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1. Introduction 
 

Dynamic characteristics analysis of non-uniform beams 

such as stepped and tapered beams have be widely used in 

engineering designs, and various approaches have been 

examined to obtain more accurate results for such problems. 

However, these structures experience cracking damage by 

various causes such as aging, environmental loads and 

manufacturing defects. The effect of cracks on the natural 

frequencies of damaged structures has been investigated 

using various approaches (Donà et al. 2015, Kisa and Gurel 

2007, Lee and Chung 2000, Nahvi and Jabbari 2005, Broda 

et al. 2016, Neves et al. 2016); specifically, cracks reduced 

the natural frequencies. Wauer (1990) and Dimagoronas 

(1996) surveyed the approaches capable of evaluating the 

effect of cracking in rotating and non-rotating beams. 

For vibrating structures having an arbitrary number of 

cracks, a number of investigators expressed the local 

displacements in the crack region as a rotational spring 

(Cheng et al. 2011, Skrinar 2009) and modeled the system 

as two sub-elements connected by this spring. Caddemi and 

Morassi (2013), and Caddemi and Calio (2009) studied the 

effect of multiple cracks on the natural frequencies of 

Euler-Bernoulli beams using the generalized functions. 

Some studies evaluated the effect of the crack using 

rotational and translational springs (Loya et al. 2006). 

Cracks in actual structures affect the bending stiffness in 

both the in-plane and out-of-plane directions, and these  
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stiffnesses are reduced (Mazanoglu and Sabuncu 2010, 

Behzad et al. 2013). Fernández-Sáez et al. (2016) dealt with 

the inverse problems to analyze the effect of cracking based 

on natural frequency data. Cracked and twisted beams with 

bending displacements are coupled in two principal planes 

by twisting, and the variations of the local stiffness in the 

in-plane and out-of-plane directions should be considered 

(Lee and Lee 2017a). However, because the vibration in 

two directions can be decoupled from each other, the effect 

of the crack in such systems can be independently evaluated 

for the in-plane and out-of-plane directions when there is a 

straight cross-section.   

For a non-uniform beam (Zhang and Yan 2016, Zhou et 

al. 2016, Sarkar and Ganguli 2014, Vinod et al. 2007, Yuan 

et al. 2016, Rossit et al. 2017, Sun et al. 2016, Sarkar et al. 

2016), such problems have been studied over the past 

century to generate more accurate results using various 

methods such as the dynamic stiffness method (Banerjee et 

al. 2006) and the transfer matrix method (Lee and Lee 

2016). The use of shape functions for non-uniform beams 

has also simplified the computational process (Banerjee et 

al. 2006), and power series has also been used to accurately 

determine the roots of the differential equation (Hodges and 

Rutkowski 1981). Among the power series solutions, the 

Frobenius method is preferred to investigate the bending 

vibration characteristics of a beam with a linearly variable 

cross-section height along the length of the beam. Kundu 

and Ganguli (2017) discussed the reason of buckling and 

the natural frequencies of rotating non-uniform beam with 

variable tensile and compressive forces using the Galerkin 

method.  

Chaudhari and Maiti (1999) predicted the size and 

location of a crack for the bending vibration of a tapered  
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Fig. 1 Geometry of single and double tapered beams with 

an edge crack: (a) single tapered beam, (e) double tapered 

beam, (b,f) side view, and (c,g) top view 

 

 

beam with a linearly reduced cross-section height using the 

Frobenius method. Using the roots of the differential 

equation computed from the Frobenius method, Lee and 

Lee (2017b) used the transfer matrix approach to 

investigate the effect of cracking on the natural frequencies 

of rotating straight beams. However, this method does not 

consider the effect of tapering. Additionally, the present 

method uses the transfer matrix method to determine the 

natural frequencies of a tapered beam with axial loading 

and multiple open edge cracks. The transfer matrix method 

has an advantage that the effect of a crack can be simply 

multiplied in the transfer of the state quantities because the 

global matrix is the same regardless of the number of 

subdivisions (Lee and Lee 2017a, b, Attar 2012). In 

addition, there is a dearth of studies on tapered beams with 

axial force and cracking, though the effect of cracks on the 

natural frequencies for bending vibrations of single or 

double tapered beams has been reported (Mazanoglu and 

Sabuncu 2010, Chaudhari and Maiti 1999). However, the 

present authors could not locate investigations in which a 

direct comparison is made between the results obtained 

from two types of tapered beams. 

The objective of this study is to propose a simple 

numerical method capable of providing more accurate 

results for the in-plane bending vibrations of two types of 

axially loaded and tapered beams with an edge or multiple 

edge open cracks at arbitrary locations and then to use this 

method to analyze the effect on the natural frequencies in 

the beam structures. The present method has the advantage 

that it can produce the desired number of accurate results 

using a minimum number of sub-elements. The local 

displacements of the crack region in this study are modeled  
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Fig. 2 The subdivided elements of a beam with an edge 

crack for the transfer matrix method; (a) the beam element 

with multiple cracks at the right-hand end, and (b) the beam 

element with multiple cracks at the left-hand end 

 

 

as two segments connected by a rotational spring, and the 

additional displacement generated by the bending moment 

caused by the crack is formulated as an independent transfer 

matrix (Lee and Lee 2017a, b). To demonstrate the accuracy 

of the method, the computed results are compared with the 

natural frequencies discussed in previous works. The effect 

of cracking in tapered beams is also examined through a 

parametric study with respect to various sizes and locations 

of crack, and a comprehensive analysis between single and 

double tapered beams is presented. 

 

 

2. Theory 
 

This study did not consider the effect of rotary inertia 

and shear deformation. Instead, it investigates the in-plane 

bending vibration of axially loaded single and double 

tapered beams with multiple edge open cracks. 

Additionally, longitudinal vibration is ignored and open 

cracks are assumed. When the beam element has a single 

edge crack, two types of axially loaded tapered beams with 

a crack are illustrated in Fig. 1, where XYZ are the global 

coordinates, 𝐿 is the length of the beam element, 𝑐 is the 

taper ratio, 𝐾𝛷 is the rotational spring, and 𝑎 is the size of 

cracking. ℎ0 and 𝑏0 are the height and width of a cross-

section when 𝑐 = 0, respectively. ℎ(𝑥) and 𝑏(𝑥) are the 

height and width of a cross-section at arbitrary locations, 

respectively, in which the dimension of the cross-section is 

reduced by a taper ratio 𝑐. 𝑎(𝑥) is the variation of the size 

of the crack by the taper ratio, and 𝐹0 is the constant axial 

force. 

In Fig. 1, 𝑎(𝑥), ℎ(𝑥), and 𝑏(𝑥) can be expressed by 

𝑎(𝑥) = 𝑎0 (1 − 𝑐
𝑥

𝐿
), 

ℎ(𝑥) = ℎ0 (1 − 𝑐
𝑥

𝐿
), 𝑏(𝑥) = 𝑏0 (1 − 𝑐

𝑥

𝐿
) 

(1) 

From Eq. (1), the ratio of the crack depth (𝑠) with 

respect to the height of the beam cross-section is given as 

𝑠 =
𝑎(𝑥)

ℎ(𝑥)
=

𝑎0(1 − 𝜁)

ℎ0(1 − 𝜁)
=

𝑎0

ℎ0

 (2) 

where the non-dimensional length parameter of the beam 

element can be introduced as 𝑥̅(= 1 − 𝜁) and 𝜁 = 𝑐 𝑥 𝐿⁄ . 
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In addition, 𝜁  can be expressed as 1 − 𝑥̅ , and 𝑥 𝐿⁄  is 

used for 𝐿̅ for convenience. 

To use the transfer matrix method for two types of 

tapered beams with multiple edge cracks, the segments are 

illustrated in Fig. 2. Fig. 2(a) is the element model with 

cracks at the right-hand end of the element, and Fig. 2(b) is 

the cracked beam model at the left-hand end of the element. 

The present method can produce the desired number of 

eigenfrequencies using two subdivisions when the beam-

like structures have a crack, and the number of these 

elements is varied as a function of the number of cracks. 

 

2.1 Local displacement of the crack region 
 

As illustrated in Fig. 1, two types of axially loaded and 

tapered beams with an edge crack were modeled as two 

sub-elements connected by a rotational spring for the in-

plane bending vibration. An expression for the local 

displacement of the cracked region was selected from 

previous literature (Chondros et al. 1998). The additional 

displacement (Φ∗) generated by the crack can be expressed 

as  

Φ∗ =
6𝜋(1 − 𝜐2)𝑀ℎ(𝑥)𝑓(𝑠)

𝐸𝐼(𝑥)
 (3) 

where 

𝑓(𝑠) = 0.6272𝑠2 − 1.04533𝑠3 + 4.5948𝑠4 

                  −9.9736𝑠5 + 20.2948𝑠6 − 33.035𝑠7 

               +47.1063𝑠8 − 40.7556𝑠9 + 19.6𝑠10 

(4) 

and 𝜐  is Poisson’s ratio. 𝐸𝐼(𝑥)  and 𝐼(𝑥)  are the 

variations of the bending stiffness and the moment of inertia 

over the beam cross-section according to the taper ratio, 

respectively, and 𝐸 and 𝑀 are the elastic modulus of the 

beam and bending moment, respectively. 

The variation of the bending stiffness for a tapered beam 

can be expressed as  

𝐸𝐼(𝑥) = 𝐸𝐼0(1 − 𝜁)𝑛+2 (5) 

where 𝐸𝐼0 is the bending stiffness for 𝑐=0, and 𝑛=1 for a 

single tapered beam and 𝑛=2 for a double tapered beam. 

Substituting Eqs. (1) and (5) into Eq. (3), Φ∗ can be 

rewritten as 

Φ∗ =
6𝜋(1 − 𝜐2)𝑀ℎ0(1 − 𝜁)𝑓(𝑠)

𝐸𝐼0(1 − 𝜁)𝑛+2
 

                           =
6𝜋(1 − 𝜐2)𝑀ℎ0𝑓(𝑠)

𝐸𝐼0(1 − 𝜁)𝑛+1
 

(6) 

The rotational spring stiffness of the cracked region 

from Eq. (6) can be deduced by 

𝐾Φ =
𝐸𝐼0(1 − 𝜁)𝑛+1

6𝜋(1 − 𝜐2)ℎ0𝑓(𝑠)
 (7) 

 

2.2 Element transfer matrix of tapered beams with 
axial force 
 

The differential equation, the bending moment, and the 

shear deformation for axially loaded and tapered beams 

with a linearly reduced cross-section can be derived as 

(Banerjee et al. 2006) 

(𝐸𝐼(𝑥)𝑤′′(𝑥, 𝑡))′′ − 𝐹0𝑤′′(𝑥, 𝑡) + 𝑚(𝑥)𝑤̈(𝑥, 𝑡) = 0 (8) 

𝑀(𝑥, 𝑡) = −𝐸𝐼(𝑥)𝑤′′(𝑥, 𝑡) (9) 

𝑉(𝑥, 𝑡) = (𝐸𝐼(𝑥)𝑤′′(𝑥, 𝑡))′ − 𝐹0𝑤′(𝑥, 𝑡) (10) 

where 𝑀(𝑥, 𝑡)  denote the bending moment, 𝑉(𝑥, 𝑡) 

indicate the shear force and 𝑤(𝑥, 𝑡) is the in-plane bending 

displacement. The prime and the dots indicate 

differentiation with respect to the distance  𝑥  and time 𝑡 , 

respectively. 

The mass variation along the length of the structures by 

the taper ratio can be expressed as  

𝑚(𝑥) = 𝑚0(1 − ζ)𝑛 (11) 

where 𝑚0 is the mass per unit length for 𝑐=0. 

When the general solution of Eq. (8) assumes harmonic 

vibrations with an angular frequency (𝜔) 

𝑤(𝑥, 𝑡) = 𝑊(𝑥) cos 𝜔𝑡 (12) 

where 𝑊(𝑥) is the amplitude of 𝑤(𝑥, 𝑡). 

When substituting Eq. (12) into Eq. (8), the variables 

with respect to time and distance can be integrated into a 

variable of distance 𝑥 as 

𝐸𝐼(𝑥)𝑊′′′′ + 2𝐸𝐼′(𝑥)𝑊′′′ + 𝐸𝐼′′(𝑥)𝑊′′ − 𝐹0𝑊′′ 

                                                            −𝑚(𝑥)𝜔2𝑊 = 0 
(13) 

where 𝑊 = 𝑊(𝑥) 
 

2.2.1 Single tapered beam (when 𝑛=1) 
A tapered beam with a linearly reduced cross-section 

height occurs when substituting 𝑛=1 into Eqs. (5) and (11). 

Thus, if these equations are substituted into Eq. (13), the 

differential equation in non-dimensional form is given by 

(𝜁3 − 3𝜁2 + 3𝜁 − 1)𝑊′′′′ + 6(𝜁2 − 2𝜁 + 1)𝑊′′′ 

                          +(6𝜁 − 𝐶1)𝑊′′ + 𝐶2(𝜁 − 1)𝑊 = 0 
(14) 

where 

𝐶1 = 6 − 𝐶3, 𝐶2 = −
𝑚0𝜔2𝐿4

𝐸𝐼0𝑐4
, 𝐶3 =

𝐹0𝐿2

𝐸𝐼0𝑐2
 (15) 

The roots of Eq. (14) can be computed using the 

Frobenius method, and the general solution is expressed by 

𝑊(𝜁, 𝑘) = ∑ 𝑎𝑖+1(𝑘)

∞

𝑖=0

𝜁𝑘+𝑖 (16) 

By substituting the appropriate differentiation forms of 

Eq. (16) into Eq. (14), the indicial equation is obtained by 

𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)𝑎1 = 0 (17) 

The equation for the recurrence relationship that can 

determine the general coefficients, is obtained by 

 

(18) 
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From Eqs. (17) and (18), the Frobenius coefficients 

𝑎1 − 𝑎5 can be produced as 

 

(19) 

In addition, the solution of the differential equation by 

multiplying four arbitrary constants for four values of the 

index 𝑘 can be expressed as  

𝑊(𝜁) = 𝐴1𝑓(𝜁, 0) + 𝐴2𝑓(𝜁, 1) + 𝐴3𝑓(𝜁, 2)
+ 𝐴4𝑓(𝜁, 3) (20) 

where 𝐴1 , 𝐴2 , 𝐴3  and 𝐴4  are arbitrary constants, and 

𝑓(𝜁, 𝑘) for the four roots of the indicial equation is given 

by 

𝑓(𝜁, 𝑘) = ∑ 𝑎𝑖+1(𝑘)

∞

𝑖=0

𝜁𝑘+𝑖 (21) 

The slope of the deformation curve (Φ)  can be 

obtained by differentiating Eq. (20) 

Φ =
𝑐

𝐿

𝑑𝑊(𝜁)

𝑑𝜁
=

𝑐

𝐿
{𝐴1𝑓′(𝜁, 0) + 𝐴2𝑓′(𝜁, 1)  

+ 𝐴3𝑓′(𝜁, 2) + 𝐴4𝑓′(𝜁, 3)} 
(22) 

By substituting Eqs. (5) and (11) into Eqs. (9) and (10), 

the expression of the bending moment and shear force can 

be rewritten by 

𝑀 = 𝑁1(1 − 𝜁)3
𝑑2𝑊(𝜁)

𝑑𝜁2
 (23) 

𝑉 = 𝑁2 ((1 − 𝜁)3
𝑑3𝑊(𝜁)

𝑑𝜁3
− 3(1 − 𝜁)2

𝑑2𝑊(𝜁)

𝑑𝜁2

− 𝐶3

𝑑𝑊(𝜁)

𝑑𝜁
) 

(24) 

where 

𝑁1 = −
𝐸𝐼0𝑐2

𝐿2
, 𝑁2 =

𝐸𝐼0𝑐3

𝐿3
 (25) 

 

2.2.2 Double tapered beam (when 𝑛=2) 

A tapered beam with linearly reduced cross-section 

height and width at the same taper ratio occurs when 

substituting 𝑛=2 into Eqs. (5) and (11). Thus, if these 

equations are substituted into Eq. (13), the differential 

equation in non-dimensional form is given by 

(𝜁4 − 4𝜁3 + 6𝜁2 − 4𝜁 + 1)𝑊′′′′
+ 8(𝜁3 − 3𝜁2 + 3𝜁 − 1)𝑊′′′
+ (12𝜁2 − 24𝜁 + 𝐷1)𝑊′′
+ 𝐷2(𝜁2 − 2𝜁 + 1)𝑊 = 0 

(26) 

where 

𝐷1 = 12 − 𝐷3, 𝐷2 = −
𝑚0𝜔2𝐿4

𝐸𝐼0𝑐4
, 𝐷3 =

𝐹0𝐿2

𝐸𝐼0𝑐2
 (27) 

By substituting the appropriate differentiation forms of 

Eq. (16) into Eq. (26), the following equation is obtained  

𝑎𝑖+6 =
4(𝑘 + 𝑖 + 3)

(𝑘 + 𝑖 + 5)
𝑎𝑖+5 

−
6(𝑘 + 𝑖 + 4)(𝑘 + 𝑖 + 1) + 𝐷1

(𝑘 + 𝑖 + 5)(𝑘 + 𝑖 + 4)
𝑎𝑖+4 

+
{4(𝑘 + 𝑖 + 5)(𝑘 + 𝑖) + 24}(𝑘 + 𝑖 + 1)

(𝑘 + 𝑖 + 5)(𝑘 + 𝑖 + 3)(𝑘 + 𝑖 + 4)
𝑎𝑖+3 

−
{(𝑘 + 𝑖 + 6)(𝑘 + 𝑖 − 1) + 12}(𝑘 + 𝑖 + 1)(𝑘 + 𝑖) + 𝐷2

(𝑘 + 𝑖 + 5)(𝑘 + 𝑖 + 2)(𝑘 + 𝑖 + 3)(𝑘 + 𝑖 + 4)
𝑎𝑖+2 

+
2𝐷2

(𝑘 + 𝑖 + 5)(𝑘 + 𝑖 + 2)(𝑘 + 𝑖 + 3)(𝑘 + 𝑖 + 4)
𝑎𝑖+1 

−
𝐷2

(𝑘 + 𝑖 + 5)(𝑘 + 𝑖 + 2)(𝑘 + 𝑖 + 3)(𝑘 + 𝑖 + 4)
𝑎𝑖  

(28

) 

Eq. (28) is the equation for the recurrence relationship 

that can determine the general coefficients, and the indicial 

equations for single and double tapered beams are identical. 

From Eqs. (17) and (28), the Frobenius coefficients 

𝑎1 − 𝑎6 can be produced as 

𝑎1 = 1, 𝑎2 =
4(𝑘 − 1)

(𝑘 + 1)
𝑎1 

𝑎3 =
4𝑘

(𝑘 + 2)
𝑎2 −

6(𝑘 + 1)(𝑘 − 2) + 𝐷1

(𝑘 + 2)(𝑘 + 1)
𝑎1 

𝑎4

=
4(𝑘 + 1)

(𝑘 + 3)
𝑎3 −

6(𝑘 + 2)(𝑘 − 1) + 𝐷1

(𝑘 + 3)(𝑘 + 2)
𝑎2

+
{4(𝑘 + 3)(𝑘 − 2) + 24}(𝑘 − 1)

(𝑘 + 3)(𝑘 + 1)(𝑘 + 2)
𝑎1 

𝑎5 =
4(𝑘 + 2)

(𝑘 + 4)
𝑎4 −

6(𝑘 + 3)𝑘 + 𝐷1

(𝑘 + 4)(𝑘 + 3)
𝑎3 

+
{4(𝑘 + 4)(𝑘 − 1) + 24}𝑘

(𝑘 + 4)(𝑘 + 2)(𝑘 + 3)
𝑎2 

−
{(𝑘 + 5)(𝑘 − 2) + 12}𝑘(𝑘 − 1) + 𝐷2

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)
𝑎1 

𝑎6 =
4(𝑘 + 3)

(𝑘 + 5)
𝑎5 −

6(𝑘 + 4)(𝑘 + 1) + 𝐷1

(𝑘 + 5)(𝑘 + 4)
𝑎4 

+
{4𝑘(𝑘 + 5) + 24}(𝑘 + 1)

(𝑘 + 𝑖 + 5)(𝑘 + 𝑖 + 3)(𝑘 + 𝑖 + 4)
𝑎3 

−
𝑘(𝑘 + 1){(𝑘 + 6)(𝑘 − 1) + 12} + 𝐷2

(𝑘 + 5)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)
𝑎2 

+
2𝐷2

(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)(𝑘 + 5)
𝑎1 

(29) 

By substituting Eqs. (5) and (11) into Eqs. (9) and (10), 

the expression of the bending moment and shear force can 

be rewritten by 

𝑀 = 𝑁1(1 − 𝜁)4
𝑑2𝑊(𝜁)

𝑑𝜁2
 (30) 

and 

𝑉 = 𝑁2 ((1 − 𝜁)4
𝑑3𝑊(𝜁)

𝑑𝜁3
− 4(1 − 𝜁)3

𝑑2𝑊(𝜁)

𝑑𝜁2

− 𝐷3

𝑑𝑊(𝜁)

𝑑𝜁
) 

(31) 
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Similarly, the expression for Eqs. (20) and (22) can be 

used for n=2. 

Consider a 𝑘-th element without cracks between points 

𝑘 − 1 and 𝑘 in Fig. 2(a). The element transfer matrix of 

the 𝑘-th element can be obtained by substituting any valid 

values in place of the distance 𝑥 into Eqs. (20), (22), (23), 

(24), (30), and (31). The length 𝑥 of the beam element is 

zero at point 𝑘 − 1 and is 𝐿𝑘  at point 𝑘. Therefore, if 

𝑥 = 0 is substituted into Eqs. (20), (22), (23), (24), (30), 

and (31), these equations are given by 

For 𝑛=1 

𝑊𝑘−1 = ∑ 𝐴𝑗𝑓(0, 𝑗 − 1)

4

𝑗=1

 (32) 

Φ𝑘−1 =
𝑐

𝐿
∑ 𝐴𝑗𝑓′(0, 𝑗 − 1)

4

𝑗=1

 (33) 

𝑀𝑘−1 = 𝑁1 ∑ 𝐴𝑗𝑓′′(0, 𝑗 − 1)

4

𝑗=1

 (34) 

𝑉𝑘−1 = 𝑁2 (∑ 𝐴𝑗𝑓′′′(0, 𝑗 − 1)

4

𝑗=1

− 3 ∑ 𝐴𝑗𝑓′′(0, 𝑗 − 1)

4

𝑗=1

− 𝐶3 ∑ 𝐴𝑗𝑓′(0, 𝑗 − 1)

4

𝑗=1

) 

(35) 

For 𝑛=2 

𝑀𝑘−1 = 𝑁1(1 − 𝜁)4 ∑ 𝐴𝑗𝑓′′(0, 𝑗 − 1)

4

𝑗=1

 (36) 

𝑉𝑘−1 = 𝑁2 (∑ 𝐴𝑗𝑓′′′(0, 𝑗 − 1)

4

𝑗=1

− 4 ∑ 𝐴𝑗𝑓′′(0, 𝑗 − 1)

4

𝑗=1

− 𝐷3 ∑ 𝐴𝑗𝑓′(0, 𝑗 − 1)

4

𝑗=1

) 

(37) 

When expressing Eqs. (32)-(37) in matrix form, the state 

quantities at point 𝑘 − 1 can be determined to be  

{

𝑊𝑘−1

Φ𝑘−1

𝑀𝑘−1

𝑉𝑘−1

} = [

𝐻11 𝐻12 𝐻13 𝐻14

𝐻21 𝐻22 𝐻23 𝐻24

𝐻31 𝐻32 𝐻33 𝐻34

𝐻41 𝐻42 𝐻43 𝐻44

] {

𝐴1

𝐴2

𝐴3

𝐴4

} (38) 

Eq. (38) can be simplified as 

𝐙𝑘−1 = 𝐇𝐀 (39) 

The arbitrary constants 𝐀 can be determined from Eq. 

(39), and it is clear that  

𝐀 = 𝐇−1𝐙𝑘−1 (40) 

In a similar way, substituting 𝑥 = 𝐿𝑘 into Eqs. (20), 

(22), (23), (24), (30), and (31) yields  

For 𝑛=1 

𝑊𝑘 = ∑ 𝐴𝑗𝑓(𝑐, 𝑗 − 1)

4

𝑗=1

 (41) 

Φ𝑘 =
𝑐

𝐿
∑ 𝐴𝑗𝑓′(𝑐, 𝑗 − 1)

4

𝑗=1

 (42) 

𝑀𝑘 = 𝑁1(1 − 𝑐)3 ∑ 𝐴𝑗𝑓′′(𝑐, 𝑗 − 1)

4

𝑗=1

 (43) 

𝑉𝑘 = 𝑁2 ((1 − 𝑐)3 ∑ 𝐴𝑗𝑓′′′(𝑐, 𝑗 − 1)

4

𝑗=1

− 3(1 − 𝑐)2 ∑ 𝐴𝑗𝑓′′(𝑐, 𝑗 − 1)

4

𝑗=1

− 𝐶3 ∑ 𝐴𝑗𝑓′(𝑐, 𝑗 − 1)

4

𝑗=1

) 

(44) 

For 𝑛=2 

𝑀𝑘 = 𝑁1(1 − 𝑐)4 ∑ 𝐴𝑗𝑓′′(𝑐, 𝑗 − 1)

4

𝑗=1

 (45) 

𝑉𝑘 = 𝑁2 ((1 − 𝑐)4 ∑ 𝐴𝑗𝑓′′′(𝑐, 𝑗 − 1)

4

𝑗=1

− 4(1 − 𝑐)3 ∑ 𝐴𝑗𝑓′′(𝑐, 𝑗 − 1)

4

𝑗=1

− 𝐷3 ∑ 𝐴𝑗𝑓′(𝑐, 𝑗 − 1)

4

𝑗=1

) 

(46) 

From Eqs. (41)-(46), the state quantities at point 𝑘 can 

be obtained by 

{

𝑊𝑘

Φ𝑘

𝑀𝑘

𝑉𝑘

} = [

𝑄11 𝑄12 𝑄13 𝑄14

𝑄21 𝑄22 𝑄23 𝑄24

𝑄31 𝑄32 𝑄33 𝑄34

𝑄41 𝑄42 𝑄43 𝑄44

] {

𝐴1

𝐴2

𝐴3

𝐴4

} (47) 

Eq. (47) can be simplified as 

𝐙𝑘 = 𝐐𝐀 (48) 
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By substituting Eq. (40) into Eq. (48), the relationship 

between the state vectors 𝐙𝑘 and 𝐙𝑘−1 can be expressed 

by 

𝐙𝑘 = 𝐓𝑘𝐙𝑘−1 (49) 

where 𝐓𝑘 = 𝐐𝐇−1 is the element transfer matrix of the 𝑘-

th element. 
 

2.3 Transfer matrix of tapered beams with single or 
multiple edge cracks 
 

When considering an element between points 𝑘 − 1 

and 𝑘, as shown in Fig. 2(a), the additional displacement 

generated by cracking with the help of Eq. (7) is expressed 

in the form of a matrix as  

{

𝑊𝑘

Φ𝑘

𝑀𝑘

𝑉𝑘

} = [

1 0 0 0
0 1 −𝐾𝜙

∗ 0

0 0 1 0
0 0 0 1

]

𝑘

{

𝑊𝑘−1

Φ𝑘−1

𝑀𝑘−1

𝑉𝑘−1

} (50) 

where 𝐾𝜙
∗  is equal to 1 𝐾Φ⁄ .  

 

 

Eq. (50) can be simplified as  

𝐙𝑘 = 𝐊𝑘𝐙𝑘−1 (51) 

As shown in Fig. 2(a) and 2(b), the element transfer 

matrix of tapered beams with multiple cracks at arbitrary 

locations can be assembled as follows 

𝐓 = 𝐓𝑛 × ⋯ × 𝐊𝑘 × 𝐓𝑘 × 𝐊𝑗 × 𝐓𝑗 × ⋯ × 𝐊1 × 𝐓1 (52) 

or 

𝐓 = 𝐓𝑛 × 𝐊𝑛−1 × ⋯ × 𝐓𝑘 × 𝐊𝑘−1 × ⋯ × 𝐓1 × 𝐊0 (53) 

Eq. (52) can be evaluated using the Fig. 2(a) model, and 

Eq. (53) can be evaluated using the Fig. 2(b) model for two 

types of tapered beams with an edge crack. 

Therefore, the state vectors 𝐙0 and 𝐙𝐿 on the left- and 

right-hand sides of the total length of the tapered beams 

have the following relationship 

𝐙𝐿 = 𝐓𝐙0 (54) 

The global transfer matrix of Eq. (54) can be used to 

analyze the natural frequencies of axially loaded tapered  

Table 1 Comparison of the first three natural frequencies computed between the present method and previous work for a                        

uniform beam with two edge cracks  

Approaches 
Natural frequency (rad/s) 

1 2 3 

Experimental measurements 

(Ruotolo and Surace 1997) 

Intact beam 151.896 955.691 2666.93 

Cracked beam 151.073 937.878 2571.63 

Lee and Lee (2017a, b), Attar (2012) Intact beam 152.208 953.873 2670.87 

Lee and Lee (2017a, b) Cracked beam 151.140 938.398 2588.87 

Attar (2012) 
 

Cracked beam 151.058 937.405 2583.64 

Lee (2009) 
Rotational spring (k=k1) Cracked beam 151.456 939.588 2588.92 

Rotational spring (k=k2) Cracked beam 151.708 943.232 2607.65 

Yan et al. (2016) Model No. 3 Cracked beam 151.135 938.39 2588.9 

Present 

𝑛=1 Intact beam 152.170 953.401 2669.27 

 
Cracked beam 151.103 937.968 2587.52 

𝑛=2 Intact beam 152.200 953.494 2669.43 

 
Cracked beam 151.134 938.072 2587.73 

Table 2 Comparison of the first three natural frequencies for an axially loaded uniform beam with a C-F end condition 

𝜔 
 

Non-dimensional natural frequency 

Axial loading 

–5 –3 0 4 7 15 

1 

Li et al. (2013) - - 3.51602 5.42082 6.38302 8.24969 

Present 
𝑛=1 - - 3.51641 5.42246 6.38505 8.25236 

𝑛=2 - - 3.51749 5.42444 6.38740 8.25536 

2 

Li et al. (2013) 17.96309 19.69280 22.03449 24.77594 26.60999 30.83900 

Present 
𝑛=1 17.95043 19.68279 22.02762 24.77209 26.60782 30.83990 

𝑛=2 17.94966 19.68330 22.02970 24.77577 26.61244 30.84639 

3 

Li et al. (2013) 58.48225 59.78843 61.69721 64.15264 65.93092 70.43175 

Present 
𝑛=1 58.45111 59.75907 61.67036 64.12883 65.90918 70.41484 

𝑛=2 58.45097 59.75981 61.67235 64.13238 65.91381 70.42202 

130



 

A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks 

 

 

 

 

beams with single or multiple edge cracks using different 

boundary conditions (Lee and Lee 2017b).  
 

 

3. Results and discussion 
 

To validate the accuracy of the proposed two methods, 

the predicted natural frequencies are compared with the  

 

 
 

results presented in previous works (Lee and Lee 2017a, b, 

Attar 2012, Lee 2009, Li et al. 2013, Ruotolo and Surace 

1997, Yan et al. 2016). In the present transfer matrix 

methods, because the taper ratio (c) does not allow zero to 

be set exactly for the computation of the homogeneous 

solutions for the uniform beams, the valid value used is 

c=0.001. The compared properties include: 𝐸 = 181𝐺𝑃𝑎, 

𝜌 = 7860𝑘𝑔/𝑚3 ,  𝐿 = 0.8𝑚 ,  ℎ = 0.02𝑚 ,  𝑏 = 0.02𝑚 ,  

Table 3 The results computed from two types of tapered beams having the axial loading at the free end when 𝑐=0 and 0.5 

 
𝜔 

Natural frequency (Hz) 

Tensile loading (𝐹0) 
 

Compressive loading (𝐹0) 

0N 100N 200N 300N 400N 500N 
 

–100N –200N –300N –400N –500N 

𝑛=1 1 12.742 13.044 13.337 13.622 13.900 14.171 
 

12.430 12.108 11.775 11.429 11.070 

c=0 2 79.817 80.158 80.497 80.835 81.171 81.505 
 

79.475 79.131 78.785 78.437 78.088 

 
3 223.46 223.75 224.04 224.33 224.62 224.91 

 
223.17 222.88 222.59 222.30 222.00 

 
4 437.88 438.16 438.43 438.71 438.98 439.25 

 
437.61 437.34 437.06 436.79 436.51 

𝑛=1 1 13.855 14.401 14.914 15.399 15.860 16.299 
 

13.273 12.647 11.969 11.228 10.409 

c=0.5 2 66.373 67.148 67.910 68.659 69.396 70.121 
 

65.584 64.782 63.965 63.133 62.285 

 
3 171.26 171.97 172.68 173.38 174.07 174.77 

 
170.55 169.84 169.12 168.39 167.66 

 
4 327.75 328.41 329.08 329.74 330.40 331.05 

 
327.08 326.41 325.75 325.07 324.40 

𝑛=2 1 12.746 13.048 13.342 13.627 13.905 14.175 
 

12.434 12.112 11.778 11.433 11.073 

c=0 2 79.825 80.166 80.505 80.843 81.179 81.514 
 

79.482 79.138 78.792 78.444 78.095 

 
3 223.47 223.76 224.05 224.34 224.63 224.92 

 
223.18 222.89 222.60 222.30 222.01 

 
4 437.89 438.17 438.44 438.72 438.99 439.26 

 
437.62 437.34 437.07 436.79 436.52 

𝑛=2 1 16.759 17.554 18.285 18.963 19.595 20.189 
 

15.887 14.919 13.828 12.572 11.086 

c=0.5 2 70.831 72.040 73.215 74.357 75.468 76.551 
 

69.586 68.303 66.980 65.616 64.207 

 
3 176.03 177.18 178.31 179.44 180.55 181.66 

 
174.86 173.69 172.51 171.31 170.10 

 
4 332.68 333.77 334.85 335.92 336.99 338.05 

 
331.59 330.50 329.40 328.29 327.18 

Table 4 Effect of axial loading on the first four natural frequencies of tapered beams with a C-F end condition as a function of 

location when 𝑐=0.5 

 
𝜔 

Natural frequency (Hz) 

𝐿̅=0.1 𝐿̅=0.2 𝐿̅=0.3 𝐿̅=0.4 𝐿̅=0.5 𝐿̅=0.6 𝐿̅=0.7 𝐿̅=0.8 𝐿̅=0.9 𝐿̅=1 

𝑛=1 1 13.860 13.889 13.968 14.114 14.343 14.657 15.046 15.480 15.914 16.299 

𝐹0=500N 2 66.391 66.483 66.628 66.744 66.776 66.799 67.031 67.706 68.839 70.121 

 
3 171.30 171.43 171.49 171.51 171.73 172.14 172.32 172.41 173.22 174.77 

 
4 327.81 327.90 327.92 328.17 328.41 328.46 328.88 329.14 329.48 331.05 

𝑛=2 1 16.764 16.799 16.897 17.087 17.396 17.838 18.402 19.042 19.671 20.189 

𝐹0=500N 2 70.851 70.956 71.132 71.282 71.327 71.358 71.696 72.739 74.552 76.551 

 
3 176.07 176.20 176.28 176.31 176.59 177.15 177.41 177.55 178.97 181.66 

 
4 332.74 332.85 332.87 333.17 333.49 333.55 334.18 334.57 335.19 338.05 

𝑛=1 1 13.851 13.821 13.740 13.585 13.338 12.990 12.536 11.974 11.286 10.409 

𝐹0= –500N 2 66.354 66.261 66.114 65.999 65.967 65.942 65.699 65.004 63.815 62.285 

 
3 171.23 171.10 171.04 171.02 170.79 170.38 170.20 170.11 169.28 167.66 

 
4 327.69 327.60 327.58 327.33 327.08 327.03 326.61 326.35 326.00 324.40 

𝑛=2 1 16.754 16.719 16.617 16.415 16.078 15.581 14.904 14.018 12.841 11.086 

𝐹0= –500N 2 70.811 70.705 70.527 70.377 70.333 70.299 69.940 68.855 66.904 64.207 

 
3 175.98 175.85 175.77 175.74 175.45 174.89 174.63 174.48 173.04 170.10 

 
4 332.62 332.52 332.49 332.19 331.88 331.81 331.18 330.79 330.15 327.18 
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Fig. 3 Effect of axial loading on the first four natural 

frequencies of tapered beams when 𝑐=0 and 0.5 
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Fig. 4 Comparison of each mode computed between 𝑛=1 

and 𝑛=2 when c=0 and 𝑐=0.5 
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Fig. 5 Effect of axial loading on the first four mode 

shapes of tapered beams when 𝑐=0.5 
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Fig. 6 Comparison of the tensile and compressive loadings 

for tapered beams 

 
 
𝜈 = 0.29. 

Double edge open cracks are assumed to exist at cracks 

of 𝑠=0.2 and 0.3 at distances 0.25456 𝑚 and 0.54496 𝑚, 

respectively, from the fixed end when the beam element 

adopts a clamped-free end condition. A comparison of the 

literature results of those derived from the proposed method 

are given in Table 1. As seen, excellent agreement of the 

natural frequencies is obtained. The present methods are 

proposed to analyze the natural frequencies for the in-plane 

bending vibration of tapered beams with multiple cracks 

and axial loading. However, the approaches can also be 

used to calculate the homogeneous solutions for uniform 

beams with sufficient accuracy, as shown in Table 1. The 

Lee and Lee (2017b) results are those computed for the 

present example using the transfer matrix method to 

compare with their previous work Lee and Lee (2017a).  

In this regard, the effect of axial loading on the first 

three non-dimensional natural frequencies of a uniform 

beam is compared between the results computed from the 

present methods and those given in the previous work. The 

results are listed in Table 2, which shows excellent 

agreement. 
 

3.1 The effect of axial loading 
 

Based on the results presented above, the effect of 

compressive and tensile loadings on the first four natural 

frequencies of uniform, single (𝑛=1) and double (𝑛=2) 

tapered beams have been investigated (Tables 3 and 4). The 

axial loading (𝐹0) has been increased from -500 N to 

500N in intervals of 100N, and the considered taper ratios 

are c=0 and c=0.5. The properties of the examined beam 

are: 𝐸 = 200𝐺𝑃𝑎 , 𝜌 = 7850𝑘𝑔/𝑚3 , 𝐿 = 0.8𝑚 , ℎ =
0.01𝑚, 𝑏 = 0.03𝑚, 𝜈 = 0.3. 

When 𝑛=1 and 𝑛=2, the effect of axial loading on the 

first four eigenfrequencies for each case can be easily seen 

in Figs. 3 and 4. Fig. 3 presents the frequency ratio with 

respect to axial loading, and Fig. 4 compares the results 

computed from 𝑛=1 and 𝑛=2 for each mode. As seen, the 

effects on the natural frequencies are larger for the 

fundamental frequency, and the effect of axial loading  

132



 

A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks 

 

Table 5 Effect of cracking on the first four eigenfrequencies 

of a single tapered beam with different end conditions with 

respect to the variation of the crack’s locations given c=0.5, 

s=0.5 and F0=0 

BCs 𝜔 Intact 
Natural frequency (Hz) 

𝐿̅𝑐=0.1 𝐿̅𝑐=0.2 𝐿̅𝑐=0.3 𝐿̅𝑐=0.4 𝐿̅𝑐=0.5 𝐿̅𝑐=0.6 𝐿̅𝑐=0.7 𝐿̅𝑐=0.8 𝐿̅𝑐=0.9 

C-F 1 13.855 13.253 13.379 13.501 13.612 13.707 13.779 13.825 13.848 13.855 

 
2 66.373 64.854 66.120 66.316 65.633 64.809 64.543 65.026 65.837 66.313 

 
3 171.26 169.89 170.79 167.64 167.57 170.61 170.53 167.16 167.15 170.47 

 
4 327.75 327.48 321.85 321.38 327.75 321.21 321.96 327.47 319.59 323.83 

C-C 1 59.192 57.579 58.795 59.191 58.838 58.254 58.044 58.457 59.099 58.905 

 
2 162.99 161.53 162.63 159.61 159.10 161.94 162.71 160.15 160.38 162.99 

 
3 319.37 319.05 313.78 312.82 319.33 313.37 312.89 319.35 313.44 318.24 

 
4 527.82 527.45 514.65 527.03 516.51 522.13 522.07 518.74 524.74 521.93 

C-P 1 44.570 43.200 44.073 44.526 44.499 44.140 43.749 43.607 43.838 44.299 

 
2 135.98 134.39 135.91 133.88 132.52 134.05 135.93 134.86 132.93 134.02 

 
3 279.45 278.88 275.60 272.82 278.64 276.66 272.28 278.31 276.80 273.64 

 
4 474.95 474.86 463.20 472.72 467.96 465.80 473.85 463.45 474.95 464.61 

S-S 1 25.805 25.762 25.633 25.447 25.258 25.130 25.111 25.223 25.443 25.685 

 
2 104.91 104.08 102.39 101.72 102.80 104.49 104.75 103.33 102.45 103.62 

 
3 235.45 231.56 228.44 232.72 235.22 230.39 230.51 235.35 232.18 230.83 

 
4 417.98 407.78 409.98 417.68 407.18 414.58 413.86 409.05 417.65 408.70 

 

Table 6 Effect of cracking on the first four eigenfrequencies 

of a double tapered beam with different end conditions with 

respect to the variation of the crack’s locations given c=0.5, 

s=0.5 and F0=0 

BCs 𝜔 Intact 

Natural frequency (Hz) 

𝐿̅𝑐=0.1 𝐿̅𝑐=0.2 𝐿̅𝑐=0.3 𝐿̅𝑐=0.4 𝐿̅𝑐=0.5 𝐿̅𝑐=0.6 𝐿̅𝑐=0.7 𝐿̅𝑐=0.8 𝐿̅𝑐=0.9 

C-F 1 16.759 16.062 16.189 16.321 16.449 16.564 16.655 16.717 16.748 16.758 

 
2 70.831 69.118 70.484 70.802 70.142 69.238 68.885 69.357 70.231 70.763 

 
3 176.03 174.44 175.65 172.41 172.08 175.22 175.39 171.93 171.79 175.19 

 
4 332.68 332.31 326.93 325.95 332.66 326.28 326.66 332.45 324.51 328.68 

C-C 
 

59.712 57.892 59.140 59.698 59.494 58.920 58.585 58.865 59.536 59.528 

 
2 163.70 161.97 163.47 160.50 159.55 162.29 163.57 161.18 160.95 163.68 

 
3 320.15 319.68 314.86 313.16 320.00 314.61 313.20 320.15 314.56 318.76 

 
4 528.64 528.40 515.29 527.54 517.85 522.29 523.50 518.91 526.09 522.36 

C-P 1 46.564 45.011 45.905 46.455 46.540 46.237 45.821 45.606 45.776 46.249 

 
2 138.41 136.57 138.39 136.47 134.83 136.17 138.28 137.51 135.49 136.37 

 
3 282.09 281.35 278.50 275.17 281.02 279.63 274.80 280.68 279.74 276.27 

 
4 477.71 477.68 465.89 475.08 471.19 468.12 476.84 466.07 477.69 467.55 

S-S 1 25.207 25.172 25.061 24.892 24.710 24.571 24.528 24.611 24.815 25.068 

 
2 105.48 104.69 102.99 102.20 103.18 104.93 105.39 104.08 103.09 104.14 

 
3 236.35 232.53 229.20 233.38 236.20 231.44 231.18 236.17 233.34 231.71 

 
4 419.05 408.88 410.74 418.84 408.33 415.37 415.20 409.86 418.83 409.90 

 

 

decreases as the mode order increases. Additionally, the 
natural frequencies are greatly affected under compressive 
loading rather than under tensile loading. The compressive 
loading leads to a decrease in the frequency, whereas tensile 
loading causes an increase of the frequency. 
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Fig. 7 Frequency ratio of the first four natural frequencies 

of tapered beams with a C-F end condition: (a) Effect of 

cracking on the first four modes for 𝑛=1 and 𝑛=2, (b) 

Comparison between 𝑛=1 and 𝑛=2 for each mode 

 

 

The effect of axial loading on the first four mode shapes 

is illustrated in Fig. 5, which compares the results between 

𝑛=1 and 𝑛=2. As expected, compressive loading attempts 

to bend the modes, with the reverse trend in effect for 

tensile loading. 

Next, the effect of axial loading on the first four natural 

frequencies of single and double tapered beams with a C-F 

end condition is analyzed when the axial loading acts in an 

arbitrary distance 𝑥. The computed results are displayed in 

Table 4. Note that the application point of loading increases 

from a non-dimensional distance 𝐿̅(= 𝑥 𝐿⁄ )=0.1 to 𝐿̅=1 in 

intervals of 𝐿̅=0.1. Fig. 6(a) represents the effect of axial 

loading on the natural frequencies for single and double 

tapered beams, and Fig. 6(b) illustrates the comparison of 

the results computed from the two methods for each mode. 

These effects are very small up to a non-dimensional 

distance of 0.2, but thereafter the natural frequencies vary 

greatly because of axial loading. In the above analysis, the 

effect of cracking on the natural frequencies of the tapered 

beams is ignored. 

 

3.2 The effect of an open edge crack 
 

The effect of cracking on the first four natural 

frequencies of single and double tapered beams is evaluated 

in the absence of axial loading. First, a single edge crack 

having 𝑠=0.5 is considered. The crack locations (𝐿̅𝑐 =
𝐿𝑐 𝐿⁄ ) are assumed to vary from 0.1 to 0.9 in intervals of 

0.1, and the taper ratio is 0.5. The eigenfrequencies of the 

tapered beams with an open edge crack are computed using 

four classical boundary conditions, that is, clamped-

clamped (C-C), clamped-free (C-F), clamped-pinned (C-P), 

and simply supported (S-S) end conditions. The properties 

used are kept identical to those considered when the effect  
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Fig. 8 Frequency ratio of the first four natural frequencies 

of tapered beams with an S-S end condition: (a) Effect of 

cracking on the first four modes for 𝑛=1 and 𝑛=2, (b) 

Comparison between 𝑛=1 and 𝑛=2 for each mode 
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Fig. 9 Frequency ratio of the first four natural frequencies 

of tapered beams with a C-C end condition: (a) Effect of 

cracking on the first four modes for 𝑛=1 and 𝑛=2, (b) 

Comparison between 𝑛=1 and 𝑛=2 for each mode 

Table 7 Effect of multiple edge cracks on the first four natural frequencies of a single tapered beam with different end 

conditions and taper ratios:  𝑛=1, 𝐹0=0N 

𝑐 𝜔 

Natural frequency (Hz) 

C-F 
 

C-C 
 

C-P 
 

S-S 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 

0.0 

1 12.742 12.584 
 

81.029 80.763 
 

55.848 55.000 
 

35.745 35.196 

2 79.817 79.133 
 

223.36 220.70 
 

180.96 176.94 
 

142.98 138.73 

3 223.46 218.77 
 

437.88 426.38 
 

377.56 367.54 
 

321.70 312.25 

4 437.88 423.63 
 

723.83 705.03 
 

645.65 635.43 
 

571.92 563.44 

0.1 

1 12.895 12.742 
 

76.967 76.727 
 

53.805 53.002 
 

33.943 33.446 

2 77.319 76.672 
 

212.16 209.75 
 

172.61 169.09 
 

135.82 132.04 

3 213.71 209.52 
 

415.91 405.44 
 

359.35 350.70 
 

305.59 297.16 

4 417.38 404.56 
 

687.51 671.17 
 

613.98 605.42 
 

543.25 536.11 

0.2 

1 13.075 12.922 
 

72.754 72.515 
 

51.662 50.895 
 

32.054 31.600 

2 74.720 74.089 
 

200.52 198.34 
 

163.94 160.90 
 

128.44 125.09 

3 203.61 199.88 
 

393.09 383.66 
 

340.44 333.12 
 

288.90 281.43 

4 396.12 384.70 
 

649.78 635.86 
 

581.10 573.99 
 

513.53 507.53 

0.3 

1 13.286 13.135 
 

68.409 68.158 
 

49.425 48.694 
 

30.082 29.670 

2 72.037 71.421 
 

188.52 186.54 
 

154.99 152.40 
 

120.85 117.93 

3 193.21 189.92 
 

369.52 361.21 
 

320.92 314.90 
 

271.73 265.22 

4 374.19 364.19 
 

610.80 599.34 
 

547.14 541.36 
 

482.89 477.95 

0.4 

1 13.541 13.390 
 

63.902 63.627 
 

47.071 46.380 
 

28.008 27.637 

2 69.259 68.656 
 

176.04 174.26 
 

145.70 143.55 
 

113.03 110.53 

3 182.46 179.58 
 

345.03 337.92 
 

300.66 295.90 
 

253.97 248.42 

4 351.46 342.91 
 

570.28 561.28 
 

511.87 507.25 
 

451.14 447.12 

0.5 

1 13.855 13.705 
 

59.192 58.883 
 

44.570 43.923 
 

25.805 25.477 

2 66.373 65.783 
 

162.99 161.41 
 

135.98 134.24 
 

104.91 102.83 

3 171.26 168.79 
 

319.37 313.56 
 

279.45 275.91 
 

235.45 230.87 

4 327.75 320.67 
 

527.82 521.19 
 

474.95 471.24 
 

417.98 414.72 
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Fig. 10 Frequency ratio of the first four natural frequencies 

of tapered beams with a C-P end condition: (a) Effect of 

cracking on the first four modes for 𝑛=1 and 𝑛=2, (b) 

Comparison between 𝑛=1 and 𝑛=2 for each mode 
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Fig. 11 Effect of multiple edge cracks and axial loading 

compared for each mode of single and double tapered 

beams with a C-F boundary condition 

 

 

of axial loading was analyzed, and, unless otherwise 

mentioned, all examples will be evaluated by employing the  

Table 8 Effect of multiple edge cracks on the first four natural frequencies of a double tapered beam with different end 

conditions and taper ratios:  𝑛=2, 𝐹0=0N 

𝑐 𝜔 

Natural frequency (Hz) 

C-F 
 

C-C 
 

C-P 
 

S-S 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 

0.0 

1 12.746 12.586 
 

81.029 80.767 
 

55.852 55.005 
 

35.745 35.197 

2 79.825 79.139 
 

223.36 220.71 
 

180.97 176.95 
 

142.98 138.74 

3 223.47 218.78 
 

437.88 426.40 
 

377.56 367.56 
 

321.70 312.26 

4 437.89 423.65 
 

723.83 705.06 
 

645.65 635.46 
 

571.92 563.45 

0.1 

1 13.312 13.154 
 

76.983 76.737 
 

54.189 53.370 
 

33.925 33.425 

2 78.087 77.427 
 

212.18 209.77 
 

172.99 169.49 
 

135.84 132.07 

3 214.47 210.27 
 

415.93 405.45 
 

359.74 351.14 
 

305.62 297.19 

4 418.15 405.31 
 

687.54 671.25 
 

614.37 605.83 
 

543.28 536.16 

0.2 

1 13.969 13.806 
 

72.820 72.563 
 

52.434 51.634 
 

31.976 31.516 

2 76.299 75.640 
 

200.62 198.42 
 

164.75 161.74 
 

128.51 125.18 

3 205.20 201.46 
 

393.19 383.77 
 

341.27 334.04 
 

289.02 281.57 

4 397.73 386.29 
 

649.89 636.10 
 

581.95 574.89 
 

513.67 507.71 

0.3 

1 14.736 14.568 
 

68.569 68.278 
 

50.590 49.812 
 

29.895 29.475 

2 74.483 73.823 
 

188.73 186.74 
 

156.27 153.73 
 

121.03 118.13 

3 195.72 192.42 
 

369.76 361.50 
 

322.27 316.39 
 

272.01 265.54 

4 376.76 366.74 
 

611.05 599.81 
 

548.52 542.80 
 

483.22 478.32 

0.4 

1 15.649 15.474 
 

64.208 63.867 
 

48.641 47.890 
 

27.652 27.274 

2 72.651 71.988 
 

176.46 174.66 
 

147.52 145.42 
 

113.37 110.91 

3 186.01 183.12 
 

345.48 338.51 
 

302.60 298.03 
 

254.50 249.01 

4 355.12 346.56 
 

570.76 562.06 
 

513.88 509.30 
 

451.77 447.79 

0.5 

1 16.759 16.577 
 

59.712 59.308 
 

46.564 45.849 
 

25.207 24.871 

2 70.831 70.164 
 

163.70 162.09 
 

138.41 136.74 
 

105.48 103.45 

3 176.03 173.52 
 

320.15 314.56 
 

282.09 278.78 
 

236.35 231.85 

4 332.68 325.61 
 

528.64 522.35 
 

477.71 474.01 
 

419.05 415.79 
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Table 9 Effect of multiple edge cracks and axial loading on 

the first four natural frequencies of a single tapered beam 

with C-F end conditions under different taper ratios 

𝑐 𝜔 

Natural frequency (Hz) 

𝐹0=100N 
 

𝐹0=200N 
 

𝐹0=300N 
 

𝐹0=400N 
 

𝐹0=500N 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 

0.0 

1 13.044 12.890 
 
13.337 13.188 

 
13.622 13.476 

 
13.900 13.757 

 
14.171 14.031 

2 80.158 79.482 
 
80.497 79.830 

 
80.835 80.176 

 
81.171 80.520 

 
81.505 80.862 

3 223.75 219.07 
 
224.04 219.37 

 
224.33 219.67 

 
224.62 219.97 

 
224.91 220.27 

4 438.16 423.91 
 
438.43 424.20 

 
438.71 424.48 

 
438.98 424.77 

 
439.25 425.05 

0.1 

1 13.227 13.078 
 
13.548 13.403 

 
13.859 13.718 

 
14.161 14.023 

 
14.454 14.320 

2 77.706 77.069 
 
78.090 77.463 

 
78.473 77.855 

 
78.853 78.244 

 
79.231 78.632 

3 214.05 209.86 
 
214.38 210.21 

 
214.71 210.55 

 
215.04 210.89 

 
215.37 211.23 

4 417.69 404.88 
 
418.01 405.21 

 
418.32 405.53 

 
418.63 405.85 

 
418.94 406.18 

0.2 

1 13.442 13.295 
 
13.797 13.654 

 
14.140 14.000 

 
14.471 14.334 

 
14.791 14.658 

2 75.166 74.547 
 
75.609 75.001 

 
76.049 75.452 

 
76.485 75.899 

 
76.918 76.343 

3 204.00 200.28 
 
204.39 200.68 

 
204.77 201.07 

 
205.15 201.47 

 
205.54 201.87 

4 396.48 385.07 
 
396.84 385.45 

 
397.20 385.82 

 
397.56 386.19 

 
397.92 386.56 

0.3 

1 13.699 13.553 
 
14.095 13.953 

 
14.475 14.337 

 
14.841 14.706 

 
15.194 15.062 

2 72.561 71.958 
 
73.079 72.489 

 
73.592 73.016 

 
74.101 73.538 

 
74.605 74.055 

3 193.67 190.39 
 
194.13 190.87 

 
194.59 191.34 

 
195.04 191.81 

 
195.50 192.28 

4 374.62 364.63 
 
375.05 365.07 

 
375.48 365.51 

 
375.90 365.95 

 
376.33 366.39 

0.4 

1 14.012 13.866 
 
14.459 14.318 

 
14.886 14.748 

 
15.294 15.160 

 
15.686 15.554 

2 69.886 69.300 
 
70.506 69.936 

 
71.118 70.564 

 
71.723 71.185 

 
72.321 71.797 

3 183.02 180.16 
 
183.57 180.74 

 
184.13 181.31 

 
184.68 181.88 

 
185.24 182.45 

4 351.99 343.45 
 
352.51 343.98 

 
353.03 344.51 

 
353.55 345.04 

 
354.07 345.57 

0.5 

1 14.401 14.256 
 
14.914 14.774 

 
15.399 15.263 

 
15.860 15.727 

 
16.299 16.168 

2 67.148 66.579 
 
67.910 67.362 

 
68.659 68.130 

 
69.396 68.886 

 
70.121 69.628 

3 171.97 169.52 
 
172.68 170.25 

 
173.38 170.97 

 
174.07 171.69 

 
174.77 172.40 

4 328.41 321.34 
 
329.08 322.01 

 
329.74 322.68 

 
330.40 323.35 

 
331.05 324.01 
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Fig. 12 Effect of tapering and cracking on the first four 

natural frequencies of tapered beams with a C-F end 

condition depending on the axial loading variation 
 

Table 10 Effect of multiple edge cracks and axial loading on 

the first four natural frequencies of a double tapered beam 

with C-F end conditions under different taper ratios 

𝑐 𝜔 

Natural frequency (Hz) 

𝐹0=100N 
 

𝐹0=200N 
 

𝐹0=300N 
 

𝐹0=400N 
 

𝐹0=500N 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 
 

Intact Cracked 

0.0 

1 13.048 12.893 
 
13.342 13.191 

 
13.627 13.480 

 
13.905 13.761 

 
14.175 14.035 

2 80.166 79.489 
 
80.505 79.837 

 
80.843 80.183 

 
81.179 80.527 

 
81.514 80.870 

3 223.76 219.08 
 
224.05 219.38 

 
224.34 219.68 

 
224.63 219.98 

 
224.92 220.28 

4 438.17 423.94 
 
438.44 424.23 

 
438.72 424.51 

 
438.99 424.80 

 
439.26 425.08 

0.1 

1 13.664 13.510 
 
14.004 13.855 

 
14.333 14.187 

 
14.652 14.510 

 
14.962 14.823 

2 78.501 77.852 
 
78.912 78.273 

 
79.320 78.692 

 
79.726 79.108 

 
80.129 79.521 

3 214.83 210.64 
 
215.18 211.01 

 
215.54 211.38 

 
215.89 211.75 

 
216.24 212.11 

4 418.48 405.66 
 
418.81 406.00 

 
419.15 406.35 

 
419.48 406.69 

 
419.81 407.04 

0.2 

1 14.386 14.228 
 
14.786 14.633 

 
15.171 15.022 

 
15.543 15.397 

 
15.902 15.759 

2 76.813 76.168 
 
77.322 76.691 

 
77.827 77.210 

 
78.328 77.724 

 
78.825 78.233 

3 205.65 201.93 
 
206.10 202.39 

 
206.54 202.85 

 
206.99 203.31 

 
207.43 203.77 

4 398.15 386.72 
 
398.57 387.16 

 
398.98 387.59 

 
399.40 388.02 

 
399.82 388.45 

0.3 

1 15.240 15.077 
 
15.719 15.561 

 
16.177 16.023 

 
16.615 16.465 

 
17.035 16.888 

2 75.139 74.498 
 
75.788 75.165 

 
76.429 75.824 

 
77.062 76.474 

 
77.688 77.117 

3 196.31 193.03 
 
196.89 193.63 

 
197.47 194.23 

 
198.05 194.83 

 
198.62 195.42 

4 377.30 367.30 
 
377.85 367.86 

 
378.39 368.42 

 
378.93 368.97 

 
379.47 369.53 

0.4 

1 16.272 16.104 
 
16.857 16.695 

 
17.410 17.251 

 
17.933 17.778 

 
18.431 18.279 

2 73.521 72.884 
 
74.375 73.763 

 
75.215 74.627 

 
76.040 75.474 

 
76.851 76.307 

3 186.81 183.94 
 
187.60 184.76 

 
188.38 185.58 

 
189.17 186.39 

 
189.94 187.19 

4 355.87 347.32 
 
356.61 348.07 

 
357.35 348.83 

 
358.09 349.58 

 
358.83 350.33 

0.5 

1 17.554 17.380 
 
18.285 18.116 

 
18.963 18.798 

 
19.595 19.434 

 
20.189 20.030 

2 72.040 71.411 
 
73.215 72.621 

 
74.357 73.795 

 
75.468 74.936 

 
76.551 76.046 

3 177.18 174.71 
 
178.31 175.89 

 
179.44 177.05 

 
180.55 178.21 

 
181.66 179.35 

4 333.77 326.70 
 
334.85 327.79 

 
335.92 328.87 

 
336.99 329.95 

 
338.05 331.02 

 

 

same properties. The first four eigenfrequencies for the in-

plane bending vibrations of single (𝑛=1) and double (𝑛=2) 

tapered beams with a crack are tabulated in Tables 5 and 6. 

The results computed by applying 𝑛=1 are given in Table 

5, and Table 6 reports the computed results for 𝑛=2. 

These effects are illustrated in Figs. 7 and 10 as the 

frequency ratio with respect to variations of the crack 

location for each end condition. Based on the results in 

Tables 5 and 6, additional crack locations are considered. 

Figs. 7(a)-10(a) present the effect of cracking for 𝑛=1 and 

𝑛=2, and Figs. 7(b)-10(b) represent each mode to compare 

the effects of the cracks between 𝑛=1 and 𝑛=2. The first 

and second natural frequencies for all boundary conditions 

show slight differences, but the third and fourth natural 

frequencies have similar effects. In particular, the effect of 

cracking is greater on the fundamental frequency when a C-

F end condition is used. It is a well-known phenomenon 

that the fundamental frequency is sharply reduced when the 

crack location is closer to the fixed end. Further, the effects 

of cracking for the tapered beams are equal. 
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3.3 The effect of multiple open edge cracks and axial 
loading 
 

Finally, the effect of multiple cracks and axial loading 
on the first four natural frequencies for the in-plane bending 
vibrations of single and double tapered beams is analyzed. 
The results provided in Tables 7 and 8 are obtained in the 
absence of axial loading. Three cracks with 𝑠=0.3, 0.2, and 
0.4 are assumed to be located at the distance 𝐿̅𝑐, where 
𝐿̅𝑐=0.2, 0.6, and 0.8 from point O, as shown in Figs. 1a and 
1e. The results computed for the cracked and tapered beams 
with the four end conditions are compared between the 
intact and cracked beams, and a diverse set of taper ratios is 
examined. 

Tables 9 and 10 present the results for the effects of both 

multiple cracks and tensile loadings. Tensile loading is 

assumed to act at the free end while taking into account the 

C-F end condition. Fig. 11 illustrates the mode variation for 

intact and cracked beams, considering the effect of both 

cracking and tensile loading as a function of an increase of 

the taper ratio. To illustrate, the results when 𝐹0=0 and 500 

N are analyzed. As shown for each mode between 𝑛=1 and 

𝑛=2, the natural frequencies of tapered beams with cracks 

are reduced, having nearly similar trends compared with 

those of an intact beam regardless of the taper ratios. In 

particular, the first and second modes of the tapered beams 

are varied by consideration of the intact beam results. Fig. 

12 presents the variation of the natural frequencies for 

single and double tapered beams with different taper ratios 

with respect to changing the tensile loading. All of the 

results increase linearly because of the tensile loading 

increase. 
 

 

4. Conclusions 
 

In this study, a transfer matrix method has been 

proposed to analyze the eigenpairs for two types of tapered 

beams with axial loading. Further, a straightforward method 

is proposed that is capable of evaluating effects of cracking 

on the natural frequencies for the bending vibrations of 

these beams. The accuracy of the presented method is 

demonstrated via comparison of the analyzed results, which 

show excellent agreement. The natural frequencies are 

greatly affected under compressive loading rather than 

under tensile loading. The compressive loading leads to a 

decrease in the frequency, whereas tensile loading causes an 

increase of the frequency. In addition, the eigenfrequencies 

on two types of tapered beams with cracks are reduced, 

having nearly similar trends compared with those of an 

intact beam regardless of the taper ratios. 
Consequently, this work fully examines the effect of 

cracking and axial loading for two types of tapered beams. 
A comparison of the effects of axial loading and cracking 
on the natural frequencies of single and double tapered 
beams is expected to be useful in the design or assessment 
of beam-like tapered structures. 
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