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1. Introduction 
 

Because of high cost of construction in tall buildings, 

optimization process is significantly important in the design 

stage (Aldwaik and Adeli 2014). Optimization of lateral 

stiffness along the height of such structures greatly affects 

structural responses. Generally, in most structural problems, 

one attempts to distribute a given volume of material within 

a specified region with the objective of making the structure 

as stiff as possible. There is no unique measure of stiffness 

in this process. The so-called compliance or equivalently 

external work measure, as is used herein, is usually selected 

for one crucial reason; roughly speaking, the optimization 

process based on this measure tends to create a system with 

almost uniform stress distribution (Christensen and 

Klarbring 2009). Connor and Laflamme (2014) introduced 

constant curvature as an ideal performance for a tall 

structure, and a formulation for lateral stiffness was 

proposed by enforcing this requirement. Although, they did 

not construct an optimization problem, they accepted a 

necessary condition that coincides with the general result of 

the compliance optimization formulation. In the current 

paper, this model is devised in an optimization-framework 

so to make the structural-improvement quantifiable. 

Furthermore, the formulation presented by Connor and 

Laflamme (2014) generates too small values for the regions 

near the structure’s top; this problem is resolved here by 

observing a lower bound constraint in an analytical  
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framework. Although such constraints have been explored 

by many researchers so far, most of them are numerical 

(Chan et al. 2010, Stromberg et al. 2011, Lee et al. 2012).   

In general, the design process of a tall building involves 

conceptual design and approximate analysis, preliminary 

design, and finally, detailed design (Jayachandran 2009). 

Some engineers skip the preliminary design, which based 

on certain objectives, a suitable stiffness distribution can be 

calculated. After the conceptual design stage, they progress 

straight to the detailed design, and finalize the structural 

configuration using some type of optimization algorithm. 

However, this approach is more time consuming and costly. 

Furthermore, considering the preliminary design step allows 

for assessment of structural performance based on certain 

constraints. Although, many papers related to the 

preliminary step can be found, most of them are suitable for 

abstract analyses, but not for design (Kwan 1994, Kaviani 

et al. 2008, Rahgozar et al. 2011, Rahgozar and 

Malekinejad 2012, Jahanshahi and Rahgozar 2012). In 

addition, most developed methods for design are numerical. 

Aldwaik and Adeli (2014) presented a review of papers on 

optimization of high-rise structures. Almost all of the 

mentioned papers in that research are computer-based, 

while a hand-calculation method is more efficient during 

the early stage of design (Connor and Pouangare 1991).                     

In the preliminary design field, Connor and Pouangare 

(1991) proposed a string-shear-panel system suitable for 

modelling framed tube structures, and parametric relations 

for preliminary design are presented. Moon et al. (2007) 

and Moon (2012) developed an analytic approach for initial 

design of diagrid systems. In another study, Liu and Ma 

(2017) investigated diagrid systems with arbitrary  
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Abstract.  This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic 
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assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these 
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stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to 

simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems. 
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Fig. 1 Framed-tube system used in Dewitt Chestnut 

building 

 

 

Fig. 2 Idealized model for a framed tube system (Kwan 

1994) 

 

 

polygonal section. In a research conducted by Montuori et 

al. (2014), strength criteria, in addition to stiffness 

requirements are assessed for preliminary design. A 

stiffness-based approach suitable for determining member 

sizes of braced tube structures is presented in the study by 

Moon (2010). The aforementioned studies are mainly 

stiffness-based, suitable for diagrid and braced systems. The 

objective of the current research is to investigate such 

problems, addressing the framed tube structures.  

In a tubed-system structure, the induced lateral loads are 

resisted by axial stress field generated in the closely spaced 

columns located on structure’s perimeter, Fig. 1.  

Based on Kwan 1994 and Smith and Coull 1996, a 

cantilevered hollow-box-beam is a reasonable model for 

this system, Fig. 2.  

The structure behavior is modeled as an Euler-Bernoulli 

beam; however, considering shear lag effect would 

probably better represent structure’s actual response (Khan 

and Smith 1976, Coull and Bose 1975, Coull and Ahmed 

1978, Mazinani et al. 2014), and is planned for future 

research efforts. The cross section of the equivalent  

 

Fig. 3 Hollow box section for bending resisting system of 

the structure 

 

 

structure is presented in Fig. 3. Thickness of the box t, 

which accounts for strength of the perimeter columns, is 

taken here as the independent variable. The optimization 

process applied here uses external work as the objective 

function. It will be shown that this selection results in 

constant curvature as the optimality requirement, and the 

thickness of the box is calculated with this objective. As to 

be expected, thickness value at high elevations becomes 

relatively small. By observing a lower bound constraint, 

above a certain height, defined here as the primary height 

(PH), the thickness values violate this limit. Dealing with 

this constraint in an analytic framework was a challenge in 

this research. To deal with this issue, the problem is restated 

in terms of new parameters critical curvature, and critical 

height (CH) with specified characteristics. It will be shown 

that such methodology makes the problem easy to be solved 

analytically. 

 

 

2. Optimality criterion 
 

In the compliance approach, the external work 

(compliance) is selected as the objective function to be 

minimized. Equivalently, total potential energy can be 

selected as the objective function. For the cantilever model 

[Fig. 2] with length h, and a coordinate system with origin 

at top of the structure (free end) with positive z direction 

pointing downward, the total potential energy is 

 0 0

22

2

1
( )

2

h hd uJ D dz f z u dz
dz

    (1) 

where J is the total potential energy, u denotes the lateral 

displacement field, and f(z) is the induced lateral force. 

Parameter D stands for flexural stiffness. For a framed tube 

system which is modeled as a hollow-box-beam [Fig. 3] the 

flexural stiffness would be 

D EI  (2) 

where E is Young’s modulus of elasticity, and I is the 

moment of inertia about the x axis which is approximated as 

0( ) ( )I I z t z I   (3) 

where t is thickness of the box and 
3 2

0 (4 3) 4I b ab      
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is the moment of inertia for a unit thickness box, in which 

2a and 2b are dimensions in x and y directions respectively, 

Fig. 3. 

Based on the principle of minimum potential energy, the 

displacement field u of a system in equilibrium minimizes 

the total potential energy of that system; hence the 

following can be stated (Christensen and Klarbring 2009), 

Find u k  such that 

1
( ) (u,u) (u) min ( )

2 v k
J u B C J v


    (4) 

in which 
2 2

0 2
( , ) ( )

h d uB u u D dz
dz

  is the strain energy and 

0( )
h

C u u f dz   is the work done by external forces 

(compliance). Here k is the space of admissible 

displacement functions. For the problem at hand 

 4
[0, ] s.t. ( ) ( ) 0k u C h u h u h    . Minimizing J with 

respect to v by a suitable method, such as Gateaux 

derivative, ends in a new problem (Christensen and 

Klarbring 2009), 

Find u k  such that 

( , ) ( )
v k

B u v C v


  (5) 

which is well known as principle of virtual work. Since 

( , ) ( )B u v C v  is satisfied for all v k , it also holds 

true for u in particular. Thus, the state of equilibrium would 

be (Bendsøe and Sigmund 2003, Christensen and Klarbring 

2009)  

( , ) ( )B u u C u  (6) 

The problem of design with t as the independent 

variable can be stated as an optimization problem with a 

proper objective function. The most common objective 

function in structural problems is the external work, C(u). 

The goal of such problems is to find t such that it will 

minimize C(u) (Bendsøe and Sigmund 2003, Christensen 

and Klarbring 2009). From Eqs. (4) and (6) 

( ) 2 ( ) 2 ( , )t t
v k
minC u J u J v t


     (7) 

Based on Eq. (7), C and J are proportional, so J can be 

selected as the objective function instead of C. However, 

due to the negative sign, the minimization statement must 

be converted to a maximization one. In preceding relations, 

subscript t emphasizes that u is a function of t, so ( )tJ u   

can be replaced by J(t). Therefore, the design problem can 

be stated as follows, 

0

maximize ( )

Subject to
h

J t
t

t dz A

 (8) 

In this formulation, t is selected as the only independent 

variable and its total amount is constrained by upper bound 

A. It should be noted that, the minimization of J in Eq. (4) is 

an equilibrium requirement for a known t, whereas in the 

maximization problem (8), t must be determined as the 

independent variable. 

The Lagrangian method is adopted to solve the 

optimization problem (8). Substituting Eqs. (2) and (3) into 

Eq. (1) results in 
2 2 2

0 000.5 ( ) ( )
h h

J EI t d u dz dz f z u dz    for which a 

Lagrangian functional can be taken in the form, 

0
( , ) ( )

h

t J t t dz A     
  L  (9) 

where 0   is the Lagrangian multiplier. By use of 

calculus of variation method, the optimality condition of 

0 L  with respect to t yields 

1/2

0

2

2

2
( )d u

dz EI


     (10) 

where   denotes the curvature. According to Eq. (10), at 

the optimal state, the absolute value of the curvature should 

be constant along the structure, which is in agreement with 

the general theorem of constant strain energy presented by 

Christensen and Klarbring (2009). More simply, the 

constant-curvature should be taken as the optimality 

criterion in this method. Therefore, the stiffness would be 

determined with the requirement of producing this specified 

deformation profile. 

 

2.1 Optimal thickness design 
 

In this section different loading patterns of concentrated, 

uniform, triangular and quadratic are considered, and for 

each case, optimal thickness distribution is obtained. For all 

cases, general form of the governing equation, along with 

natural boundary condition (NBC) are presented 

2

2

2

2

2

2

2

2

for 0 [ ]

[ ]

: for 0

[ ]

d d uz h D f
dzdz

d d uD S
dzdzNBC z

d uD B
dz

  




 
 


 

(11) 

where, induced lateral load (f) and NBC, including the shear 

force (S) and the bending moment (B) at the free end, is 

defined for each case in Table 1. Q and q in Table 1 denote 

the concentrated load and the maximum intensity of 

distributed load, respectively, both at top of the structure. 

The dimensionless parameter z z h is used for 

convenience. 
 

 

Table 1 Loading pattern and natural boundary condition 

 f S B 

Concentrated 0 Q 0 

Uniform q  0 0 

Triangular (1 )q z  0 0 

Quadratic 
2

(1 )q z  0 0 
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Table 2 M and m for different cases 

 M m 

Concentrated Qh  z  

Uniform 
2

(1 2)qh  2
z  

Triangular 
2

(1 3) qh  
3 2

(1 2) (3 2)z z   

Quadratic 
2

(5 12)qh  
4 2

(1 5) (6 5)z z   

 

 

The variable t required to produce the preselected 

performance presented by Eq. (10) should be evaluated. To 

that end, the governing differential Eq. (11) would be 

considered; integrating it twice and taking NBC into 

account contributes to 

2

2
( )d uD M m z

dz
  (12) 

where M is maximum moment that happens at the base, and 

we name ( )m z  relative moment that depends on z . 

Table 2 presents these two parameters for each case. 

Clearly, , 0M D   for all [0 1]z  . According to 

equations of ( )m z  from Table 2, ( ) 0m z   for all 

[0 1]z  . Therefore, it is concluded from Eq. (12) that 

2 2
0d u dz  . Hence, by Eq. (10) 

2

2
d u
dz

   (13) 

Substituting for D, I and 
2 2

d u dz  from Eqs. (2), (3) 

and (13) respectively into Eq. (12), and defining new 

parameter 00 M EI  , which is the maximum curvature 

in a unit thickness box (that happens at the base level), 

results in 

0 (z)t m   (14) 

Thus, considering   as a constant parameter, optimal 

thickness value would be 

( ) (z)0t z m



  (15) 

Indeed, this formulation must satisfy presented 

constraint in formulation (8), but it is required to restate this 

constraint with respect to the new variable z  in advance, 

as is done in the following, 

1

0
t dz t  (16) 

where 

A
t

h
  (17) 

This is the limited volume (LV) constraint. t  is 

defined for convenience and is named as average thickness. 

Substituting Eq. (15) into constraint (16) dictates the value  

Table 3 Optimal thickness, observing LV constraint 

Concentrated 2t z  

Uniform 
2

3t z  

Triangular 
3 2

(4 / 3) 4t z t z   

Quadratic 
4 2

(5 / 9) (10 / 3)t z t z   

 

Table 4 Polynomials associate with PH 

Concentrated min2 0pz t   

Uniform 
2

min3 0pz t   

Triangular 
3 2

min(4 / 3) 4 0p pz z t     

Quadratic 
4 2

min(5 / 9) (10 / 3) 0p pz z t     

 

 

of  , which after substitution in Eq. (15), the optimal 

thickness relations are obtained, Table 3. 
 

 

3. Treating a lower bound constraint on the 
thickness 
 

The presented equations in Table 3 yield near-zero 

values for some points, almost located at the top of the 

structure. To avoid this practical problem, the lower bound 

constraint 0 mint t   should be observed. Therefore, the 

new optimization problem would be stated as 

1

0

maximize (t)

LV :
S

LB :
ubject o

0
t

min

J
t

t dz t

t t

 

  


 

(18) 

where LV and LB stand for limited volume and lower 

bound constraints, respectively. 

From Table 3, LB constraint is not satisfied for some 

z . Clearly, there exists a height named primary height 

(PH), denoted by pz  in dimensionless relations, such that 

for [0 ]pz z , LB constraint is violated. Referring to 

Table 3, PH can be calculated by substituting pz  for z  

and mint  for t. Doing so and introducing a parameter 

named relative minimum thickness (RMT) as 

min
min

t
t

t
  (19) 

yields polynomials for which an acceptable root would be 

considered as the PH value. Table 4 presents the relevant 

polynomials for each case. It should be noted that mint  is 

always lower than t , otherwise LV constraint is violated. 

Therefore, min [0 1]t  . 

At the first glance, it may seem that to treat LB  
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Fig. 4 Variation of t with respect to   for different values 

of z  
 

 

constraint, the points above PH ( [0 ]pz z ) should have 

tmin and the thicknesses of the lower points ( [ 1]pz z ), 

evaluated from Table 3, must be modified to satisfy LV 

constraint. However, this is not true in general, and it needs 

more detailed investigation, which is done in the following 

subsection. 

 
3.1 Method of solution 
 
There are some approaches to deal with the new 

optimization problem which includes LB constraint. Some 

authors assign a Lagrangian multiplier to LB and treat it as an 

inequality constraint. However, it is more reasonable to treat 

LB constraint separately as is done here. In this approach, a 

Lagrangian function is constructed using the objective function 

and LV constraint while ignoring LB constraint. Lagrangian 

function is then minimized (or maximized) with respect to LB 

constraint. This process results in a relation between the 

Lagrangian multiplier   and the independent variable t   

through a one-variable function ( )   

( ) ( , )
t LB
min t  


 L  (20) 

Finally, due to convexity of the problem (Christensen 

and Klarbring 2009), the optimum solution is obtained by 

maximizing (or minimizing) ( )   with respect to 0   

( )

. . 0

max

s t


 








 
(21) 

Consequently, it is essential to find the relation between 

  and t at the first step and construct a relation in the form 

of Eq. (20). However, this process is rather complicated and 

a simpler approach is take here. To deal with this 

complexity, this research strives to construct a relation 

between t and an intervening variable, instead of  . 

According to monotonic relation of   and   by Eq. 

(10),   seems to be suitable as the intervening variable. 

Appropriateness of this selection is supported by two 

factors: 1) the problem is extremely simplified as compared 

to the   formulation. 2) the results are more sensible from 

a structural viewpoint, because the intervening variable is 

the structure’s curvature. 

According to Eq. (15), and the fact that 0  and (z)m  

 

Fig. 5 Illustration for CH and PH 

 

 

are positive in the design domain [0 1] for all loading 

patterns, function of t with respect to   in different 

elevations of z  would be in the form of presented in Fig. 

4, with the marked position of minimum thickness tmin and 

the particular unknown c  which denotes the structure 

curvature at the optimum state. Considering Fig. 4, there is 

a critical height (CH), cz  located on the chart at 

intersection of mint t  and c  . At elevations higher 

than the CH value ( 0 cz z  ) LB constraint is violated; 

hence for this region, uniform thicknesses ( mint ) with 

varying curvature, as computed from Eq. (14) is considered. 

We call this region constant thickness (CT) zone, formally 

specified as, 

min

CT (0 ):
(z)

CT min

c 0
CT

t t

z z
m

t







  




 (22) 

For heights lower than CH ( 1cz z  ), curvature is 

kept constant at c  with varying thickness computed from 

Eq. (14). This region is referred to as the constant curvature 

(CC) zone with following specifications 

(z)
CC( 1):

0
CC

cc

CC c

t m
z z





 




  
 

 (23) 

Note that CH and PH are different in general. Indeed, 

PH is related to LV optimization problems, whereas CH is 

related to LV-LB ones. Fig. 5 clarifies the difference 

between CH and PH. 

 

3.2 Modified optimal thickness and curvature 
distribution 

 

In the presented formulations for CC and CT zones, there 

are two unknowns cz  and c  that should be determined. On 

the other hand, there are two constraints to be satisfied. First, it 

should be noted that the thickness must remain continuous 

along the structure’s height. Thus, from Eqs. (22) and (23) 

( ) ( )CT c CC ct z t z ,  t h a t  s a t i s f y i n g  th i s  r e l a t i o n  
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Fig. 6 Diagrams of thickness (t) and curvature ( ) in 

optimal state for concentrated load case 

 

Table 5 Polynomials associate with CH 

Concentrated 
2

min min2 0c ct z z t    

Uniform 
3 2

min min2 3 0c ct z z t    

Triangular 
4 3 2

min min min3 (8 4) 12 3 0c c ct z t z z t      

Quadratic 
5 4 3 2

min min min4 5 20 30 9 0c c c ct z z t z z t      

 

 

yields the following term for c , 

( )0
c c

min

m z
t


   (24) 

Substituting the obtained equation of c  into Eqs. (22) 

and (23) results in the following relations for thickness and 

curvature; for thickness 

0

( ) ( )
1

( )

min c

min c

c

t z z

t z m z
t z z

m z

 


 
 



 (25) 

and for curvature 

min

( ) 0

( )

( ) 1

0
c

0
c c

min

m z z z
t

z

m z z z
t







 


 
  


 (26) 

For illustration, Fig. 6 displays diagrams of ( )t z  and 

( )z  for concentrated load case, in which ( )m z z . 

Similar diagrams can be generated for other loading patterns. 

Second, LV constraint, presented in Eq. (16), must be 

imposed to obtain cz . By substituting the computed thickness 

from Eq. (25) into Eq. (16), a polynomial with a root 

acceptable as the CH value is obtained. Applying to all cases 

results in the relations presented in Table 5. 

Solving the equations presented in Table 5 while observing 

0 1cz   and 0 1mint   would yield cz (CH). For 

different discrete values of RMT ( 0, 0.1,..., 0.9mint  ), CH is  

Table 6 CH equation in terms of RMT 

Concentrated 

4 3 2
4.505  7.0374  3.5502

 0.045   0.0095

min min min

min

t t t

t

 

 
 

Uniform 

4 3 2
1.2529  0.2699  1.5707

 1.557  0.0142

min min min

min

t t t

t

 

 
 

Triangular 

4 3 2
1.9394  1.5852  0.6734

 1.2873   0.0141

min min min

min

t t t

t

 

 
 

Quadratic 

4 3 2
1.6515  0.9985  1.1081

 1.4231  0.0145

min min min

min

t t t

t

 

 

 

 

Table 7 PH equation in terms of RMT 

Concentrated 
 

Uniform 
0.5

0.5773 mint  

Triangular 

4 3 2
1.6774  4.104  3.6074

 1.7246  0.0065

min min min

min

t t t

t

  

 
 

Quadratic 

4 3 2
1.8342  4.4881  3.9462

 1.8442  0.0071

min min min

min

t t t

t

  

 

 

 

 

calculated based on Table 5. Then, by help of a curve fitting 

method, the closed-form equation of CH in terms of RMT is 

obtained and the results are presented in Table 6. 

By a similar approach and using Table 4, PH values can be 

obtained also in terms of RMT. The result of such calculation 

is presented in Table 7. Comparing the Table 6 and 7 reveals 

that the CH and PH values are not identical. 

 

 

4. Illustrative example 
 

The proposed method is applied to a tall building for 

illustration. The example given by Kwan (1994) is selected as 

the basic model, which is a framed tube structure with uniform 

stiffness distribution subjected to a uniform loading. This 

structure will be redesigned (with identical amount of material) 

using the proposed method. The models are then analyzed by 

means of a standard program, and the results are graphically 

compared. 
 

4.1 Structural details 
 

The reference structure is a 40-story reinforced concrete 

framed tube building with typical height story of 3 m. All 

columns and beams have the size of 80 80cm cm  with 

center-to-center spacing of 2.5 m. Equivalent properties of the 

orthotropic membrane tube model of this structure are 

presented as followings 

120q kN m  20E GPa  120h m  
(27) 

17.5a m  15b m  25.6t cm  

where a, b, h and t are geometric characteristics based on Fig. 

3; E is the modulus of elasticity; and q is the uniform load 
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intensity. 

Redesign of this structure based on the presented relations, 

requires two more parameters t  and mint . As thickness in 

the first structure is uniformly distributed, its value is equal to 

the average thickness, or 25.6t cm . 

Cross sectional dimension of 50 50cm cm  is supposed 

as the accepted minimum size for columns. Using the relation 

ct A s  (Kwan 1994), in which cA  is columns’ cross 

sectional area and s is the column spacing, which is 2.5m here, 

the minimum thickness for the equivalent tube model would be 

min 10t cm . 

 

4.2 Structural design 
 

As the first input,  mint  needs to be calculate based on 

Eq. (19). Using the obtained values for t  and mint  from the 

previous section results in min 0.39t  .   

CH ( cz ) can be obtained by referring to Table 6 and 

selecting uniform load Case. Thus, the following equation 

should be used for calculating CH, 

4 3 21.2529  0.2699  1.5707

 1.557  0.0142

min min min

min

t t t

t

 

 
 (28) 

Substituting mint  in Eq. (28) results in 0.3955cz  . 

The other quantity that must be specified is ( )m z . Based on 

Table 2 and the fact that uniform pattern is considered, 
2

( )m z z . Consequently, by substituting the obtained value 

of cz  and the equation of 
2

( )m z z  into relations (25), 

the thickness is evaluated, which its value in terms of z instead 

of z  can be obtained by substituting z h  for z . Doing 

so and considering h=120m, the final result for thickness is 

obtained as, 

Region (m) Thickness t(z) (cm) 

2

[0 ] 10

[47.4 ] 1

47.

0( )

4

120
47.4

z

z
z




 

 

(29) 

Dividing 47.4 by 3 (typical story height), results 

approximately 15 stories as the CS zone. Therefor the upper 15 

stories (25-40 stories) have minimum value of thickness.   

According to Eq. (29), t(z) is a continuously varying 

parameter. However, a continually varying thickness is not 

practical and further modification is required. In order to 

handle this issue, one can suppose that thickness would remain 

constant for every 5-levels (or 15-meters). The only constraint 

that must be observed while computing the equivalent 

thickness over a given 5-level span is to keep the material 

volume unchanged by selecting the average thickness over that 

span. At this point, all that remains is to calculate the 

dimensions of columns for each of the 5-story regions in 

accordance to their equivalent thickness value. This is done  

Table 8 Design information of example 

Region (m) Optimal thickness (cm) 
Theoretical values of 

column dimensions (cm) 

Practical values of column 

dimensions (cm) 

0-45 10 50 ×50 50 ×50 

45-60 12.99 56.99 ×56.99 55 ×55 

60-75 21.38 73.11 ×73.11 75 ×75 

75-90 31.9 89.29 ×89.29 90 ×90 

90-105 44.51 105.49 ×105.49 100 ×100 

105-120 59.23 121.69 ×121.69 120 ×120 

 

 

Fig. 7 Stress distribution along the height of basic and 

proposed structures 

 

 

here using the relation ct A s , and the results are 

presented in Table 8. Practical as well as theoretical values for 

column dimensions are also presented. 

 

4.3 Software analysis and the results 
 

Since the proposed method is based on bending 

deformation, it is expected that normal stresses due to bending 

would decrease in the proposed model, as compared to the 

reference model. Outputs from analyses using ETABS 9.7.4 

(2011) reveal that the maximum axial stress in perimeter 

columns decreases by 47 percent. Hence, it validates the 

optimization process to some extent.  

In order to get a better understanding of enhancements in 

the optimized structure, some new measures are introduced 

here, and the results are presented through a chart in Fig. 7. 

Data on the abscissa shows the average axial stress of 

compressed columns and the ordinate denotes the story 

number. Two graphs are drawn (reference and proposed 

models).  

By a similar approach, three more parameters is defined; 

flange average stress: the average axial stress of compressed 

columns of the flange panels, web average stress: the average 

axial stress of compressed columns of the web panels, and 

maximum stress: the maximum axial stress of compressed 

columns,  

From the diagrams in Fig. 7, it can be deduced that in 

addition to decrease in magnitude of normal stresses in the 

optimized structure, the stress field has a more uniform 

distribution. For a qualitative assessment of improvements to 

the new structure, two parameters are introduced in Table 9 for 

each parameter 1) Stress decrease: percentage decrease in 

Euclidean norm of (40-dimensional) the stress field, 2) 

Standard deviation decrease: percentage decrease in standard 

deviation of stresses as related to stories 1 through 25 (CC 

zone). The presented data in Table 9 confirm improvements in 

the proposed structure as compared to the reference structure,  
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Table 9 Stress and standard deviation along the height of 

structure 

 Average stress Flange Average stress Web Average stress Maximum stress 

Stress decrease 27.74% 37.95% 17.11% 12.63% 

Standard deviation 

decrease 
82.64% 82.62% 82.20% 75.70% 

 

 

Fig. 8 Comparison of analytical and numerical results 

 

 

in which the material is uniformly distributed along its height. 

From Eq. (22) and using 
2

(z) zm   from Table 2, it is 

anticipated that the curvature, and the normal stress as the 

result, varies by a polynomial of degree 2 in CT zone (25-40 

stories); whereas, based on Eq. (23), stress distribution is 

uniform in CC zone (1-25 stories). These characteristics are 

illustrated in Fig. 8 by the dashed line. However, software 

analyses show that in the flange panel, the average of normal 

stress is distributed as the solid curve in Fig. 8. Clearly, there 

are some disparity between ETABS output and the analytical 

result, which can be attributed to the following 

approximations: a) in the analytic formulation (29), the 

thickness varies continuously, but in the ETABS model, due to 

some practical reasons, it is a piecewise function (Table 8). 

Therefore, there are some jumps in the ETABS diagram; b) the 

structural system used in ETABS is made up of some 

perimeter columns tied at each floor level by deep spandrel 

beams, whereas it is modelled by a simple tubular structure in 

the proposed method; c) the shear lag effect has been neglected 

in the analytic method, but it happens in the software 

modelling; d) the shear resistance of the structure is not taken 

into accounts in the approximate method. 

 

 

5. Conclusions 
 

In this study, a parametric-based method for optimal design 

of lateral stiffness in framed tube structures is presented; for 

which some practical constraints are considered. Important 

findings are as follows: 

• Using variational calculus, a deformation profile is 

obtained as the optimality criterion, and the stiffness is then 

calculated based on this requirement. 

• A constrained problem subjected to a lower bound limit 

was incorporated by dividing the design domain into two zones 

with specific characteristics; thereby allowing for derivation of 

the analytic relation. 

• The obtained closed-form relation for stiffness may be 

used as a benchmark for numerical studies and for basic 

understanding of the framed tube structure behaviour. 

Furthermore, the proposed model is dimensionless; hence, it is 

applicable in any consistent unit system. 

• The proposed method is based on bending deformation, 

so there is no guarantee that the methodology would lessen 

shear stresses. Nonetheless, since in tall-enough buildings, the 

dominant deformation is due to bending, the importance of 

shear stresses reduces as building’s design height increases. 
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