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1. Introduction 
 

Laminated composite structures have been used many 

engineering applications, such as aircrafts, space vehicles, 

automotive industries, defence industries and civil 

engineering applications because these structures have 

higher strength-weight ratios, more lightweight and ductile 

properties than classical materials. With the great advances 

in technology, the using of the laminated composite 

structures is growing in applications. 

In the literature, much more attention has been given to 

the linear analysis of laminated composite beam structures. 

However, nonlinear studies of Laminated composite beams 

are has not been investigated broadly. In the open literature, 

studies of the nonlinear behavior of laminated composite 

beams are as follows; Ghazavi and Gordaninejad (1989) 

studied geometrically nonliner static of laminated 

bimodular composite beams by using mixed finite element 

model. Singh et al. (1992) investigated nonlinear static 

responses of laminated composite beam based on higher 

shear deformation theory and von Karman’s nonlinear type. 

P a i  a n d  N a y f e h  ( 1 9 9 2 )  p r e s e n t e d  t h r e e -

dimensional nonlinear dynamics of anisotropic composite 

beams with von Karman nonlinear type. Di Sciuva and 

Icardi (1995) investigated large deflection of anisotropic 

laminated composite beams with Timoshenko beam theory 

and von Karman nonlinear strain-displacement relations by 

using Euler method. Donthireddy and Chandrashekhara 

(1997) investigated thermoelastic nonlinear static and 

dynamic analysis of laminated beams by using finite 

element method. Fraternali and Bilotti (1997) analyzed  
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nonlinear stress of laminated composite curved beams. 

Ganapathi et al. (2009) studied nonlinear vibration analysis 

of laminated composite curved beams. Patel (1999) 

examined nonlinear post-buckling and vibration of 

laminated composite orthotropic beams/columns resting on 

elastic foundation with Von-Karman's strain-displacement 

relations.   Oliveira and Creus (2003) investigated flexure 

and buckling behaviors of thin-walled composite beams 

with nonlinear viscoelastic model. Valido and Cardoso 

(2003) developed a finite element model for optimal desing 

of laminated composite thin-walled beams with 

geometrically nonlinear effects. Machado (2007) studied 

nonlinear buckling and vibration of thin-walled 

composite beams. Cardoso et al. (2009) investigated 

geometrically nonlinear behavior of the laminated 

composite thin-walled beam structures with finite element 

solution. Emam and Nayfeh (2009) investigated post-

buckling of the laminated composite beams with different 

boundary conditions. Malekzadeh and Vosoughi (2009) 

studied large amplitude free vibration of laminated 

composite beams resting on elastic foundation by using 

differential quadrature method. Akgöz and Civalek (2011) 

and Civalek (2013) examined nonlinear vibration laminated 

plates resting on nonlinear-elastic foundation. Youzera et al. 

(2012) presented nonlinear dynamics of laminated 

composite beams with damping effect. Patel (2014) 

examined nonlinear static of laminated composite plates 

with the Green-Lagrange nonlinearity. Akbaş (2013b, 

2014a, 2015a, b, c) investigated geometrically nonlinear of 

cracked and functionally graded beams. Stoykov and 

Margenov (2014) studied Nonlinear vibrations of 3D 

laminated composite Timoshenko beams. Cunedioğlu and 

Beylergil (2014) examined vibration of laminated 

composite beams under thermal loading. Mahi and Tounsi 

(2015) studied static and vibration of functionally graded, 
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sandwich and laminated composite plates by using 

hyperbolic shear deformation theory. Draiche et al. (2016) 

investigated flexure analysis of laminated composite plate 

by using a refined theory with stretching effect. Chikh et al. 

(2017) investigated buckling of laminated plates under 

thermal loading with higher shear deformation theory. Li 

and Qiao (2015), Shen et al. (2016, 2017), Li and Yang 

(2016) investigated nonlinear postbuckling analysis of 

composite laminated beams. Kurtaran (2015), Mororó et al. 

(2015), Pagani and Carrera (2017) analyzed large 

deflections of laminated composite beams. Benselama et al. 

(2015), Liu and Shu (2015), Topal (2017) investigated 

buckling behavior of composite laminate beams. Latifi et 

al. (2016), Ebrahimi and Hosseini (2017) presented 

nonlinear dynamics of laminated composite structures. 

Also, there are many nonlinear, vibration, buckling studies 

of other type composite structures such as functionally 

graded materials, sandwich, nano composites etc. in the 

literature (Akbaş and Kocatürk 2012, Hebali et al. 2014, 

Zidi et al. 2014, Belabed et al. 2014, Meziane et al. 2014, 

Al-Basyouni et al. 2015, Yahia et al. 2015, Bourada et al. 

2015, Akbaş 2013a, 2014b, 2015d, 2015e, 2017a, 2017b, 

2017c, 2017d, 2017e, 2017b, 2018), Bouderba et al. (2013), 

2016), Boukhari et al. (2016), Bellifa et al. (2016), 

Bennoun et al. (2016), Bounouara et al. (2016), Kocatürk 

and Akbaş (2010, 2011, 2012, 2013), Bousahla et al. (2014, 

2016), Beldjelili et al. (2016), Kocatürk et al. (2011), 

Bellifa et al. (2017), El-Haina et al. (2017), Menasria et al. 

(2017), Bouafia et al. (2017), Abdelaziz et al. (2017), 

Youcef et al. (2018). 

In the most of the nonlinear studies of laminated 

composite beams, the von-Karman strain displacement 

approximation is used. In the von-Karman strain, full 

geometric non-linearity cannot be considered because of 

neglect of some components of strain, satisfactory results 

can be obtained only for large displacements but moderate 

rotations. In the open literature, nonlinear studies of 

laminated composite beams with considering full geometric 

nonlinearity has not been investigated broadly.  

In the present study, the geometrically nonlinear static 

analysis of a laminated Timoshenko beams is considered by 

using total Lagrangian finite element method in which full 

geometric nonlinearity can be considered as distinct from 

the studies by using von-Karman nonlinearity. The main 

purpose of this paper is to fill this gap for laminated 

composite beams. The distinctive feature of this study is 

geometrically nonlinear study of composite laminated 

beams with full geometric non-linearity. The effects of the 

fiber orientation angles and the stacking sequence of 

laminates on the nonlinear deflections and stresses of the 

composite laminated beam are examined and discussed. 

Convergence study is performed. Also, the difference 

between the geometrically linear and nonlinear analysis of 

the laminated beam is investigated in detail. The 

shortcomings of this study, the material nonlinearity and 

elasto-plastic behavior are not considered. It would be 

interesting to demonstrate the ability of the procedure 

through a wider campaign of investigations concerning 

elasto-plastic or material nonlinear analysis of laminated 

composite beams with geometrically nonlinearity. 

 

Fig. 1 A simply supported laminated beam subjected to a 

non-follower point load (F) at the midpoint of the beam and 

cross-section 

 

 

Fig. 2 Two-node C0 beam element 

 

 

2. Theory and formulation 
 

A simply supported laminated composite beam with 

three layers of length L, width b and height h, as shown in 

Fig. 1. The beam is subjected to a non-follower transversal 

point load (F) at the midpoint of the beam as seen from Fig. 

1. It is assumed that the layers are located as symmetry 

according to mid-plane axis. The height of each layer is 

equal to each other. 

In the nonlinear kinematic model of the beam, the total 

Lagrangian approach is used within Timoshenko beam 

theory. The Lagrangian formulations of the problem are 

developed for laminated composite beam by using the 

formulations given by Felippa (2017) for isotropic and 

homogeneous beam material. The finite beam element of 

the problem is derived by using a two-node beam element 

shown in Fig. 2, of which each node has three degrees of 

freedom, i.e., two displacements uxi and uyi and one rotation 

θi about the Z axis.  

In the deformation process, a generic point of the beam 

located at P0(X, Y) in the previous configuration C0 moves 

to P(x, y) in the current configuration C, as shown in Fig. 3. 

The projections of P0 and P along the cross sections at C0 

and C upon the neutral axis are called C0(X, 0) and C(xc, yc), 

respectively. It is assumed that the cross section of the beam 

remains unchanged, such that the shear distortion g<<1 and 

cosg can be replaced by 1 Felippa (2017). 

The coordinates of the beam at the current C 

configuration are  

 

(1) 

 

(2) 
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(a) Motion of plane beam 

 
(b) Reduction to one-dimensional element 

Fig. 3 Lagrangian kinematics of the C0 beam element with 

X-aligned reference configuration Felippa (2017) 

 

 

where, 
c XCXx u= + and 

c XCy u= . Consequently,

sinXCx X u Y= + - q and cosYCy u Y= + q. From now on, 

we shall call 
XCu  and 

YCu   simply 
Xu and 

Yu , 

respectively. Thus, the Lagrangian representation of the 

coordinates of the generic point at C is 

 

(3) 

in which 
Xu , 

Yu  and θ are functions of X only. This 

concludes the reduction to a one-dimensional model, as 

sketched in Fig. 3(b). For a two-node 
0C  element, it is 

natural to express the displacements and rotation as linear 

functions of the node degrees 

 

(4) 

in which 
0(2 / ) 1X Lx= -  is the isoparametric coordinate 

that varies from 1x= -  at node 1 to 1x=  at node 2.  

The Green-Lagrange strains are given as follows 

Felippa (2017) 

 

(5) 

e=(1+𝑢𝑥
′ ) cos+𝑢𝑌

′ sin-1 (6a) 

=-(1+𝑢𝑥
′ ) sin+𝑢𝑌

′ sin-1, =
′
 (6b) 

where e is the axial strain, g  is the shear strain, and k  is 

curvature of the beam, d / dX Xu u X¢ = , d / dY Yu u X¢= , 

d / dXq q¢= . The equivalent Young’s modulus of kth layer 

in the x direction (𝐸𝑥
𝑘) is used the following formulation 

(Vinson and Sierakowski 2002) 

1

𝐸𝑥
𝑘

=
𝑐𝑜𝑠4(𝜃𝑘)

𝐸11

+ (
1

𝐺12

−
2𝜈12

𝐸11

) 𝑐𝑜𝑠2(𝜃𝑘) 𝑠𝑖𝑛2(𝜃𝑘)

+
𝑠𝑖𝑛4(𝜃𝑘)

𝐸22

 
(7) 

where, E11 and E22 indicate the Young's modulus in the 

longitudinal and transverse directions, respectively, G12 and 

ν12 are shear modulus and Poisson ratio, respectively. 

m=cos 𝜃 and n= sin 𝜃, 𝜃 indicates the fiber orientation 

angle. By assuming that the material of the laminated 

composite beam obeys Hooke’s law, the axial force N, shear 

force V and bending moment M are given as follows 

11 11
N A Be= + k  (8a) 

 
(8b) 

11 11
M B De= + k  (8c) 

where 
11A ,

11B ,
11D  and

55A  are the extensional, coupling, 

bending, and transverse shear rigidities respectively, and 

their expressions are defined as 

𝐴11 = ∑ 𝑏𝐸𝑥
𝑘(𝑧𝑘+1 − 𝑧𝑘 )

𝑛

𝑘=1

 (9a) 

𝐵11 =
1

2
∑ 𝑏𝐸𝑥

𝑘(𝑧𝑘+1
2 − 𝑧𝑘

2)

𝑛

𝑘=1

 (9b) 

𝐷11 =
1

3
∑ 𝑏𝐸𝑥

𝑘(𝑧𝑘+1
3 − 𝑧𝑘

3)

𝑛

𝑘=1

 (9c) 

Expression of the transverse shear rigidity A55 given as 

follows (Vinson and Sierakowski 2002) 

𝐴55 =
5

4
∑ 𝑏𝑄55

𝑘 (𝑧𝑘+1 − 𝑧𝑘 −
4

3ℎ2
(𝑧𝑘+1

3 − 𝑧𝑘
3))

𝑛

𝑘=1

 (10) 

where 𝑄55
𝑘  is given below 

𝑄55
𝑘 = 𝐺13𝑐𝑜𝑠2(𝜃𝑘) + 𝐺23𝑠𝑖𝑛2(𝜃𝑘) (11) 

For the solution of the geometrically nonlinear problem 

in the total Lagrangian coordinates, a small-step 

incremental approach based on Newton-Raphson iteration 

method is used. In the Newton-Raphson solution for the 

problem, the applied load is divided by a suitable number of 

increments according to its value. After completing an 
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iteration process, the previous accumulated load is 

increased by a load increment. 

The solution for the n+1 st load increment and ith 

iteration is performed using the following relation 

1
( )

i i i

n T n
d

+
=

-1
u K R  (12) 

where K
i

T

 
is the tangent stiffness matrix of the system at 

the i th iteration, u
i

n
d  is the displacement increment vector 

at the i th iteration and n+1 st load increment, 
1( )i

n SR +
 is 

the residual vector of the system at the i th iteration and 

n+1 st load increment. This iteration procedure is continued 

until the difference between two successive solution vectors 

is less than a preset tolerance in the Euclidean norm, given 

by 

 

(13) 

A series of successive iterations at the n+1 st 

incremental step gives 

 
(14) 

where

                  

 
(15) 

The residual vector 
1Ri

n+
 for the structural system is 

given as follows 

1R f pi
n+ = -  (16) 

Where f is the vector of total external forces and p is the 

vector of total internal forces, as given in the appendix. The 

element tangent stiffness matrix for the total Lagrangian 

Timoshenko beam element as given (Felippa 2017) is 

K K K
T M G
= +  (17) 

where K
G

 is the geometric stiffness matrix, and K
M

 is 

the material stiffness matrix given as follows 

 
(18) 

The explicit expressions of the terms in Eq. (17) are 

given in the appendix. After integration of Eq. (18), the 

matrix 
MK can be expressed as follows 

a c b s
M M M M MK K K +K K= + +  (19) 

where a
MK  is the axial stiffness matrix, c

MK  the coupling 

stiffness matrix, b
MK  the bending stiffness matrix, and 

s
MK  the shearing stiffness matrix, of which the explicit 

expressions are given in the Appendix. 
 

 

3. Numerical results 
 

In the numerical examples, geometrically nonlinear  

 

Fig. 4 Convergence study for nonlinear vertical 

displacements at the midpoint of the beam 

 

 

deflections, namely large deflections and stresses of the 

simply supported laminated beam are calculated and 

presented for different fiber orientation angles and the 

stacking sequence of laminates under non-follower 

transversal point load (F) at the midpoint of the beam (Fig. 

1). Also, geometrically linear and nonlinear results are 

presented and discussed for laminated composite beams. 

Using the conventional assembly procedure for the finite 

elements, the tangent stiffness matrix and the residual 

vector are obtained from the element stiffness matrices and 

residual vectors in the total Lagrangian sense for finite 

element model of the laminated Timoshenko beams. After 

that, the solution process outlined in the preceding section 

is used to obtain the solution for the problem of concern. In 

obtaining the numerical results, graphs and solution of the 

nonlinear finite element model, MATLAB program is used. 

Numerical calculations of the integrals seen in the rigidity 

matrices will be performed by using five-point Gauss rule. 

In the numerical examples, the material properties of the 

layers are used in Loja et al. (2001): E1 = 129.207 GPa, E2 

= E3= 9.42512 GPa, G12 = 5.15658 GPa, G13=4.3053 GPa, 

G23=2.5414 GPa, ν12=ν13=0.3, ν23= 0.218837. The geometry 

properties of the beam are considered as follows: b=0.3 m, 

h=0.3 m and L=3 m. It is mentioned before that the 

thickness of layers is equal to each other. 

In order to obtain the optimum number of the finite 

element for the numerical calculations, the convergence 

study is performed in Fig. 4. In Fig. 4, nonlinear maximum 

vertical displacements (at the midpoint of the beam) of the 

laminated composite beam are calculated for different 

numbers of finite elements for the point load F=100000 kN 

and the stacking sequence of laminates [0,90,0]. It is seen 

from Fig. 4 that the nonlinear maximum displacements 

converge perfectly after the finite element n=100. So, the 

number of finite elements is taken as 100 in the numerical 

calculations. 

In Figs. 5 and 6, the effects of the fiber orientation 

angles on the maximum vertical displacements (at the 

midpoint of the beam) are displayed for the stacking 

sequences [0//0] and [/0/], respectively, for different 

values of transversal point load (F) in both linear and 

nonlinear analysis.  

It is observed from Figs. 5 and 6 that increasing the fiber 

orientation angles to 0º from 90º, the deflections increase 

significantly. At the fiber orientation angle =90º, the  
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(a) for F=10000 kN 

 
(b) for F=30000 kN 

 
(c) for F=50000 kN 

Fig. 5 The relationship between fiber orientation angles and 

maximum deflections for linear and nonlinear solution for 

the stacking sequence [0//0] 

 

 

deflections are the greatest value for each layer 

arrangements. The equivalent Young’s modulus and 

bending rigidity increase according to the Eq. (7). As a 

result, the strength of the beam increases. Another result of 

Figs. 5 and 6 that the increase in load causes increase in 

difference between the displacement values of the linear 

and the nonlinear solutions. Increase in load is more 

effective in the vertical displacements and rotations of the 

linear solution. Also, the difference between laminated 

beam in the linear case is bigger than in the nonlinear’s. In 

the stacking sequences [/0/], the difference between the 

displacement values of the linear and the nonlinear 

solutions increase considerably with increasing the fiber 

orientation angles to 0º from 90º as seen from Fig. 6. 

However, this difference does not change in the stacking 

sequences [0//0] with increasing  as seen from Fig. 5. In 

the higher value of fiber orientation angles and load, the 

difference between linear and nonlinear solutions is quite 

big. It shows that the stacking sequences and fiber  

 
(a) for F=5000 kN 

 
(b) for F=8000 kN 

 

 
(c) for F=12000 kN 

Fig. 6 The relationship between fiber orientation angles and 

maximum deflections for linear and nonlinear solution for 

the stacking sequence [/0/] 
 

 

orientation angles play very important role on the nonlinear 

mechanical behaviour of the laminated beams. 

Figs. 7 and 8 show that effect of the fiber orientation 

angles on the Cauchy normal stresses (σxx) at the   

midpoint of the beam (X=L/2 and Y=0.5h) for the stacking 

sequences [0//0] and [/0/], respectively for different 

values of transversal point load (F) in both linear and 

nonlinear analysis. It is seen from Figs. 7 and 8 that the 

normal stresses in the stacking sequence [0//0] increase 

with increasing the fiber orientation angles.  

Whereas, the normal stresses in the stacking sequence 

[/0/] decrease with increasing the fiber orientation angles.  

Also, difference between the stresses values of the linear 

and the nonlinear solutions increase significantly with 

increasing the load. It shows that nonlinear theory must be 

considered in the higher load values and large 

displacements problems. Otherwise, linear theory fails to 

satisfy large displacement problems.  

In Figs. 9 and 10 display Cauchy normal stresses 

distributions along the height at the midpoint of the  
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(a) for F=10000 kN 

 
(b) for F=30000 kN 

Fig. 7 The relationship between fiber orientation angles and 

Cauchy normal stresses (σxx) at the midpoint of the beam 

(X=L/2 and Y=0.5h) for linear and nonlinear solution for the 

stacking sequence [0//0] 
 

 
(a) for F=10000 kN 

 
(b) for F=30000 kN 

Fig. 8 The relationship between fiber orientation angles and 

Cauchy normal stresses (σxx) at the midpoint of the beam 

(X=L/2 and Y=0.5h) for linear and nonlinear solution for the 

stacking sequence [/0/] 

 

 
(a) for F=50000 kN 

 
(b) for F=150000 kN 

 
(c) for F=300000 kN 

Fig. 9 Normal stress distributions along the height at the 

midpoint of the beam for linear and nonlinear solution for 

the stacking sequence [0/90/0] 

 

 

laminated beam for the stacking sequences [0/90/0] and 

[90/0/90], respectively for different values of transversal 

point load (F) in both linear and nonlinear cases. It is seen 

from Figs. 9 and 10 that with change in the stacking 

sequence of laminas, Cauchy normal stresses change 

seriously. The stress values in the linear case are bigger than 

the nonlinear case’s. In higher load values, the difference 

between stress distribution in the linear and the nonlinear 

cases increases considerably. In order to obtain more 

realistic results and real stress values for laminated 

composite structures, the nonlinear effects must be 

considered, especially for higher load values and large 

deflection problems. As seen from the stress distribution 

graphs, the stacking sequence of laminates is very effective 

in the stress distribution. 

 

 
4. Conclusions 
 

Geometrically nonlinear static analysis of a simply  

32



 

Geometrically nonlinear analysis of a laminated composite beam  

 

 
(a) for F=10000 kN 

 
(b) for F=50000 kN 

 
(c) for F=80000 kN 

Fig. 10 Normal stress distributions along the height at the 

midpoint of the beam for linear and nonlinear solution for 

the stacking sequence [90/0/90] 

 

 

supported laminated composite beam is investigated by 

using total Lagrangian finite element model with the 

Timoshenko beam theory. 

The considered non-linear problem is solved by using 

incremental displacement-based finite element method in 

conjunction with Newton-Raphson iteration method. 

Convergence study is performed. The fibber orientation 

angles and the stacking sequence of laminates on nonlinear 

displacements of the laminated beam are studied and 

discussed in both linear and nonlinear cases. 

It is observed from the investigations that the fiber 

orientation angles and the stacking sequences of laminates 

have a great influence on the geometrically non-linear static 

response of the laminated beams. There is a significant 

difference between the geometrically linear and non-linear 

analysis for the laminated beams in higher values of loads. 

Also, with change the fiber orientation angles and the 

stacking sequences of laminates, difference between the 

geometrically linear and non-linear results change seriously. 

In order to obtain more realistic results and real stress and 

displacement values for laminated composite structures, the 

nonlinear effects must be considered in large deflection 

problems and higher values of loads. 
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Appendix 
 

 

Fig. A1 Plane beam element with arbitrarily oriented 

reference configuration Felippa (2017) 

 

 

In this Appendix, the entries of the following matrices 

are given: axial stiffness matrix K
a

M
, coupling stiffness 

matrix Kc
M

, bending stiffness matrix b
MK , and shearing 

stiffness matrix s
MK  are developed for laminated composite 

beam by using the formulations given by Felippa (2018) for 

isotropic and homogeneous beam material. 

 

(A1) 

 

(A2) 

 

(A3) 

 

(A4) 

where m denotes the midpoint of the beam, 0x= , and  

1 2( ) / 2m q +qq = , 
m mw = q +j , cosm mc = w , sinm ms = w , 

0( )cos / 1mme L Lq - y= - , 
1 1 mea = +  and

0( )sin /mm L Ly- qg =  

(See Fig. A1 for symbols). The initial axis of the beam 

considered is taken as horizontal, therefore j=0. The matrix 

S  is defined as follows 

 

(A5) 

The matrix Bm
 is given as follows 

 

(A6) 

The geometric stiffness matrix KG is given as follows 

 

(A7) 

in which Nm and Vm are the axial and shear forces evaluated 

at the midpoint. The internal nodal force vector is Felippa 

(2017) 

 

(A8) 

where zT=[N V M]. The external nodal force vector is 

 

(A9) 

where fX, fY are the body forces, tX, tY, mZ are the surface 

loads in the X, Y directions and about the Z axis. 
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