-plane, was studied. In the paper by Dincsoy et al. 

(2009) the same problem was studied for the system 

consisting of the covering layer, substrate and half-plane.  

The response of the system consisting of the initially 

stressed orthotropic covering layer and initially stressed 

orthotropic half plane to the moving and oscillating moving 

load were investigated in the papers by Akbarov and Ilhan 

(2008, 2009), and by Ilhan (2012). 

The paper by Akbarov and Salmanova (2009) deals with 

the dynamics of the oscillating moving load acting on the 

pre-strained bi-layered slab made of highly elastic material 

and resting on a rigid foundation was studied.  

In the paper by Akbarov et al. (2015) the 3D problems 

on the dynamics of the moving and oscillating moving 

point-located load acting on the system consisting of a pre-

stressed covering layer and half-space were investigated. As 

a result of this investigation, in particular, it was established 

that the minimal values of the critical velocities determined 

within the scope of the 3D formulation coincide with the 

critical velocity determined within the scope of the 

corresponding 2D formulation.  

The detail consideration and analysis of the foregoing 

investigations was made in the monograph by Akbarov 

(2015). Note that up to now there are also some 

investigations on the moving and oscillating moving load 

acting on the hydro-elastic systems, which do not 

considered in the monograph by Akbarov (2015). These 

investigations were made in the papers by Akbarov and 

Ismailov (2015, 2016a, 2016b). 
Now we consider a review of the investigations related 

to the dynamics of the moving load acting on a cylindrical 
surface which bounds the infinite region filled with 

homogeneous or piecewise homogeneous elastic materials. 
In the historical aspect, the first attempt in this field was 
made in the paper by Parnes (1969) in which a ring load 
moving with constant velocity in the axial direction along 
the interior of a circular bore in an infinite homogeneous 
elastic medium is investigated. In this paper the theoretical 
investigations are made in the 3D case, however 
corresponding numerical results on the displacement and 
stress distribution are presented for the axisymmetric case. 
The case where in the interior of the cylindrical cavity a 
torsional moving load acts is considered in another paper by 
Parnes (1980).  Note that, in these papers the question 
related to the critical velocity is not considered. Rather, the 
question on the determination of the critical velocity of the 
moving load acting on infinite (as in the papers by Parnes 
(1969, 1980)) or semi-infinite mediums does not appear in 
the cases where these mediums are homogeneous. This is 
because, in the mentioned cases the critical velocity is 
known beforehand, so that in these cases the critical 
velocity coincides with the Rayleigh wave propagation 
velocity in the corresponding medium. Note that the 
question related to determination of the critical velocity 
relates only to moving load problems acting on the piece-
wise inhomogeneous infinite (for instance, for the system 
consisting of a hollow cylinder surrounded with elastic 
medium) or semi-infinite (for instance, for the system 
consisting of a covering layer and half-space) bodies. What 
is more, the critical velocity in the aforementioned infinite 
and semi-infinite bodies appears only in the cases where the 
modulus of elasticity of the covering layer material is 
greater than that of the surrounding infinite medium or of 
the stratified semi-infinite medium. For instance, 
investigations carried out in the papers by Chonan (1981), 
Pozhuev (1980), Abdulkadirov (1981) and others relate 
namely to the piece-wise inhomogeneous infinite 
cylindrically layered systems.  

Studies on the dynamic response of a cylindrical shell 

imperfectly bonded to a surrounding infinite elastic 

continuum under action of axisymmetric ring pressure 

which moves with constant velocity in the axial direction 

along the interior of the shell, is made by Chonan (1980). It 

is assumed that the shell and the continuum are joined 

together by a thin elastic bond and the axisymmetric 

problem is considered. The motion of the shell is described 

by thick shell theories and the motion of the surrounding 

elastic medium is described by the exact equations of linear 

elastodynamics. Numerical results on the critical speed of 

the moving load and on the radial displacement of the shell 

for the subcritical moving load are presented.  

The paper by Pozhuev (1981) studies the moving load 

problem for the system consisting of a thin cylindrical shell 

and surrounding transversally isotropic infinite medium. A 

thin shell theory is employed for describing the motion of 

the cylinder, however the motion of the surrounding elastic 

medium is described with the exact equations of motion of 

elastodynamics for transversally isotropic bodies. 

Numerical results regarding displacements and a radial 

normal stress are presented, but in this paper, there are no 

numerical results related to the critical velocity of the 

moving load.    

The study of low-frequency resonance axisymmetric 

longitudinal waves in a cylindrical layer surrounded by an 
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elastic medium is made in the paper by Abdulkadirov 

(1981), in which under “resonance waves” the cases under 

which the relation dc/dk=0 takes place, is understood, 

where c is the wave propagation velocity and k is the 

wavenumber. The velocity of these “resonance waves” 

coincides with the critical velocity of the corresponding 

moving load. Some numerical examples of “resonance 

waves” are presented and discussed. Note that in this paper 

dispersion curves are obtained within the scope the exact 

equations of linear elastodynamics. 

Besides of all these, in recent years numerical and 

analytical solution methods have been developed for 

studying the dynamical response of tunnel (modelled as a 

hollow elastic cylinder) + soil (modeled as surrounding 

elastic or viscoelastic medium) systems generated by the 

moving load acting on the interior of the tunnels (see, for 

instance, the papers by Forrest and Hunt (2006), Sheng et 

al. (2006), Hung et al. (2013), Hussein et al. (2014), Yuan 

et al. (2017) and others listed therein). However, in these 

papers the main attention is focused on studying the 

displacement distribution in soil caused by the moving load. 

This completes the review of the investigations the subjects 

of which relate to the subject of the present paper.  It 

follows from this review that up to now systematic 

investigations of the critical velocity of a moving load 

acting on the interior of the hollow cylinder surrounded 

with elastic medium are absent. Moreover, this review 

shows that the corresponding investigations related to the 

“pre-stressed hollow cylinder + pre-stressed surrounding 

elastic medium” are absent completely. Taking this 

statement into consideration, in the present paper we 

attempt to investigate the critical velocity of the moving 

ring load acting on interior surface of the pre-stressed 

hollow cylinder surrounded with the pre-stressed elastic 

medium. It is assumed that the mentioned pre-stresses 

appear as a result of the action of the uniformly distributed 

normal forces acting at infinity in the direction of the 

cylinder axis along which the ring load moves. The 

investigations are made with employing, so-called three-

dimensional linearized equations of elastic wave 

propagation in initially stressed bodies and the 

axisymmetric case is considered.  

Note that the corresponding forced vibration problem is 

investigated in the paper by Akbarov and Mehdiyev (2017). 

 
 

2. Formulation of the problem 
 

Consider an infinite body consisting of a hollow circular 

cylinder with the thickness h and with the external radius R 

and of a surrounded infinite elastic medium. We associate 

the cylindrical Orθz and Cartesian Ox1x2x3 systems of 

coordinates (Fig. 1) with central axis of the cylinder and the 

position of points of this body we determine through 

Lagrange coordinates in these coordinate systems. The 

stress-strain state in this infinite body we present as a 

summation of two states which are named as an “initial” 

and a “perturbed” states. Assume that in the initial state this 

body is loaded at infinity with uniformly distributed normal 

forces with intensity q acting in the cylinder's axis direction, 

and the stress-strain state which appear as result of this  

 

Fig. 1 The sketch of the pre-stressed system consisting of 

the hollow cylinder and surrounding elastic medium 

 

 

action we take as initial stress-strain state. Below, the values 

related to the cylinder and to the surrounding elastic 

medium will be denoted by upper indices (2) and (1), 

respectively. Moreover, the values related to the initial state 

will be denoted by the additional upper index “0”. It is 

assumed that materials of the cylinder and surrounding 

medium are homogeneous, isotropic and linear elastic. 

The values related to the initial state we determine 

within the framework of the classical linear theory of 

elastostatics. Note that, in general, in the initial state the 

stress state in the body under consideration is 

inhomogeneous one and this inhomogeneity is caused by 

the difference of the Poisson’s ratio of the materials of the 

cylinder (denote it by 
(2) ) and surrounding medium 

(denote it by 
(1) ). However, in the cases where 

(2) (1)   in the initial state the stress state in the bi-

material system shown in Fig. 1 is inhomogeneous and is 

determined as follows. 

( )0 ( )0 ( )0( )0 ( )0 0 ,
k k kk k

rr rzr z          
 

1,2 ,k 
 

(1)0 ,zz q 
 

(2)
(2)0 (1)0

(1)
.zz zz

E

E
 

 

(1) 

Here and below the conventional notation is used.  

Thus, in the initial state the stresses are determined 

through the expression given in (1). In the perturbed state, 

we assume that the body having the foregoing initial 

stresses is loaded by additional rotationally symmetric 

normal ring load with intensity P0 which moves with 

constant velocity V in the direction of the cylinder's axis, 

i.e., in the direction of the Oz axis.  We assume that P0<<q 

and, according to Eringen and Suhubi (1975), Guz (1999, 

2004), Akbarov (2015), the strain-stress state caused by this 

additional loading we describe with the following three-

dimensional linearized equations of elastic waves in 

initially stressed bodies in the axially symmetric case. 

Equations of motion 
( ) ( )

( )( )1
( )

k k
kkrr rz

rr
r z r 

 
 

 
   

 
 (2) 
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2 ( ) 2 ( )
( )0 ( )

2 2

k k
k kr r

zz

u u

z t
 

 


 
, 

( ) ( )
( )1

k k
krz zz

rz
r z r

 


 
  

 
 

2 ( ) 2 ( )
( )0 ( )

2 2

k k
k kz z

zz

u u

z t
 

 


 
 

Elasticity relations 
( )( ) ( ) ( ) ( ) ( ) ( )( ) 2
kk k k k k k

nn rr zz nn          , 

; ;nn rr zz  , 
( ) ( ) ( )2k k k
rz rz    

(3) 

Strain-displacement relations 

( )
( )

k
k r

rr

u

r






, 

( )
( )

k
k ru

r   , 

( )
( )

k
k z

zz

u

z






, 

( ) ( )
( ) 1

( )
2

k k
k z r

rz

u u

r z


 
 

 
 

(4) 

The Eqs. (2), (3) and (4) are the complete system of 

field equations of the three-dimensional linearized theory of 

elastic waves in initially stressed bodies in the case where 

the strains in the initial state so small that the corresponding 

strain-stress state can be determined within the scope of the 

classical linear theory of elastostatics.  

Now we consider the formulation of the boundary and 

contact conditions for the values related to the 

aforementioned perturbed state, i.e., for the values which 

appear as a result of the action of the additional load which 

moves with constant velocity V. According to the foregoing 

description of the problem, the boundary conditions on the 

inner face surface of the cylinder can be formulated as 

follows 

(2)
0 ( )rr

r R h
P z Vt 

 
   , 

(2) 0rz
r R h


 

 . (5) 

Suppose that the contact conditions with respect to the 

forces and displacement are continuous 

(1) (2)
rr rr

r R r R
 

 
 ,  

(1) (2)
rz rz

r R r R
 

 
 ,  

(1) (2)
r r

r R r R
u u

 
   .  

(1) (2)
z z

r R r R
u u

 
 . 

(6) 

Besides all these, we assume that the moving load 

velocity is subsonic, i.e., the condition  

 (1) (2)
2 2min ;V c c , 

( ) ( ) ( )
2
k k kc    , 1,2k   (7) 

occurs and according to this condition, the following decay 

condition takes place.  

( )( ) ( ) ( ) ( ) ( ); ; ; ; ; 0
kk k k k k

rr zz rz r zu u     , 

1,2k   as  
2 2( )r z Vt    

(8) 

This completes formulation of the problem and 

consideration of the governing field equations. 

 

 

3. Method of solution 
 

We use the well-known, classical Lame (or Helmholtz) 

decomposition (see, for instance, Eringen and Suhubi 

(1975)) for solution to the system of Eqs. (2)-(4) 

( ) 2 ( )
( )

k k
k

ru
r r z

  
 

  
,  

( ) 2 ( ) ( )
( )

2

k k k
k

zu
z r rr

    
  

 
. 

(9) 

Substituting the expressions in (9) into the Eqs. (2)-(4), 

doing corresponding mathematical manipulations we obtain 

the following equations for the functions  
( )k  and 

( )k . 
2 ( ) 2 ( )

2 ( ) (2)0

2 ( ) 22
1

1
0

( )

k k
k

zz kz tc

 
 

 
   

 
, 

2 ( ) 2 ( )
2 ( ) ( )0

2 ( ) 22
2

1
0

( )

k k
k k

zz kz tc

 
 

 
   

 
, 

2 2
2

2 2

1

r rr z

  
   

 
, 

(10) 

where
( ) ( ) ( ) ( )
1 ( 2 )

k k k kc      and 

( ) ( ) ( )
2
k k kc   . Note that in the case where 

( )0 0k
zz  equations in (10) coincide with the 

corresponding classical equations given, for instance, in the 

monograph by Eringen and Suhubi (1975). 

We introduce the moving coordinate system  

'r r , 'z z Vt   (11) 

which moves with the loading internal pressure and by 

rewriting all the foregoing equations with the coordinates 

'r  and 'z , we obtain the following equations for the 

potentials  
( )k  and 

( )k    

( )0 2 2 ( )
2 ( )

( ) ( ) ( ) 22
1

0
2 ( )

k k
k zz

k k k

V

zc

 


 

  
    
   

, 

( )0 2 2 ( )
2 ( )

( ) ( ) 22
2

0
( )

k k
k zz

k k

V

zc

 




  
    
   

, 

(12) 

where the primes on the r  and z  have been omitted. 

As a result of the coordinate transformation (11) the first 

condition in (5) transforms to the following one 

(2)
0 ( )rr

r R h
P z 

 
   (13) 
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However, the other relations and conditions in (2)-(8) 

remain valid in the new coordinates determined by (11). 

For simplicity of the consideration below we will use 

the dimensionless coordinates /r r h  and /z z h  

instead of the coordinates r  and z , respectively and the 

over-bar in r  and z will be omitted.  

Thus, we consider the solution to the considered 

boundary value problem which is reduced to the solution to 

the equations in (12). Using the Fourier transformation with 

respect to the coordinate z and taking the problem 

symmetry with respect to the point z=0 into consideration, 

the sought values can be presented as follows. 

 ( ) ( ) ( ) ( ); ; ; ( , )k k k k
r nn nnu r z     

 ( ) ( ) ( ) ( )

0

1
; ; ; ( , )cos( )

k k k k
F rF nnF nnFu r s sz ds  





 , 

; ;nn rr zz , 

 ( ) ( ) ( ) ( ); ; ; ; ( , )k k k k
z rz rzu r z     

 ( ) ( ) ( ) ( )

0

1
; ; ; ( , )sin( )

k k k k
F zF rzF rzFu r s sz ds  





  

(14) 

After substituting the expressions in (14) into the 

foregoing equations, relations and contact and boundary 

conditions, the corresponding ones for the Fourier 

transformations of the sought values are obtained. In this 

case the third and fourth relations in (4) and the condition 

(13) and the relations in (9) transform to the following ones 

( ) ( )k k
zzF zFsu  , 

( )
( ) ( )1

( )
2

k
k kzF

rzF rF

du
su

dr
   , 

(2)
0rrF

r R h
P

 
  , 

( ) ( )
( )

k k
k F F

rF

d d
u s

dr dr

 
  ,  

( ) ( )2
( ) ( )

2

k k
k k F F

zF Fu s
r rr

 


 
   


. 

(15) 

Moreover, according to the above-noted transformation, 

we obtain the following equations for 
( )k
F

 
and 

( )k
F  

from the equations in (12). 

2

2

1d d

r drdr


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

( )0 2
( )2

( ) ( ) ( ) 2
1

1 0
2 ( )

k
kzz

Fk k k

V
s

c




 

 
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  

, 

2

2

1d d

r drdr


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( )0 2
( )2

( ) ( ) 2
2

1 0
( )

k
kzz

Fk k

V
s

c






 
   

 
 

. 

(16) 

However, the foregoing other equations and relations are 

also valid as are for the corresponding Fourier 

transformations. 

Thus, consider the solution to the equations in (16) 

which, according to the condition (7), can be presented as 

follows 
(2) (2) (2) (2) (2)

0 01 1 2 1( ) ( )F A I q r A K q r   , 

(1) (1) (1)
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(1) (1) (1)
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( )0 2
( ) 2
1 ( ) ( ) ( ) 2

1

1
2 ( )

k
k zz

k k k

V
q s

c



 

 
   
  

,

( )0 2
( ) 2
2 ( ) ( ) 2

2

1
( )

k
k zz

k k

V
q s

c





 
   
 
 

. 

(17) 

where 0 ( )I x  and 0 ( )K x  are modified Bessel functions 

for the purely imaginary arguments of the first and second 

kind, respectively with zeroth order, 
(2)
1A , 

(2)
2A , 

(1)
2A , 

(2)
1B , 

(2)
2B and 

(1)
2B are unknown constants. 

Thus, substituting the solutions (17) into the expressions 

in (15) and into the Fourier transformations of the 

expressions in (3) and (4) we obtain the following 

expressions for the Fourier transformation of the sought 

values. 
(2) (2) (2) (2) (2) (2) (2)

1 11 1 1 2 1 1( ) ( )rFu A q I q r A q K q r  

(2) (2) (2) (2) (2) (2)
1 11 2 2 2 2 2( ) ( )B sq I q r B sq K q r , 

(1) (1) (1) (1) (1) (1) (1)
1 12 1 1 2 2 2( ) ( )rFu A q K q r B sq K q r   , 

(2) (2) (2) (2) (2)
0 01 1 2 1( ) ( )zFu A sI q r A sK q r     

(2) (2) (2) (2) (2) (2)
0 01 2 1 2 2 1( ) ( )B q I q r B q K q r , 

(1) (1) (1) (1) (1) (1)
0 02 1 2 2 1( ) ( )zFu A sK q r B q K q r   , 

(2) (2) (2) (2)(2) 2
01 1 10.5( ) ( ( )rzF A q I q r   


 

(2) (2)2
2 01 1( )) ( )I q r s I q r   

(2) (2) (2) (2)2
0 22 1 1 10.5( ) ( ( ) ( ))A q K q r K q r  

(2)2
0 1( )s K q r   

(2) (2) (2) (2)2
0 21 2 2 20.5 ( ) ( ( ) ( ))B s q I q r I q r  

(2) (2)
02 2( )sq I q r   

(2) (2) (2) (2)2
0 22 2 2 20.5 ( ) ( ( ) ( ))B s q K q r K q r  

(2) (2)
02 2( )sq K q r 


, 

(18) 
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(1) (1) (2) (1)(2) 2
02 1 10.5( ) ( ( )rzF A q K q r   


 

(1) (1)2
2 01 1( )) ( )K q r s K q r   

(1) (1) (1) (1)2
0 22 2 2 20.5 ( ) ( ( ) ( ))B s q K q r K q r , 

(1) (1)
02 2( )sq K q r 


 

(2)
(2) (2) (2)(2) 2

1 1(2)
2 (1 )( )

2
rrF A q


 



 
   

 

 

(2) (2)
0 21 10.5( ( ) ( ))I q r I q r   

(2)(2)
(2) (2)21

1 01 1(2)
( ( ) ( ))

2

q
I q r s I q r

r






 


 

(2)
(2) (2) 2
2 1(2)

(1 )( )
2

A q





 



 

(2) (2)
0 21 10.5( ( ) ( ))K q r K q r   

(2)(2)
(2) (2)21

1 01 1(2)
( ( ) ( ))

2

q
K q r s K q r

r






  


 

(2)
(2) (2) 2
1 2(2)

(1 ) ( )
2

B s q





 



 

(2) (2)
0 22 20.5( ( ) ( ))I q r I q r  

(2)(2)
(2) (2) (2)2

1 02 2 2(2)
( ( ) ( ))

2

sq
I q r sq I q r

r






  


 

(2)
(2) (2) 2
2 2(2)

(1 ) ( )
2

B s q





 



 

(2) (2)
0 22 20.5( ( ) ( ))K q r K q r   

(2)(2)
(2) (2) (2)2

1 02 2 2(2)
( ( ) ( ))

2

sq
K q r sq K q r

r






 


, 

(1)
(1) (1) (1)(1) 2

2 1(1)
2 (1 )( )

2
rrF A q


 



 
  
 

 

(2) (1)
0 21 10.5( ( ) ( ))K q r K q r   

(1)(1)
(1) (1)21

1 01 1(1)
( ( ) ( ))

2

q
K q r s K q r

r






  


 

(1)
(1) (1) 2
2 2(1)

(1 ) ( )
2

B s q





 



 

(1) (1)
0 22 20.5( ( ) ( ))K q r K q r 

(1)(1)
(1) (1) (1)2

1 02 2 2(1)
( ( ) ( ))

2

sq
K q r sq K q r

r






 


, 

(2)
(2) (2) (2)(2) 2

1 1(2)
2 (( )

2
F A q


 



 
  

 

 

(2) (2)
0 21 10.5( ( ) ( ))I q r I q r   

(2)(2)
(2) (2)2 1

0 11 1(2)
( )) (1 ) ( )

2

q
s I q r I q r

r






  


 

(2)
(2) (2) (2)2

02 1 1(2)
(( ) 0.5( ( )

2
A q K q r









 

(2) (2)2
2 01 1( )) ( ))K q r s K q r    

(2)(2)
(2)1

1 1(2)
(1 )( ( ))

2

q
K q r

r






  


 

(2)
(2) (2) (2)2

01 2 2(2)
( ( ) 0.5( ( )

2
B s q I q r










 

(2) (2) (2)
2 02 2 2( )) ( ))I q r sq I q r   

(2)(2)
(2)2

1 2(2)
(1 ) ( )

sq
I q r

r






 


 

(2)
(2) (2) (2)2

02 2 2(2)
( ( ) 0.5( ( )

2
B s q K q r










 

(2) (2) (2)
2 02 2 2( )) ( ))K q r sq K q r   

(2)(2)
(2)2

1 2(2)
(1 )( ( )

sq
K q r

r






 


, 

(1)
(1) (1) (1)(1) 2

2 1(1)
2 (( ) 0.5

2
F A q


 




 
 

 

(1) (1) (1)2
0 2 01 1 1( ( ) ( )) ( ))K q r K q r s K q r   

(1)(1)
(1)1

1 1(1)
(1 )( ( ))

2

q
K q r

r






   


 

(1)
(1) (1) (1)2

02 2 2(1)
( ( ) 0.5( ( )

2
B s q K q r










 

(1) (1) (1)
2 02 2 2( )) ( ))K q r sq K q r   

(1)(1)
(1)2

1 2(1)
(1 )( ( )

sq
K q r

r






 


, 

(2)
(2) (2) (2)(2) 2

1 1(2)
2 (( )

2
zzF A q


 



 
  

 

 

(2) (2)
0 21 10.5( ( ) ( ))I q r I q r   

(2) (2)
(2) (2)21

1 01 1(2)
( )) (1 ) ( ))

2

q
I q r s I q r

r






  

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(2)
(2) (2) 2
2 1(2)

(( ) 0.5
2

A q









 

(2)
(2) (2) (2)1

0 2 11 1 1( ( ) ( )) ( ))
q

K q r K q r K q r
r

    

(2)
(2)2

0 1(2)
(1 ) ( )

2
s K q r






 



(2)
(2) (2) 2
1 2(2)

( ( )
2

B s q









 

(2) (2)
0 22 20.5( ( ) ( ))I q r I q r 

(2)
(2)2

1 2( ))
sq

I q r
r

 

(2)
(2) (2)

02 2(2)
(1 ) ( )

2
sq I q r






  



 

(2)
(2) (2) (2)2

02 2 2(2)
( ( ) 0.5( ( )

2
B s q K q r










 

(2)
(2) (2)2

2 12 2( )) ( ))
sq

K q r K q r
r

   

(2)
(2) (2)

02 2(2)
(1 ) ( )

2
sq K q r






 



, 

(1)
(1) (1) (1)(1) 2

2 1(1)
2 (( )

2
zzF A q


 



 
  

 

 

(2) (2)
0 21 10.5( ( ) ( ))K q r K q r   

(1) (1)
(1) (1)21

1 01 1(1)
( )) (1 ) ( )

2

q
K q r s K q r

r






  



 

(1)
(1) (1) 2
2 2(1)

( ( )
2

B s q









 

(1) (1)
0 22 20.5( ( ) ( ))K q r K q r

(1)
(1)2

1 2( ))
sq

K q r
r

  

(1)
(1) (1)

02 2(1)
(1 ) ( ))

2
sq K q r






  



 

Substituting the expressions in (18) into the Fourier 

transformations of the corresponding boundary and contact 

conditions in (5), (6) and (13) we obtain the following 

algebraic equations with respect to the unknown constants 
(2)
1A , 

(2)
2A , 

(1)
2A , 

(2)
1B , 

(2)
2B and 

(1)
2B . 

(2) (2) (2)
0 11 121 2rrF

r R h
P A A  

 
      

(2) (2) (1) (1)
13 14 15 16 01 2 1 2B B B B P        , 

(2) (2) (2)
21 221 20rzF

r R h
A A  

 
     

(19) 

(2) (2) (1) (1)
23 24 25 261 2 1 2 0B B B B       , 

(2) (2)(1) (2)
31 321 2rr rr

r R r R
A A   

 
     

(2) (2) (1) (1)
33 34 35 361 2 1 2 0B B B B       , 

(2) (2)(1) (2)
41 421 2rz rz

r R r R
A A   

 
     

(2) (2) (1) (1)
43 44 45 461 2 1 2 0B B B B       , 

(2) (2)(1) (2)
51 521 2r r

r R r R
u u A A 

 
     

(2) (2) (1) (1)
53 54 55 561 2 1 2 0B B B B       , 

(1) (2) (1)

(1)z z rz
r R r R r R

FR
u u 

  
    

(2) (2) (2)
61 62 631 2 1A A B      

(2) (1) (1)
64 65 662 1 2 0B B B      

Note that the coefficients ij  in (19), where 

; 1,2,3,...,6i j 
 

can be easily determined from the 

expressions in (18).  

Thus, after solving the equations in (19) with respect to 

the unknowns 
(2) (2) (2)
1 2 1, , ,A A B

(2)
2 ,B

(1)
2A  and 

(1)
2B

 
we 

determine completely the Fourier transformations of all the 

sought values and,  substituting these values into the 

integrals in (14) and calculating these integrals, we 

determine the originals of the stresses and displacements 

which are caused by the action of the moving ring load 

acting on the interior of the hollow cylinder.   

This completes the consideration of the solution method. 
 

 

4. Numerical results and discussions 
 

4.1 On the calculation algorithm 
 

Numerical results on the critical velocity of the moving 

load and on the influence of the initial stresses in the 

cylinder and surrounding elastic medium on these critical 

velocities, as well as numerical results on the influence of 

the initial stresses on the interface stresses which appear as 

a result of the action of the moving load, are obtained 

through the numerical calculation of the integrals in (14). 

Note that the algorithm for this calculation is based on the 

Sommerfield contour method and is developed in the papers 

by Akbarov et al. (2015), Akbarov and Ismailov (2015, 

2016a, 2016b) and other ones listed therein. Moreover, the 

mentioned algorithm is also detailed in the monograph by 

Akbarov (2015). Therefore, here we do not consider 

detailed description of this algorithm and note that the used 

Sommerfield contour is selected such as in Fig. 2, according 

to which the calculation of the integrals in (14) are reduced 

to the calculation of the following ones. 
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c  

Fig. 2 The sketch of the Sommerfeld contour 

 

 

 ( ) ( ) ( ) ( ); ; ; ( , )k k k k
r nn nnu r z     

 ( ) ( ) ( ) ( )

0

1
Re ; ; ;

k k k k
F rF nnF nnFu  





  

1 1( , )cos(( ) )r z s i z ds , 

 ( ) ( ) ( ) ( ); ; ; ; ( , )k k k k
z rz rzu r z     

 ( ) ( ) ( ) ( )

0

1
Re ; ; ;

k k k k
F zF rzF rzFu  





  

1 1( , )sin(( ) )r z s i z ds . 

(20) 

Note that during calculation of the integrals in (20) the 

improper integral 10
( )ds


•  is replaced with the 

corresponding definite integral 

*
1

10
( )

S
ds•  and the values 

of 
*
1S  are determined from the corresponding convergence 

requirement. Moreover, during the calculation of the 

integral 

*
1

10
( )

S
ds• , the interval 

*
1[0, ]S  is divided into a 

certain number (denote this number through N ) of shorter 

intervals and within each of these intervals the integrals are 

calculated by the use of the Gauss algorithm with ten 

integration points. The values of the integrated functions at 

these integration points are calculated through the solution 

of the Eq. (19). All these procedures are performed 

automatically in the PC by use of the corresponding 

programs constructed by the authors of the present paper in 

MATLAB. Numerical results presented in the present paper 

are obtained in the case where N=200, 
*
1 9S   and 

ε=0.001 under which these results have sufficient high 

accuracy in the convergence sense and in the trustiness 

sense. 

 

4.2 Numerical results related to the influence of the 

initial stress on the critical velocity 

  

We introduce the notation  

(1) (2)( ) ( , ) ( , )rr rr rrz R z R z     (21) 

First, we note that the critical velocity is determined 

from the following criterion: the critical velocity is the 

velocity with approaching to which the absolute values of 

the interface stress σrr(z) (21) (or any quantities 

characterizing the displacement and stress-strain state of the 

system under consideration in the perturbed state) increase 

indefinitely. This criterion is general one and can be applied 

for the cases where the materials of the hollow cylinder and 

surrounding elastic medium are viscoelastic ones. 

Numerical results which will be discussed below are 

obtained in the following three cases 

Case 1. 
(1) (2) 0.35E E  , 

(1) (2) 0.1   , 

(1) (2) 0.25   . 

(22) 

Case 2. 
(1) (2) 0.05E E  , 

(1) (2) 0.01   , 

(1) (2) 0.25   . 

(23) 

Case 3. 
(1) (2) 0.5E E  , 

(1) (2) 0.5   , 

(1) (2) 0.3   . 

(24) 

As follows from the relations (22)-(24) that the 

Poisson’s ratio of all the selected pairs of materials are 

equal to each other and therefore for these pairs the 

homogeneity of the initial stresses, i.e. the relations in (1) 

are satisfied exactly. Note that Case 2 was also considered 

in the paper by Abdulkadirov (1981) under h/R=0.5 and 

Case 3 was considered in the paper by Babich et al. (1986) 

under h/R→0. Consequently, the critical velocity obtained 

for Case 2 under h/R=0.5 must coincide with the 

corresponding one obtained in the paper by Abdulkadirov 

(1981) and the critical velocities obtained for Case 3 must 

approach to the critical velocity obtained by Babich et al. 

(1986) with decreasing the ratio h/R. Note that these 

predictions relate only to the case where the initial stresses 

in the cylinder and surrounding elastic medium are absent. 

Moreover, note that for selected pairs of materials the 

relations 
(1)
2
(2)
2

3.5
c

c
   in Case 1,  

(1)
2
(2)
2

5
c

c
  in Case 2, 

and 

(1)
2
(2)
2

1.0
c

c
  in Case 3 

(25) 

takes place and according to these relation, it can be 

concluded that if 
(2)
2/ 1V c  , then the moving velocity of 

the ring load is subsonic.    

Thus, we consider the results related to the influence of 

the initial stress on the values of the dimensionless critical 

velocity  

(2)
2/cr crc V c

 
(26) 

and for estimation this influence we introduce the following 

notation.  
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Table 1 The influence of the dimensionless initial stress 
(2)0 (2)
zz    on the values of the dimensionless critical 

velocity 
(2)
2cr crc V c in Case 1 

  
h R  

0.5 0.2 0.1 0.05 

0.000  0.935 0.864 0.843 0.836 

0.001

0.001




 

0.935

0.936
 

0.863

0.864
 

0.843

0.844
 

0.835

0.837
 

0.005

0.005




 

0.932

0.938
 

0.861

0.867
 

0.840

0.847
 

0.832

0.839
 

0.01

0.01




 

0.930

0.942
 

0.856

0.870
 

0.837

0.850
 

0.829

0.842
 

0.02

0.02




 

0.926

0.946
 

0.851

0.876
 

0.830

0.856
 

0.822

0.849
 

0.03

0.03




 

0.919

0.951
 

0.845

0.881
 

0.824

0.862
 

0.816

0.855
 

0.04

0.04




 

0.915

0.958
 

0.838

0.888
 

0.817

0.869
 

0.809

0.861
 

0.05

0.05




 

0.908

0.964
 

0.832

0.894
 

0.810

0.875
 

0.802

0.868
 

 

Table 2 The influence of the dimensionless initial stress 
(2)0 (2)
zz    on the values of the dimensionless critical 

velocity 
(2)
2cr crc V c in Case 2 

  
h R  

0.5 0.2 0.1 0.05 

0.000  

0.826 prest. 

0.826 by 

Abdulkadirov 
(1981) 

0.617 0.529 0.488 

0.001

0.001




 

0.825

0.826
 

0.616

0.618
 

0.528

0.530
 

0.487

0.489
 

0.005

0.005




 

0.823

0.829
 

0.613

0.621
 

0.524

0.533
 

0.483

0.493
 

0.01

0.01




 

0.820

0.832
 

0.609

0.625
 

0.519

0.533
 

0.478

0.498
 

0.02

0.02




 

0.813

0.838
 

0.601

0.633
 

0.510

0.547
 

0.467

0.508
 

0.03

0.03




 

0.807

0.844
 

0.592

0.641
 

0.500

0.556
 

0.457

0.516
 

0.04

0.04




 

0.801

0.849
 

0.584

0.649
 

0.490

0.565
 

0.446

0.527
 

0.05

0.05




 

0.795

0.855
 

0.575

0.656
 

0.479

0.574
 

0.434

0.537
 

 

 

(2)0 (2)
zz  

 
(27) 

These results are given in Tables 1 (for Case 1), 2 (for 

Case 2) and 3 (for Case 3) which are obtained for various 

values of the parameter η and the ratio h/R. In Tables 2 and 

3 in particular cases the corresponding results which 

mentioned above and obtained in the papers by  

Table 3 The influence of the dimensionless initial stress 
(2)0 (2)
zz    on the values of the dimensionless critical 

velocity 
(2)
2cr crc V c in Case 3 

  
h R  

0.5 0.2 0.1 0.05 

0.000  0.939 0.874 0.854 
0.847 prest. 

0.832 (by Babich et 

al. (1986)) 

0.001

0.001




 

0.939

0.940
 

0.873

0.874
 

0.854

0.855
 

0.846

0.847
 

0.005

0.005




 

0.937

0.942
 

0.871

0.877
 

0.851

0.857
 

0.844

0.849
 

0.01

0.01




 

0.934

0.944
 

0.868

0.879
 

0.848

0.860
 

0.841

0.852
 

0.02

0.02




 

0.928

0.950
 

0.862

0.885
 

0.842

0.866
 

0.835

0.858
 

0.03

0.03




 

0.923

0.955
 

0.856

0.891
 

0.835

0.872
 

0.829

0.864
 

0.04

0.04




 

0.918

0.963
 

0.851

0.896
 

0.831

0.877
 

0.823

0.870
 

0.05

0.05




 

0.912

0.968
 

0.845

0.902
 

0.824

0.883
 

0.815

0.876
 

 

 
Abdulkadirov (1981) and Babich et al. (1986) are also 

given. The comparison of the present results with 

corresponding ones obtained in the papers by Abdulkadirov 

(1981) and Babich et al. (1986) shows the trustiness of the 

foregoing prediction and in this way, it is proven the 

validity of the used PC programs and algorithm which are 

used under obtaining the discussed numerical results.  

Thus, we turn to the discussion of the results given in 

Tables 1, 2 and 3, according to which, it can be concluded 

that an initial stretching of the constituents of the system 

under consideration causes an increase, however an initial 

compression of these constituents causes a decrease in the 

values of the critical velocities ccr (26).  

This conclusion agrees in the qualitative sense with the 

corresponding ones obtained in the papers by Babich et al. 

(1986), Akbarov et al. (2015) and other ones detailed in the 

monograph by Akbarov (2015). 

Also, these results show that the magnitude of the 

influence of the initial stresses on the values of the critical 

velocities increase with decreasing the ratio h/R.  

Moreover, the mentioned influence in Case 2 is more 

considerable than that obtained in Case 1 and Case 3. So 

that, in Case 1 and in Case 3 the influence of the initial 

stress on the critical velocity is not more than 5-6%, 

however this influence in Case 2 may be greater than 17%. 

This completes the consideration of the numerical 

results related to the influence of the initial stresses on the 

critical velocity. 

 
4.3 Numerical results related to the influence of the 

initial stresses on the interface stress distribution 

 
Consider numerical results which illustrate the influence  
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of the parameter η (27) (i.e., the influence of the initial 

stresses) on the response of the interface normal stress σrr(z) 

to the dimensionless velocity 
(2)
2/c V c

 of the moving 
load. For this purpose, we consider the graphs of the 

dependence between σzz(=σzz(0)) and c constructed for 

various values of the parameter η. These graphs are given in 

Figs. 3, 4 and 5 which relate to Case 1 (22), Case 2 (23) and 

Case 3 (24), respectively. Note that in these figures the 

graphs grouped by letters a, b, c and d correspond the cases 

where h/R=0.5, 0.2, 0.1 and 0.05, respectively.  Moreover, 

note that under construction these graphs it is assumed that 

c<ccr, i.e., the velocity of the moving load is less than the 

corresponding critical velocity.    

Thus, it follows from Figs. 3, 4 and 5 that the absolute 

values of the interface normal stress increase (decrease) as a  

 

 

result of the initial compression (of the initial stretching) 

and the magnitude of this increase (decrease) becomes more 

considerable as the moving velocity approaches the critical 

one. Moreover, these results show that the magnitude of the 

influence of the initial stresses on the values of the interface 

normal stress becomes more significantly with decreasing 

of the ratio h/R. For instance, according to Fig. 4(d), in the 

case where h/R=0.05 in Case 2 as result of the initial 

compression the absolute values of the stress under 

consideration may be greater two times than that obtained 

in the case where the mentioned initial compression is 

absent.  The comparison the graphs grouped by the letters 

a, b, c and d shows that, as a result of the decrease in the 

values of the ratio h/R the mentioned influence becomes 

significantly not only for the cases where the moving 

velocity approaches to the corresponding critical velocity, 

  

(a) (b) 

 

 

(c) (d) 

Fig. 3 Response of the interface normal stress at the point z/h=0 to the moving load velocity in Case 1 (22) under h/R=0.5 (a), 

0.2 (b), 0.1 (c) and 0.05 (d) 
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but also for the cases where moving velocity is near to the 

0.01. At the same time, the comparison of the results 

illustrated with each other shows that in Case 2 the 

influence of the initial stresses on the values of the interface 

normal stress is more significantly than that in Case 1 and 

Case 3. Consequently, the magnitude of the influence of the 

initial stresses on the values of the normal stress depends 

significantly also on the mechanical properties of the 

constituents of the system under consideration.   

Now we consider numerical results related to the 

distribution of the interface normal and shear stresses with 

respect to the z/h.  Epures of these distributions are given 

in Figs. 6 and 7 for the interface normal stress σrr (21) and 

for the interface shear stress ( )rz z 
(1)( , )rz z R 

 

 

 

(2)( , )rz z R , respectively. In these figures the graphs 

grouped by letters a and b relate to the cases where c=0.5 

and 0.7, respectively and Case 1 under h/R=0.2 is 

considered.  

Epures of the distribution of the interface normal stress 

and interface shear stress obtained in the case where 

h/R=0.05 are given in Fig. 8(a) and Fig. 8(b), respectively. 

Note that under construction the graphs given in Fig. 8 it is 

also Case 1 is considered and it is assumed that c=0.7. 

Thus, it follows from Fig. 6 that in a certain distance 

from the point at which the moving load acts at behind and 

ahead of this point the interface normal stress becomes 

stretched one. Note that this moment can play important 

role in the adhesion strength of the system “hollow cylinder 

  

(a) (b) 

 

 

(c) (d) 

Fig. 4 Response of the interface normal stress at the point z/h=0 to the moving load velocity in Case 2 (23) under h/R=0.5 (a), 

0.2 (b), 0.1 (c) and 0.05 (d) 
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+surrounding elastic medium" and the results given in Fig.  

 

 

 

6 shows that the values of this stretching normal stress 

  
(a) (b) 

  

(c) (d) 

Fig. 5 Response of the interface normal stress at the point z/h=0 to the moving load velocity in Case 3 (24) under h/R=0.5 (a), 

0.2 (b), 0.1 (c) and 0.05 (d) 

  
(a) (b) 

Fig. 6 Distribution of the interface normal stress with respect to z/h under c=0.5 (a) and 0.7 (b) in Case 1 
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increase (decrease) with initial compression (with initial 

stretching) of this system. Moreover, the comparison of the 

results given in Fig. 6(a) with corresponding ones given in 

Figs. 6(b) and 8(a) shows that an increase in the values of 

the velocity of the moving load and a decrease in the values 

of the ratio h/R cause an increase in the values of the 

aforementioned stretching interface normal stress, as well 

cause an increase of the magnitude of the influence of the 

initial stresses on the values of this stress Analysis of the 

graphs given in Fig. 7 and in Fig. 8(b) shows that the 

influence of the initial stresses on the absolute values of the 

interface shear stress is similar in the quantitative sense 

with that related to the interface normal stress. These graphs 

also show that the shear stress has its absolute maximum 

value in a certain distance from the point at which the 

moving load acts. The comparison of the graphs given in 

Fig. 7(a) with corresponding ones given in Fig. 7(b) and  

 

 

8(b) shows that the influence of the initial stresses on the 

values of the interface shear stress increases with increasing  

the load moving velocity and with decreasing the ratio h/R. 

Finally, we note the following statement. For this 

purpose, we recall that the coordinate z with respect to 

which the distribution of the interface stresses is illustrated 

in Figs. 6, 7 and 8, is the coordinate in the moving 

coordinate system determined by expressions in (11), i.e., 

the z/h in these figures is the z’/h. Consequently, for more 

correct explanation of the results given in Figs. 6, 7 and 8 

we must take into consideration (z-Vt)/h (where z is a 

coordinate in the reference coordinate system) instead of 

z/h. According to this consideration, if we fix the time t(=t*) 

then these figures illustrate the distribution of the stresses 

with respect to spatial coordinate (z’=z-Vt*) which shows 

the distance in the cylinder's axis direction from the point at 

which the moving load acts. If we fix the spatial coordinate 

 
 

(a) (b) 

Fig. 7 Distribution of the interface shear stress with respect to z/h under c=0.5 (a) and 0.7 (b) in Case 1 for h/R=0.2 

 

a 
b 

Fig. 8 Distribution of the interface normal (a) and shear (b) stresses with respect to z/h under h/R=0.05 and c=0.7 in Case 1 
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z=z* in the reference coordinate system, then, according to 

z’=z*-Vt, the Figs. 6, 7 and 8 illustrate the change of the 

stresses with respect to time at the mentioned fixed point. 

Consequently, the results given in Figs. 6, 7 and 8 illustrate 

not only the distribution of the interface stresses with 

respect to the spatial coordinate, but also these graphs 

illustrate the change of these stresses with respect to time.   

This completes the considerations and analysis of the 

numerical results. 
 

 

5. Conclusions 
 

Thus, in the present paper the problems related to the 

dynamics of the moving normal ring load acting on the 

interior of the pre-stressed hollow cylinder and the pre-

stressed surrounding elastic medium is investigated with 

employing the three-dimensional linearized theory of elastic 

waves in initially stressed bodies. It is assumed that the 

initial stresses in the constituents of the system under 

consideration appear as a result of the action of the 

uniformly distributed normal forces applied at infinity in 

the cylinder's axis direction which coincides with load 

moving direction and the case where the initial stresses are 

homogeneous, is considered. The equations for the 

potentials which enter into the classical Lame 

decomposition for displacements are obtained for the 

considered case which coincide with corresponding ones 

used the classical elastodynamics under absent of the initial 

stresses. The Fourier transform is employed with respect to 

the spatial axial coordinate and Fourier transformation of 

sought values are determined analytically, however 

originals of those are found numerically for which 

corresponding algorithm and PC programs are developed 

and composed by authors. Numerical results on the 

influence of the initial stresses on the values of the critical 

velocity and on the distribution of the interface stresses are 

presented and discussed. According to these results, it can 

be made the following concrete conclusions: 

- The initial stretching (compression) of the hollow 

cylinder and surrounding elastic medium causes an increase 

(a decrease) in the values of the critical velocity; 

- The magnitude of the aforementioned influence 

increase with decreasing of the ratio h/R where h is a 

thickness and R is an external radii of the hollow cylinder. 

At the same time, the values of the critical velocity decrease 

with the ratio h/R; 

- The influence of the initial stresses on the values 

of the critical velocity depends also significantly on the 

mechanical properties of the materials of the cylinder and 

surrounding elastic medium;   

- Absolute values of the interface normal and shear 

stresses increase (decrease) with initial compression (with 

initial stretching) of the constituents of the system under 

consideration; 

- The magnitude of the influence of the initial 

stresses on the absolute values of the interface stresses 

increase with decreasing of the ratio h/R. At the same time, 

this magnitude increases significantly in the cases where the 

load moving velocity approaches the corresponding critical 

velocity; 

- An initial compression (stretching) of the system 

under consideration causes an increase (a decrease) of the 

stretching interface normal stress which appear in a certain 

distance from the point at which the moving load acts. The 

adhesion strength of the considered system can depend 

significantly on the values of this normal stress; 

- The results related to the distribution of the 

interface stresses with respect to the axial coordinate in the 

moving coordinate system can be also taken as the change 

of these stresses with respect to time at a certain point in the 

reference system of coordinates.  
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