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1. Introduction 
 

Sandwich material constructions are employed in the 

design of structures due to their light weight and high 

energy absorption capability. Due to their ability for the 

tailor-made design with combination of face sheets and core 

sections to meet the given load conditions, these structures 

find their use in many applications.  The face sheets will 

be taking the load and connected to other structural 

members, while the soft-core material, will be used to 

absorb energy during impact like situation. Cores generally 

play very crucial role in achieving the desired properties of 

sandwich structures, either through geometric arrangement 

or material properties or both. Foams are in extensive use 

nowadays as core material due to the ease in manufacturing 

and their low cost. Hence, the analysis of sandwich 

constructions has attracted the attention of many 

researchers. 

There are two different approaches to model sandwich 

structures, one is called Equivalent Single Layer (ESL) 

theory and the second is called layer wise theory. In the 

former method, core and face sheets are synthesized as a 

single entity and the average properties of the hybrid 

structure are obtained using macro mechanics approach as 

is done in the analysis of laminated composites. In the 

second approach, each layer (in this case face sheets and  
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core) are considered as separate entity and are synthesized 

using approximate beam or plate kinematics at the 

interfaces. In this paper, we adopted second approach, 

where the face sheets and core are modeled separately and 

they are synthesized using appropriate kinematics at the 

interface, that is the load transfer from face sheets to core is 

either by pure shear (in case of incompressible core) or 

through shear and normal stresses (in the case of 

compressible core). 

 

1.1 Literature survey 
 

Many analytical models assume that the core do not 

carry bending stresses and the core deformation is only due 

to shear. Such a theory is a possibility if the face sheets are 

modelled using Euler-Bernoulli beam assumption. If the 

axial and transverse displacements in the core are assumed 

as linear function of thickness, such an assumption requires 

that the normal stress in the core be constant and the face 

sheets be modelled using First order Shear Deformation 

Theory(FSDT). Many researchers Frostig (1992, 1994, 

2003), Marur and Kant (1996), Yang et al. (2005), Zhen et 

al. (2008), Yang et al. (2007) have used the axial and 

transverse displacements variation in the core. In the model 

proposed by Allen and Howard (1969) it is assumed that 

there is only a bending deformation in the face sheet and 

thus in plane deformations are null. On the other hand, the 

model proposed by Frostig (2003) assumes that the plane 

section of the core remains vertical and there are both the 

in-plane as well as bending displacements in the face 
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sheets. Frostig (2003) discusses two theories for modelling 

sandwich structures, namely Ordinary Sandwich Panel 

Theory(OSPT) and High order Sandwich Panel 

Theory(HSAPT). The OSPT model is based on the 

assumption that the plane of section of core and faces 

remain plane after deformation however the slopes are 

different, while HSAPT is a closed form higher order 

computational model. OSPT model assumes a linear 

variation of deflection through the thickness for the face 

sheets and core while HSAPT model assumes higher order 

variation, which represents the compressible effects of core. 

Frostig and Baruch (1994) in their higher order approach 

for the free vibration analysis of sandwich beams, 

considered the skins as elementary beams with axial and 

bending resistance and only shear behavior in the core with 

zero normal transverse stress. Catherine et al. (2012) 

presented an analysis of sandwich beams with a compliant 

core and with in-plane rigidity Extended High-Order 

Sandwich Panel Theory (EHSAPT), in which the 

compressibility of the soft core in the transverse direction is 

also considered. And the transverse displacement in the core 

is of second order in the transverse coordinate and the in-

plane displacements are of third order in the transverse 

coordinate. 
Zhen (2008) made an effort to compare several 

displacement-based theories such as Global Local Higher 
order Theory (GLHT), Zig Zag Theory(ZZT), Higher order 
Shear Deformation Theories(HSDT) and First order Shear 
Deformation Theory(FSDT). In HSDT itself, there are 
many theories which differs based on the number of 
unknown variables. GLHT proposed by Li and Liu (1997), 
a-priori satisfies displacements and transverse shear 
stresses continuity conditions at interfaces. Displacement 
fields are approximated using a set of functions which are 
functions of material, sectional properties and thickness 
with six number of unknown variables. In ZZT proposed by 
Cho and Parameter (1993), the condition of transverse shear 
stress continuity at interfaces for general lamination 
configurations is satisfied by superimposing a cubic varying 
displacement field on a zig-zag linear displacements. A 
comparative study on the use of Zigzag functions in 
equivalent single layer theories for laminated composite and 
sandwich beams was presented by Marco (2013). To 
approximate the three-dimensional elasticity problem to a 
two-dimensional plate problem, Matsunaga (2001) has 
proposed a higher order shear deformation theory HSDT-
98, where the displacement fields can be expressed as a 
Taylor’s series in terms of thickness coordinate. The in-
plane displacement field of HSDT-98 consists of ninth order 
polynomial in global thickness coordinate ‘z’ whereas the 
transverse deflection is represented by an eighth order 
polynomial of z with total number of unknowns being 19 in 
this model. In HSDT-76, the axial deformation is 
approximated as 7th order polynomial in thickness 
coordinate and the transverse displacement is approximated 
as sixth degree polynomial with 15 unknowns in this model. 
Kant and Swaminathan (2001) reported a HSDT, called 
HSDT-33, where both axial and transverse displacements 
were approximated by a quadratic variation in thickness 
coordinates and total number of unknown variables are 8 in 
this case. Each of these theories gave the results of varying 
accuracy. Reddy (1984) proposed a higher order shear 

deformation theory (called HSDT-Reddy) which can satisfy 
the transverse shear stress free boundary conditions, only 
includes 3 unknown variables. Damanpacka and Khalilia 
(2012) proposed high-order free vibration analysis of 
sandwich beams with a flexible core using dynamic 
stiffness method. 

Modeling of sandwich beams using the conventional FE 

software is not simple as the direct sandwich beam elements 

are not available. Efforts were made by Yang et al. (2007) 

to model sandwich beams in ABAQUS using 2D beams for 

face sheets and 3D elements for core. Ivaez et al. (2010) 

developed a numerical model to analyze the dynamic 

flexural behaviour of composite foam-core sandwich 

beams, using ABAQUS for modeling foam core as 

crushable and explicit code for modeling the face sheet 

behavior. Gillich et al. (2014) made an effort to evaluate the 

severity of localization of transversal cracks in sandwich 

beams. Efforts on the experimental studies on sandwich 

beams were also reported in literature. Experimental studies 

on clamped sandwich beams subjected to impact loading by 

Zhihua et al. (2011), free vibration of a three-layered 

sandwich beam by Banerjee et al. (2007), and prediction of 

the dynamic response of composite sandwich beams under 

shock loading by Tagarielli et al. (2010), were also 

reported. Poortabib and Maghsoudi (2014) investigated 

linear buckling analysis of a curved sandwich beam with a 

flexible core by deriving the equations for face sheets via 

the classical theory of curved beam, whereas for the flexible 

core, the elasticity equations in polar coordinates are 

implemented. Nonlinear magneto-electro-mechanical free 

vibration behavior of rectangular double-bonded sandwich 

micro beams based on the modified strain gradient theory 

(MSGT) is investigated by Mohammadimehr and Shahe 

(2016). Three-dimensional nonlinear finite element model 

was developed by Yan et al. (2015) for the ultimate strength 

analysis of such Steel Concrete Steel sandwich composite 

beams. Cunedioglu (2015) adopted multi layered approach 

for modeling of an edge cracked symmetric sandwich beam 

made of functionally graded materials, based on linear 

elastic fracture mechanics theory, considered within the 

Timoshenko first order shear deformation beam 

theory(FSDT) by using finite element method. 

In case of sandwich structures, the interface stresses 

between the face sheets and core, shear stress, τxz and 

normal transverse stress, σzz are the key parameters. As the 

depth of the structure increases, shear strain and the 

transverse normal strains will be considerable and thus 

shear deformation along with stretching effect will become 

crucial. Many theoretical models based on shear 

deformation were proposed for the analysis of the sandwich 

beams or plates made of functionally graded materials. 

Among them, Four variable refined plate theory, 

displacement based Higher order Shear Deformation 

Theory (HSDT) which includes undetermined integral 

terms, Hyperbolic shear deformation theory and Refined 

Trignometric Shear Deformation Theory (RTSDT) were 

found to be used by the researchers for many applications. 

Meiche et al. (2011) presented a new hyperbolic shear 

deformation theory for the buckling and free vibration 

analysis of thick functionally graded sandwich plates taking 

into account transverse shear deformation effects. The 
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theory assumes the transverse shear stresses vary 

parabolically across the thickness and the closed-form 

solutions of functionally graded sandwich plates are 

obtained using the Navier solution. Meziane et al. (2014) 

selected the displacement field in their refined shear 

deformation theory based on nonlinear variations in the in-

plane displacements through the thickness of the plate, by 

dividing the transverse displacement into the bending and 

shear parts. They presented the results of critical buckling 

loads of several types of symmetric exponentially graded 

material sandwich plates. Ahmed et al. (2016) proposed a 

new HSDT for bending and free vibration analysis for 

functionally graded plates, which deals with only three 

unknowns as classical plate theory including sinusoidal 

variation of transverse shear strains through the thickness of 

the plate theory. In an efficient shear deformation theory 

developed by Ahmed et al. (2016) for wave propagation of 

a functionally graded material plate, the number of 

unknowns and governing equations are reduced, by 

dividing the transverse displacement into bending and shear 

parts. Also, the physical neutral surface concept was 

adopted and hence, there is no stretching, bending coupling 

effect.  Using the same theory of neutral surface-based 

formulation and assuming FSDT, Bellifa et al. (2016) 

carried out the bending and free vibration analysis of 

functionally graded plates. 

Few researchers attempted the analysis of functionally 

graded beams with porosities, variation of materials 

properties of face sheets and core to capture the practical 

cases closely. Abdelaziz et al. (2011) adopted the four-

variable refined plate theory for the static response of 

functionally graded sandwich plates, where they considered 

the sandwich with functionally graded face sheet and 

homogeneous core and the sandwich with homogeneous 

face sheet and functionally graded core. Abdelaziz et al. 

(2017) reported the application of same theory for the 

bending, vibration and buckling of powerly graded material 

(PGM) sandwich plate with various boundary conditions. 

Fard (2014) proposed HSDT for free vibration of sandwich 

curved beams with a functionally graded core. Atmane 

Hassen Ait et al. (2015) presented a free vibrational 

analysis of functionally graded beams with porosities, with 

a simple displacement field based on HSDT, in which the 

transverse displacements consist of bending and shear 

components, but both will not contribute to each other. 

Remarkable efforts by Ait et al. (2015) reported for wave 

propagation in functionally graded plates with porosities 

using various higher-order shear deformation plate theories. 

The rule of mixture is modified to describe the material 

properties with porosity phases and the analytic dispersion 

relation of the functionally graded plate is obtained by 

solving an eigenvalue problem. Lazreg et al. (2016) 

presented a new displacement based high-order shear 

deformation theory for static and free vibration analysis of 

functionally graded beams and the material properties of the 

functionally graded beam are assumed to vary according to 

power law distribution of the volume fraction of the 

constituents. 
Some of the theories considered the effect of stretching 

with reference the sandwich beams and plates, by taking the 
normal transverse strain into the formulation. Hebali et al. 

(2014) developed a new quasi-three-dimensional hyperbolic 
shear deformation theory for the bending and free vibration 
analysis of functionally graded plates by dividing the 
transverse displacement into bending, shear, and thickness 
stretching parts. Belabed et al. (2014) presented an efficient 
and simple higher order shear and normal deformation 
theory for functionally graded material (FGM) plates. This 
theory accounts for both shear deformation and thickness 
stretching effects by a hyperbolic variation of all 
displacements across the thickness. Mahi et al. (2015) used 
the same theory for bending and free vibration analysis of 
isotropic, functionally graded, sandwich and laminated 
composite plates. Mohamed et al. (2015) presented a simple 
and refined trigonometric higher-order beam theory for 
bending and vibration of functionally graded beams, in 
which the inclusion of thickness stretching effect (ε≠0) and 
this effect on the deflections, stresses were clearly 
highlighted. Riadh et al. (2015) proposed a new refined 
hyperbolic shear and normal deformation beam theory to 
study the free vibration and buckling of functionally graded 
sandwich beams under various boundary conditions.  And 
the effects of transverse shear strains as well as the 
transverse normal strain are taken into account and the 
effects of thickness stretching, boundary conditions, and 
thickness to length ratios were discussed. Bennoun et al. 
(2016) proposed a novel five-variable refined plate theory, 
by considering the transverse displacement with 
contributions of bending, shear, and thickness stretching 
parts and also accounts for hyperbolic distribution of the 
transverse shear strains. Free vibration analysis of 
functionally graded sandwich plates, FGM face sheet and 
homogeneous core and the sandwich with homogeneous 
face sheet and FGM core were analyzed using this theory 
and observed a good match with 3D elasticity solutions and 
higher order theories. Fatima et al. (2016) presented a 
zeroth-order shear deformation theory for free vibration 
analysis of functionally graded (FG) nanoscale plates 
resting on elastic foundation, considering the influences of 
small scale and the parabolic variation of the transverse 
shear strains across the thickness of the nanoscale plate. The 
effect of transverse shear deformation is included in the 
axial displacements by using the shear forces instead of 
rotational displacements as in available high order plate 
theories. 

Application of these theories were not limited to 
structures. Some of the works published by the researchers 
were found in the area of thermal analysis. Tounsi et al. 
(2013) considered the transverse shear deformation effects 
(by following RTSDT) for the thermo-elastic bending 
analysis of functionally graded sandwich plates. They 
studied the influences played by the transverse shear 
deformation, thermal load, plate aspect ratio, and volume 
fraction distribution on the deflections and stresses of 
functionally graded metal-ceramic plates. Bachir et al. 
(2013) reported the thermo-mechanical bending response of 
functionally graded plates resting on Winkler-Pasternak 
elastic foundations based on RTSDT. Hamidi et al. (2015) 
presented a simple but accurate sinusoidal plate theory for 
the thermo-mechanical bending analysis of functionally 
graded sandwich plates, incorporating the thickness 
stretching effect. Bachir et al. (2016) proposed a simple 
shear deformation theory for thermal stability of 
functionally graded sandwich plates and reported that the 
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obtained numerical results achieved are on par with 
conventional FSDT which has more unknowns. Bousahla et 
al. (2016) developed a four-variable refined plate theory for 
buckling analysis of functionally graded plates subjected to 
uniform, linear and nonlinear temperature rises across the 
thickness direction to investigate the variation of coefficient 
of thermal expansion. Abdelbaki et al. (2017) recently 
proposed a simplified HSDT for thermal buckling analysis 
of cross-ply laminated plates in which the displacement 
field introduces undetermined integral terms and contains 
only four unknowns. El-Haina et al. (2017) presented a 
simple analytical approach to investigate the thermal 
buckling behavior of thick functionally graded sandwich by 
employing both the sinusoidal shear deformation theory and 
stress function. Menasria et al. (2017) used a new 
displacement field that includes undetermined integral 
terms for analyzing thermal buckling response of 
functionally graded (FG) sandwich plates by considering a 
trigonometric variation of transverse shear stress and 
verifies the traction free boundary conditions without 
employing the shear correction factors. Using the same 
theory, Bellifa et al. (2017) proposed a methodology for 
buckling analysis of functionally graded plates and they 
determined the closed-form solutions of rectangular plates. 

It can be found out that the numerous efforts were made for 

the analysis of sandwich structures and the classical to 

mixed formulations to novel methodologies were proposed. 

All these efforts can be noted basically based on the shear 

deformation and stretching effect as they play a crucial role.   

In the present study, efforts were made to develop the 

elements without and with this stretching effect basically to 

quantify their effect while transferring the energy from core 

to the face sheets which will reflect on the overall 

performance. And the shear effects are captured using 

FSDT in face sheets. 

 

1.2 Concerns and possible solutions 
 

All of these theories consider governing differential 

equations of varying complexity, which requires numerical 

techniques such as Finite Element Method (FEM) to solve. 

Most of the theories consider the weak formulation and not 

the strong form, while deriving the governing equations.  

The degree of accuracy of results depends on the ability of 

the chosen interpolation polynomials of the finite elements 

to satisfy the governing equations as closely as possible. 

Many finite elements suffer from problems such as shear 

locking, poor convergence, etc. due to inappropriate 

interpolation functions. In fact, if a proper interpolating 

functions are chosen, even FEM based FSDT will give 

accurate results. Hence, we will use this approach to 

formulate a family of finite elements based on FSDT for 

sandwich structures, in which the interpolating polynomial 

of the formulated FEM satisfy the static part of the 

governing equation. Hence, such an element will give exact 

results for the static analysis under point loads, while the 

dynamic analysis will still be approximate due to inaccurate 

inertial distribution. However, since the static part of the 

governing equation is exact, the convergence of results 

provided by this element is expected to be superior 

compared to conventional FEM. Hence, this formulation is 

normally referred to as Super Convergent FE formulation. 

Energy absorption studies requires deep understanding of 

wave propagation, which is a multimodal phenomenon, 

where all higher modes will get excited to a short duration 

load. The frequency content of such load will be large. At 

these large frequencies, the wavelength will be very small 

and hence for accurate results, conventional finite elements 

mesh size should be comparable with the wavelength and it 

should be typically one eighth or one tenth of wavelengths. 

Hence, mesh sizes for wave propagation problems is very 

high requiring new methodologies to reduce problem size. 

Spectral FEM (Gopalakrishnan et al. 2008) is one such 

method, while Super Convergent FEM which is a topic of 

this paper, is the other. Since, the stiffness is exactly 

captured in Super Convergent FE formulation, it is expected 

that this formulation requires smaller mesh sizes and 

superior convergence properties compared to conventional 

FEM and hence will be of great use in solving wave 

propagation problems. 

Such formulation for higher order rod by 

Gopalakrishnan (2000), beam by Chakraborty et al. (2002), 

thin walled beam by Mitra et al. (2004), higher order 

composite beams by Murthy et al. (2005, 2007), Ghosh and 

Goplakrishnan (2007) have been reported in the literature. 

Through this procedure, the continuity and completeness of 

the displacement polynomial, which is essential to obtain 

shear locking free performance, can be achieved. Shear 

locking is the common phenomena in case of thin beams, 

where the beam slopes are not computed using the 

transverse displacements.  Elimination of locking through 

the reduced order integration by making the shear stiffness 

matrix rank deficient is most widely used by Cook et al. 

(2002). As the present formulation employs the exact 

solutions as interpolation functions, the element is naturally 

free from locking. This super convergence property makes 

this element more powerful when compared to the other 

formulations, which provides higher rate of convergence 

and there by gives a great benefit to use less number of 

elements for carrying out the analysis of sandwich beams, 

especially for wave propagation studies. We (Sudhakar et 

al. 2010) reported the development of sandwich beam based 

on Timoshenko beam theory with partial compressible 

effects of core with super convergence property earlier. 
 

1.3 Novelty of the present work and applications 
 

Following novel points can make the elements presented 

in this paper superior over the other. 

• use of the strong form of the governing differential 

equations in the element formulation 

• use the solution of the differential equations as 

interpolation functions to make the stiffness matrix exact 

for the static case and shear locking free in case of thin 

beams 

• element model assumes the degrees of freedom(dof) at 

the face sheets to facilitate realistic load application and 

boundary conditions 

• effects of core are applied through kinematic relations 

with dof and forces respectively, which will provide 

freedom to capture the core phenomena many ways in 

compatible with face sheets 

• metallic and /or composite face sheets 
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• Eul4d element considers the rigid core with uniform 

transverse displacement and slope 

• Eul10d element considers the flexible core with effects 

of shear stress in longitudinal, transverse directions and also 

stretching in thickness direction. 

As these elements are developed on the basis of Euler 

Bernouli beam theory with the specific features mentioned 

above, the applications where these elements can be used, 

can be many as listed below. 

• Static, free vibration and wave propagation analysis of 

thin beams. 

• Beams with loads leading to bending phenomena 

predominantly, say point loads, uniformly distributed loads. 

• Analysis of beams with application of boundary 

conditions at top and bottom face sheets same or different- 

more rigid to more flexible. 

• Use of Metallic or composite face sheets with wide 

variety of foam cores 

Energy and vibration absorption studies of sandwich 

beams 

This paper covers the general Super convergent element 

formulation outlining the procedure in next section. Later 

Element formulation for Eul4d, Eul10d with details of 

stiffness matrix derivation and static condensation for 

obtaining the solution. The developed elements are 

extensively validated for static, free vibration and wave 

propagation analysis problems as presented in following 

subsequent sections. 
 

 

2. Super convergent finite element formulation 
 

Euler beam theory is the basic beam theory for pure 

bending analysis, where the shear deformation is not 

considered and hence widely acceptable for thin beams. 

This element basically considers the contribution of core 

through shear stress, τxz and normal transverse stress, σzz at 

interfaces with face sheets so that the compressibility 

effects of core are captured.  Incompressible as well as 

flexible effects of the core are considered and are captured 

by incorporating appropriate beam kinematics. The 

respective degrees of freedom considered in these super 

convergent finite element sandwich Euler Bernoulli beam 

elements developed, are listed as below. 

• 4 degrees of freedom Euler Bernoulli element (Eul4d) 

:u_0t ,w, 
𝑑𝑤

𝑑𝑥
, u_0b 

• 10 degrees of freedom Euler Bernoulli element 

(Eul10d) u_0t, wt, dwt/dx, u_0b, wb, dwb/dx τt
xz, τb

xz, σt
zz, σb

zz. 

Super Convergent formulation for higher order rods, beams 

are available in Gopalkrishnan (2000) to Ghosh and 

Goplakrishnan (2007). τc
xz is the shear stress in core, τt

xz and 

τb
xz are the shear stresses at top and bottom interfaces 

between the face sheet and core. For a constant shear stress 

variation across depth of core, τc
xz is used. While τc

xz varies 

across depth of core, τt
xz and τb

xz are used correspondingly to 

denote the shear stress. Similarly, σc
zz is the transverse 

normal stress in core. σt
zz and σb

zz denotes the transverse 

normal stresses in core at the top and bottom interfaces. 

Among the elements developed, Eul4d element is the 

basic element that assumes rigid core, where the transverse 

displacement is constant throughout depth of the core. 

These elements can be employed for thin sandwich beams 

under bending loads. Eul10d is a higher order element 

which is expected to simulate the real conditions with 

flexible core represented through the shear stress and 

transverse normal stresses at top and bottom interfaces.  

General frame work for all these super convergent finite 

elements formulated based on Euler beam theory is 

presented in the next subsection. 
 

2.1 Super convergent FE frame work for sandwich 
beam elements 
 

The details such as governing equations, interpolation 

functions, etc. for each formulated element are given in the 

following sections. The general procedure for formulating 

super convergent sandwich beam element is outlined, which 

mainly explains the derivation of stiffness and mass 

matrices.   All formulations will consider both top and 

bottom face sheets and core as separate entities. The face 

sheets are connected to core through interfacial shear and 

normal stress in the transverse direction depending upon the 

type of element formulated. 

A generalized sandwich beam with face sheets, core and 

coordinate systems followed are as shown in Fig. 1(a). 

Based on the idealization of model with assumed 

kinematics in terms of degrees of freedom, the stress 

distribution in the element, external force acting on the 

element and the energy associated with the systems in 

various forms are calculated 

Governing differential equations can be derived using 

Hamilton’s principle, which are given by 

𝛿 ∫ (𝑇𝑡 − 𝑈𝑡 +𝑊𝑡)𝑑𝑡 = 0
𝑡2
𝑡1

, 

𝛿 ∫(𝑇𝑏 − 𝑈𝑏 +𝑊𝑏)𝑑𝑡 = 0

𝑡2

𝑡1

 

Where𝑇𝑡 , 𝑇𝑏represents the kinetic energy, 𝑈𝑡 , 𝑈𝑏 𝑎𝑟𝑒 the 

potential energy and 𝑊𝑡 ,𝑊𝑏  are the work done by the 

shear and transverse normal stress due to core 

corresponding to top and bottom face sheets respectively, 

which are given by 

𝑈𝑡 = 
1

2
∫ ∫ (𝜎𝑥𝑥

𝑡  𝜖𝑥𝑥  
𝑡

𝐴𝑡

𝐿

0

+ 𝜏𝑥𝑧
𝑡  𝛾𝑥𝑧

𝑡 ) 𝑑𝑥 𝑑𝐴𝑡 

𝑈𝑏 = 
1

2
∫ ∫ (𝜎𝑥𝑥

𝑏  𝜖𝑥𝑥  
𝑏

𝐴𝑏

𝐿

0

+ 𝜏𝑥𝑧
𝑏  𝛾𝑥𝑧

𝑏 ) 𝑑𝑥 𝑑𝐴𝑏 

𝑇𝑡 = 
1

2
∫ ∫ 𝜌𝑡(�̇�𝑡

2 + �̇�𝑡
2)𝑑𝑥 𝑑𝐴𝑡𝐴𝑡

𝐿

0
, 

𝑇𝑏 = 
1

2
∫ ∫ 𝜌𝑏(�̇�𝑏

2 + �̇�𝑏
2)𝑑𝑥 𝑑𝐴𝑏

𝐴𝑏

𝐿

0

 

𝑊𝑡 = 
1

2
∫ 𝑏(𝜏𝑥𝑧

𝑐 𝑢𝑡 + 𝜎𝑧𝑧
𝑡 𝑤𝑡)𝑑𝑥

𝐿

0

 

𝑊𝑏 = 
1

2
∫ 𝑏(𝜏𝑥𝑧

𝑐 𝑢𝑏 + 𝜎𝑧𝑧
𝑏 𝑤𝑏)𝑑𝑥

𝐿

0

 

(1) 

where dAt =b dzt and dAb=bdzb are the area of cross 

section of top and bottom face sheets under consideration.   
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Assuming FSDT, longitudinal displacements ut, ub are 

related as 

𝑢𝑡 = 𝑢0𝑡 − 𝑧𝑡
𝑑𝑤𝑡

𝑑𝑥
, 𝑢𝑏 = 𝑢0𝑏 − 𝑧𝑏  

𝑑𝑤𝑏

𝑑𝑥
 (2) 

It is essential to note that the inertial mass contribution 

from core is not included as the degrees of freedom 

corresponding to core are not included directly in any of the 

formulations and hence, they are included through available 

degrees of freedom at top and bottom face sheets through 

lumping procedures. Based on the assumed idealization, 

that is the core is either rigid or flexible, the terms in the 

energy expression will be appropriately modified. 

Once the governing equations are derived, the 

displacement functions need to be derived using super 

convergent formulation where the shape functions are 

obtained by solving static part of these governing equations 

exactly. Subsequently, using these shape functions, the 

stiffness matrix and mass matrix of the element will be 

derived. 
 

2.2 Stiffness matrix 
 

Stiffness matrix can be derived based on the strain 

displacement relations and expressed as, 

[𝐾𝑒]𝑁×𝑁 = ∫ ∫ ∫   ⌊𝐵⌋𝑇
ℎ

2

−
ℎ

2

𝑏

0

𝐿

0

[𝐶][𝐵 ]  𝑑𝑧 𝑑𝑦 𝑑𝑥 (3) 

 

 

Where ⌊𝐾𝑒⌋  denotes the element stiffness matrix, [B] 

denotes the strain displacement matrix, [C] denotes the 

material stress strain constitutive relation matrix. Element 

stiffness matrix will be computed for N degrees of freedom 

(dof), that the element can support. Free body diagram for 

the sandwich beam can be written as shown in Fig. 1(b), 

which is applicable for Eul10d. 

Similar free body diagrams for Eul4d elements can be 

derived based on the degrees of freedom and stress 

resultants assumed respectively. The stresses are related to 

the strains using the constitutive relation and is given by 

{

σxx
σzz
τxz
} =  ⌊

Q11 0 0
0 𝑄22 0
0 0 𝑄55

⌋  {

ϵxx
ϵzz
𝛾𝑥𝑧
} (4) 

which can be written as 

{𝜎} =  ⌊𝑄⌋   {𝜖} (5) 

For the top and bottom face sheets, the stresses and 

strains are calculated using these expressions, where 𝑄𝑖𝑗  

are the elements of the anisotropic constitutive matrix, 

where the effect of ply-angle is taken into consideration. 

𝑄𝑖𝑗  are evaluated using the expressions given by Vinson and 

Jack (1999). In addition to the shear stress 𝜏𝑥𝑧
𝑡  for top face 

sheet and 𝜏𝑥𝑧
𝑏 for bottom face sheet, the core shear stress 

𝜏𝑥𝑧
𝑐   and normal stress 𝜎𝑧𝑧

𝑐  will be acting at the interface of 

the core and the face sheets. 

Formulation begins with evaluation of interpolation 

functions obtained using the static part of the solution of the 

governing equation. Here, the formulation procedure is 

illustrated with all possible dofs as listed below as the 

vector containing ten independent degrees of freedom, 

which can be written in a matrix form as 

{𝑢} = {u0t, wt,
𝜕𝑤𝑡
𝜕𝑥 

, u0b, wb,
𝜕𝑤𝑏
𝜕𝑥 

, τxz 
t , τxz

b , σzz
t ,

σzz
b }

𝑇

 
(6) 

Various possible degrees of freedom, free body diagram 

of forces and stresses are shown in Fig. 2. 

We assume that there are 𝑛𝑡 number of constants in the 

solution, which needs to be determined in order to define 

 
 

(a) Geometry Axis System (b)   Forces, Stress Resultants 

Fig. 1 Element: Axis System and Free Body Diagram 

  

(a) Degrees of freedom (b)Forces, Stress Resultants 

Fig. 2 Two noded 10 dof Sandwich beam element 
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the functions completely and only 2 m of them are available 

as boundary conditions corresponding to dof, m. Hence,  

𝑛𝑥 =  𝑛𝑡 −  2 𝑚 constants are not independent and they 

need to be expressed in terms of independent constants. By 

substituting the assumed polynomials from Eq. (6) into the 

governing equations, a set of equations will be obtained.  

Let the vector { 𝐶𝑑 }  be the vector of dependent constants 

and vector {𝐶_𝑖 } be the vector of independent constants. 

Set of relations obtained can be put in matrix form, which 

can be expressed as 

[𝐴1]𝑛𝑥×𝑛𝑥   {𝐶𝑑}𝑛𝑥×1     = [𝐴2]𝑛𝑥×2𝑚   {𝐶𝑖}2𝑚×1  (7) 

where [𝐴1], [𝐴2]  are the matrices consists of the 

stiffness coefficients associated with { 𝐶𝑑 }  and  { 𝐶𝑖  } 
vectors. Care should be taken while selecting the dependent 

constants in matrix {𝐶𝑑  } so that matrix [𝐴1] will be non-

singular. 

From Eq. (7), { 𝐶𝑑  }  can be obtained as 

{𝐶𝑑}𝑛𝑥×𝑛𝑥 = [𝐴1]
−1

𝑛𝑥×𝑛𝑥 
[𝐴2]𝑛𝑥×2𝑚   {𝐶𝑖}2𝑚×1  (8) 

which can be written as 

{𝐶𝑑}𝑛𝑥×𝑛𝑥 = [𝐴𝑑𝑖]𝑛𝑥×2𝑚   {𝐶𝑖}2𝑚×1  (9) 

Next, the vector containing regular displacements can be 

written in terms of both dependent and independent 

constants by expressing the governing equations in matrix 

form as 

{𝑢}𝑚×1 = [𝐴𝑑]𝑚×𝑛𝑥   {𝐶𝑑}𝑛𝑥×1 +   [𝐴𝑖]𝑚×2𝑚 {𝐶𝑖}2𝑚×1  (5) 

Substituting {𝐶𝑑} obtained from Eq. (8) in Eq. (10), we 

get the relationship as 

{𝑢}𝑚×1 = [𝐴𝑑]𝑚×𝑛𝑥 [𝐴𝑑𝑖]𝑛𝑥×2𝑚 {𝐶𝑖}2𝑚×1 
+ [𝐴𝑖]𝑚×2𝑚 {𝐶𝑖}2𝑚×1  

(11) 

The above equation can be written as follows. 

{𝑢}𝑚×1 = [𝐴𝑐]𝑚×2𝑚 {𝐶𝑖}2𝑚×1  (12) 

Where 

{𝐴𝑐}𝑚×2𝑚 = [𝐴𝑑]𝑚×𝑛𝑥  [𝐴𝑑𝑖]𝑛𝑥×2𝑚 + [𝐴𝑖]𝑚×2𝑚  (13) 

By substituting the boundary conditions at two nodes of 

an element at 𝑥 = 0 and 𝑥 = 𝐿 as shown in Fig. 2, we get 

a matrix relation between the constants and the nodal 

displacements, which can be written as 

{𝑢𝑒}2𝑚×1 = [𝐴𝑒]2𝑚×2𝑚 {𝐶𝑖}2𝑚×1  (14) 

Where {𝑢𝑒}  =  {𝑢1, 𝑢2}
𝑇 

and {𝑢𝑒}  is the elemental degrees of freedom vector, 

{ 𝑢1} and { 𝑢2 } are the vectors at nodes at 𝑥 = 0 and j at 

𝑥 = 𝐿 defined as 

{𝑢1} = {
u0t1, wt1, ( 

𝜕𝑤𝑡
𝜕𝑥 

)
1
, u0b1, wb1, (

𝜕𝑤𝑏
𝜕𝑥 

)
1
,

 τxz1 
t , τxz1

b ,  σzz1
t , σzz1

b

}

𝑇

 

{𝑢2} = {
u0t2, wt2, ( 

𝜕𝑤𝑡
𝜕𝑥 

)
2
, u0b2, wb2, (

𝜕𝑤𝑏
𝜕𝑥 

)
2
,

 τxz2 
t , τxz2

b ,  σzz2
t , σzz2

b

}

𝑇

 

From Eq. (14), we have 

{𝐶𝑖}2𝑚×1 = [𝐴𝑒]
−1

2𝑚×2𝑚 
{𝑢𝑒}2𝑚×1  (15) 

It is to be noted that unlike conventional finite elements, 

super convergent elements will give constants dependent on 

material as sectional properties of an element.  

Displacements at any point in the element are related to the 

nodal displacements using the shape functions [N], which 

can be obtained as follows 

{𝑢}𝑚×1 = [𝐴𝑐]𝑚×2𝑚 [𝐴𝑒]
−1

2𝑚×2𝑚 
{𝑢𝑒}2𝑚×1  (16) 

Hence, [N], the shape functions can be written as 

[𝑁]𝑚×2𝑚 = [𝐴𝑐]𝑚×2𝑚 [𝐴𝑒]
−1

2𝑚×2𝑚 
 (17) 

For element with 10 degrees of freedom per node 

(m=10), [N] can be derived as shown below. 

[N]= [

𝑁3×3
𝑡 03×3  𝑁3×4 

𝜏

03×3 𝑁3×3
𝑏 𝑁3×4 

𝜏

04×3 04×3 𝑁4×4 
𝜏

 

𝑁3×3
𝑡 03×3 𝑁3×4 

𝜏

03×3 𝑁3×3
𝑏 𝑁3×4 

𝜏

04×3 04×3 𝑁4×4 
𝜏

] (18) 

where  [𝑁𝜏]  are the shape functions corresponding to the 

shear stresses 𝜏𝑥𝑧
𝑡 , 𝜏𝑥𝑧

𝑏  and transverse normal stresses, 𝜎𝑧𝑧
𝑡   

and 𝜎𝑧𝑧
𝑏 . The strain displacement relationship is given by 

{𝜖} = [ 𝐵𝑠 ]  
{ 𝑢𝑒 }  (19) 

where [𝐵_𝑠] is the strain displacement matrix. The above 

relation can be explicitly written as 

{𝜖𝑖} = [ 𝐵𝑖 ]  
{ 𝑢𝑒 }  (20) 

where subscript i in above equation refers to t, b  and c 

corresponding to top face sheet, bottom face sheet and core 

respectively. [𝐵𝑡], [𝐵𝑐] and [𝐵𝑏] are determined using the 

strain displacement relations as shown below. 

{𝜖𝑡} =   {𝜖𝑥𝑥 
𝛾𝑥𝑧
𝑡

𝑡 } =   

{
 
 

 
 

𝜕𝑢𝑡
𝜕𝑥

𝜕𝑢𝑡  

𝜕𝑧𝑡
+
𝜕𝑤𝑡   

𝜕𝑥
}
 
 

 
 

 

= 

{
 

 
𝜕𝑁1

𝜕𝑥
− 𝑧𝑡

𝜕𝑁3

𝜕𝑥

−𝑁3 +
𝜕𝑁2 

𝜕𝑥

}
 

 
{ 𝑢𝑒  } = [ 𝐵𝑡 ]  

{ 𝑢𝑒  } ] 

(21) 

{𝜖𝑏} =   {𝜖𝑥𝑥 
𝛾𝑥𝑧
𝑏

𝑏 } =   

{
 
 

 
 𝜕𝑢𝑏

𝜕𝑥
𝜕𝑢𝑏  

𝜕𝑧𝑏
+
𝜕𝑤𝑏   

𝜕𝑥

}
 
 

 
 

 

= 

{
 
 

 
 
𝜕𝑁4
𝜕𝑥

− 𝑧𝑡
𝜕𝑁6
𝜕𝑥

−𝑁6 +
𝜕𝑁5 

𝜕𝑥
}
 
 

 
 

{ 𝑢𝑒  } = [ 𝐵𝑏 ]  
{ 𝑢𝑒  }  

 

Assuming the displacements in longitudinal and 

transverse directions, 𝑢𝑐  and 𝑤𝑐 , as linear variation of 

corresponding displacements at core face sheet interfaces at 
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both top and bottom, strain in core can be written as 

{𝜖𝑐} = {

𝜖𝑥𝑥
𝑐

𝜖𝑧𝑧
𝑐

𝛾𝑥𝑧
𝑐
} =

{
 
 
 

 
 
 

𝜕𝑢𝑐
𝜕𝑥
  

𝜕𝑤𝑐
𝜕𝑧

𝜕𝑢𝑐 

𝜕𝑧𝑐
+
𝜕𝑤𝑐   

𝜕𝑥
}
 
 
 

 
 
 

=  [ 𝐵𝑐 ] { 𝑢
𝑒  } (23) 

Where 

[𝐵𝑐]

=

{
  
 

  
 (
𝜕𝑁1
𝜕𝑥

+
ℎ𝑡
2

𝜕𝑁3
𝜕𝑥

) ℎ𝑐1 + (
𝜕𝑁4
𝜕𝑥

−
ℎ𝑏
2

𝜕𝑁6
𝜕𝑥

)ℎ𝑐2

1

ℎ𝑐
[𝑁2 − 𝑁5]

1

ℎ𝑐
[𝑁ℎ] + ℎ𝑐1

𝜕𝑁2
𝜕𝑥

+ ℎ𝑐2
𝜕𝑁5
𝜕𝑥 }

  
 

  
 

 

And 𝑁ℎ   is defined as [𝑁1 −𝑁4 +
ℎ𝑡

2
𝑁3  +

ℎ𝑏

2
𝑁6], 

where 𝑁1 , 𝑁2, 𝑁3, 𝑁4, 𝑁5 and 𝑁6 are the shape functions 

corresponds to 𝑢0𝑡 , 𝑤𝑡 ,
𝜕𝑤𝑡  

𝜕𝑥
, 𝑢0𝑏 , 𝑤𝑏 ,

𝜕𝑤𝑏  

𝜕𝑥
 respectively. In 

Eqn 18, 𝑁𝑡    represents 𝑁1, 𝑁2  and 𝑁3  , while 𝑁𝑏  

represents  𝑁4, 𝑁5  and 𝑁6  . Also ℎ𝑐1  = [
1

2
+

𝑧𝑐

ℎ𝑐
] and 

ℎ𝑐2 =  [
1

2
−

𝑧𝑐

ℎ𝑐
]   where 𝑧𝑐  is the ordinate distance from 

the mid core section. The total stiffness matrix of the 

element is given by 

[𝐾𝑒] =  [ 𝐾𝑖 ] + [ 𝐾𝑏 ] + [ 𝐾𝑐 ] (24) 

where [𝐾𝑒] is the element stiffness matrix of beam which 

is obtained by integrating the stiffness contributions from 

top face [𝐾𝑡] , bottom face, [𝐾𝑏] and core, [𝐾𝑐]. 
Where 

[𝐾𝑡 ]2𝑚×2𝑚 = 𝑏∫ ∫ [ 𝐵𝑖 ]
𝑇 [𝑄𝑡][ 𝐵𝑡    ]𝑑𝑧𝑡𝑑𝑥  

ℎ𝑡
2

−
ℎ𝑡
2

𝐿

0

 

[𝐾𝑏 ]2𝑚×2𝑚 = 𝑏∫ ∫ [ 𝐵𝑏 ]
𝑇 [𝑄𝑏][ 𝐵𝑏   ]𝑑𝑧𝑏𝑑𝑥   

ℎ𝑏
2

−
ℎ𝑏
2

𝐿

0

 

[𝐾𝑐 ]2𝑚×2𝑚 = 𝑏∫ ∫ [ 𝐵𝑐 ]
𝑇 [𝑄𝑐][ 𝐵𝑐   ]𝑑𝑧𝑐𝑑𝑥    

ℎ𝑐
2

−
ℎ𝑐
2

𝐿

0

 

(25) 

In the above equation, [B] and [Q] matrices are 

represented with subscripts  𝑡, 𝑏, 𝑐  corresponding to the 

top, bottom face sheets and core. ℎ𝑡 , ℎ𝑏 , ℎ𝑐 , 𝑧𝑡 , 𝑧𝑏 and  𝑧𝑐   

are the thickness of face sheets, core and corresponding 

ordinates. Forces acting on the element at the nodes are 

written as 

{𝐹} = {
𝑁𝑥1
𝑡 , V1

t
 
, 𝑀1

𝑡
  
, 𝑁𝑥1

𝑏 , V1
b
 
, 𝑀1

𝑏 ,

𝑁𝑥2
𝑡 , V2

t
 
, 𝑀2

𝑡
  
, 𝑁𝑥2

𝑏 , V2
b
 
, 𝑀2

𝑏
  

 

}

𝑇

 (26) 

It can be observed that the forces considered are 6 per 

node only which are related to the face sheets only. The 

forces corresponding to 𝜏𝑥𝑧  , 𝜎𝑧𝑧 are acting internally at 

the face sheet interfaces and hence the stiffness terms can 

be condensed out to get the effective stiffness matrix in 

terms of 6 dof per node, with an element stiffness matrix of 

size 12 × 12  . 
 

2.3 Mass matrix 
 

Consistent mass matrix for top and bottom face sheets 

can be computed using the interpolation or shape functions 

that are used to derive the stiffness, as given by the 

following expression. 

[𝑀𝑡
𝑐 ]2𝑚×2𝑚 = 𝑏∫ ∫ [𝑁]𝑇 [𝜌𝑡][𝑁]𝑑𝑧𝑡𝑑𝑥  

ℎ𝑡
2

−
ℎ𝑡
2

𝐿

0

 (27) 

[𝑀𝑏
𝑐]2𝑚×2𝑚 = 𝑏∫ ∫ [𝑁]𝑇  [𝜌𝑏][𝑁]𝑑𝑧𝑏𝑑𝑥   

ℎ𝑏
2

−
ℎ𝑏
2

𝐿

0

 (28) 

where [𝑀𝑡
𝑐] and [𝑀𝑏

𝑐 ] are the consistent mass matrices 

corresponding to the top and bottom face sheets. Since the 

degrees of freedom from core  𝑢𝑐, 𝑤𝑐  are not considered 

and the shape functions are not represented for core, the 

mass of the core cannot be computed using consistent mass 

matrix. However, the mass can be lumped at the respective 

degree of freedom corresponding to the degrees of freedom 

represented at top and bottom face sheets. 

Lumped mass matrix is a diagonal matrix, which is 

obtained by placing particle masses at nodes (Cook et al. 

2002). Total element mass of the core, 𝑚𝑐 = 𝜌𝑐 𝐴𝑐  𝐿 , 

where 𝐴𝑐   is the cross-sectional area of core.  Particle 

lumping places a particle of mass 
mc

4
 at each translational-

longitudinal and transverse degree of freedom. Rotational 

inertia can be calculated as 
1

3

mc

4
 (

𝐿

2
)
2

=
mc  

48
𝐿2 . Mass 

corresponding to the shear stress terms are taken as zeros. 

In consistent mass model, the consistent mass matrices 

from face sheets are computed using the interpolation 

functions used for stiffness and the lumped mass matrix 

from core is added as shown below. 

[𝑀𝑐
𝑒] =  [𝑀𝑡

𝑐] + [𝑀𝑏
𝑐] + [ 𝑀𝑐 ] (29) 

Here the elements of diagonal mass matrix for core 

[𝑀𝑐]  for a standard element with 6 dof per node is given 

by 

{𝑀𝑙
𝑐} =

𝜌𝑐𝐴𝑐𝐿 

4
{1,1,

1

12
, 1,1,

1

12
, 1,1,

1

12
, 1,1,

1

12
}
𝑇

 (30) 

In case of an element with stress degrees of freedom, the 

corresponding elements in mass matrix considered are 

zeros. In lumped mass model, the mass matrices from face 

sheets are computed using the lumped model and the 

lumped mass matrix from core is added as shown below. 

[𝑀𝑙
𝑒] =  [𝑀𝑡

𝑙] + [𝑀𝑏
𝑙 ] + [ 𝑀𝑐 ] (31) 

Mass matrix from core, 𝑀𝑐  will be same as shown 

above in Eq. (30). The lumped mass matrices for face sheets 

𝑀𝑡
𝑙  and 𝑀𝑏

𝑙  are computed in similar manner and are 

defined as shown below. 

{𝑀𝑡
𝑙} =

𝜌𝑡𝐴𝑡𝐿 

2
{1,1,

1

12
, 1,1,

1

12
, 1,1,

1

12
, 1,1,

1

12
}
𝑇

 (32) 
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{𝑀𝑏
𝑙 } =

𝜌𝑏𝐴𝑏𝐿 

2
{1,1,

1

12
, 1,1,

1

12
, 1,1,

1

12
, 1,1,

1

12
}
𝑇

 (33) 

In this paper, wherever consistent mass model is 

referred to, then it means that the matrices are computed 

using Eqn.29 and while the lumped mass model refers to 

the mass computed using Eq. (31). 

 

2.4 Global matrices and their solution 
 

Once elemental stiffness, mass and force matrices are 

derived, then these matrices need to be assembled based on 

the discretisation carried out to model the given structure 

for analysis. Assembly of these matrices is done according 

to the nodes connected to define an element and global 

equation number assigned to the degrees of freedom at 

nodes 𝑛𝑖    and 𝑛𝑗 , where 𝑛𝑖  and 𝑛𝑗  are the first and 

second nodes of the element. The numbering is done taking 

the boundary conditions defined at some nodes. Assembly 

of these matrices will give global stiffness[𝐾], global mass 

[𝑀] and global force vector {𝐹 } which are having the 

dimensions of number of equations present in the system. 

The dynamic equations of motion can be written as 

follows. 

[𝑀]𝑛𝑞×𝑛𝑞{�̈�}𝑛𝑞×1 + [𝐾]𝑛𝑞×𝑛𝑞 {𝑢}𝑛𝑞×1 = {𝐹}𝑛𝑞×1  (34) 

where 𝑛𝑞 is the number of equations or unknown in the 

system to be solved. This is an equation which is defining 

the undamped dynamic system when the force applied is 

time dependant.  The above equation can be solved using 

Newton- 𝛽 time stepping algorithm, the details of which is 

given in standard text books Cook et al. (2002), Shames 

and Clive (2003). 

 

 

3. Four DOF rigid core euler bernoulli beam element 
(Eul4d) 
 

This is sandwich beam model with incompressible core 

and symmetric face sheets having equal thickness, where 

the transverse displacements are assumed same in both top 

and bottom face sheets, meaning 𝑤𝑡  =  𝑤𝑏  =  𝑤 . The 

nodal degrees of freedom are  𝑢0𝑡 , 𝑤,
𝜕𝑤   

𝜕𝑥
, 𝑢0𝑏. As the 

face sheets are having same thickness, the stiffness 

coefficients 𝐴𝑡 = 𝐴𝑏 =  𝐴, 𝐴11𝑡 =  𝐴11𝑏 = 𝐴11, 𝐵11𝑡  =
 𝐵11𝑏  =  0  and 𝐷11𝑡  =  𝐷11𝑏  =  𝐷11. 

In this idealization, as the transverse displacement in top 

and bottom face sheets is assumed the same, which will be 

the case applicable for thin cores. This results in zero 

normal stress in transverse direction, i.e., 𝜎𝑧𝑧 = 0. This 

result comes from the core equilibrium equations, that is 
∂ τxz

∂ x  
 =0  

Assuming Euler Bernoulli beam theory for face sheets 

in the present idealization, the following kinematics of 

deformation is applicable. 

𝑢𝑡(𝑥, 𝑧, 𝑡) = 𝑢0𝑡(𝑥, 𝑡) − 𝑧𝑡    
𝑑𝑤(𝑥, 𝑡)

𝑑𝑥
 

𝑤𝑡  (𝑥, 𝑧, 𝑡) =  𝑤𝑏  (𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) 
(35) 

𝜙𝑡  (𝑥, 𝑧, 𝑡) = 𝜙𝑏 (𝑥, 𝑧, 𝑡) =   
𝜕𝑤   

𝜕𝑥
 

𝑢𝑏(𝑥, 𝑧, 𝑡) = 𝑢0𝑏(𝑥, 𝑡) + 𝑧𝑏  
𝑑𝑤(𝑥, 𝑡)

𝑑𝑥
 

In this model, the face sheets are considered having 

equal thickness ℎ𝑡  =  ℎ𝑏  = ℎ  and hence, it gives the 

same geometrical sectional properties and similarly, 𝐼0𝑡 =
 𝐼0𝑏 = 𝐼0 , 𝐼1𝑡 = 𝐼1𝑏 = 0.  It is assumed that the energy 

transfer between face sheets and core at interfaces is 

through shear stress from the core, 𝜏𝑥𝑧
𝑐  only. 

Following governing equations are obtained by 

considering the equal thickness face sheets. 

𝐼0  
𝜕2𝑢0𝑡
𝜕 𝑡2

−   𝑏 𝐴11 
𝜕2𝑢0𝑡
𝜕 𝑥2

− 𝑏 𝜏𝑥𝑧
𝑡  = 0 (36) 

𝐼0  
𝜕2𝑤

𝜕 𝑡2
−   𝑏 𝐷11 

𝜕4𝑤

𝜕 𝑥4
+ 𝑏 

ℎ

2
 
𝜕𝜏𝑥𝑧

𝑡

𝜕𝑥
 = 0 (37) 

𝐼0  
𝜕2𝑢0𝑏
𝜕 𝑡2

−   𝑏 𝐴11 
𝜕2𝑢0𝑏
𝜕 𝑥2

+  𝑏 𝜏𝑥𝑧
𝑏  = 0 (38) 

𝐼0  
𝜕2𝑤

𝜕 𝑡2
−   𝑏 𝐷11 

𝜕4𝑤

𝜕 𝑥4
+ 𝑏 

ℎ

2
 
𝜕𝜏𝑥𝑧

𝑏

𝜕𝑥
 = 0 (39) 

Eq. (39) is same as Eq. (37) since 𝜏𝑡 is equal to 𝜏𝑏. 

Associated force boundary conditions are as given below. 

𝑏 𝐴11 
𝜕 𝑢0𝑡

𝜕 𝑥
 = 𝑁𝑡 

𝑏 𝐷11 
𝜕2𝑤

𝜕 𝑥2
 = 𝑀𝑡 

−  𝑏 𝐷11 
𝜕3𝑤

𝜕 𝑥3
+  𝑏

ℎ𝑡
2
 𝜏𝑥𝑧
𝑡  = 𝑉𝑡 

  𝑏 𝐴11 
𝜕𝑢0𝑏

𝜕 𝑥
 = 𝑁^𝑏 

(40) 

Without considering the inertial term, Eqs. (36)-(39) can 

be written as 

−  𝑏 𝐴11 
𝜕2𝑢0𝑡
𝜕 𝑥2

− 𝑏 𝜏𝑥𝑧
𝑡  = 0 (41) 

−  𝑏 𝐷11 
𝜕4𝑤

𝜕 𝑥4
+ 𝑏 

ℎ

2
 
𝜕𝜏𝑥𝑧

𝑡

𝜕𝑥
 = 0 (42) 

−  𝑏 𝐴11 
𝜕2𝑢0𝑏
𝜕 𝑥2

+  𝑏 𝜏𝑥𝑧
𝑏  = 0 (43) 

Core is assumed to be incompressible in transverse 

direction and hence 𝜎𝑧𝑧
𝑐 = 0 prevails and the interaction 

between face sheets in overall sandwich beam behaviour is 

through shear stress. The equilibrium equations for core 

will become, 

𝜕 𝜎𝑥𝑥
𝑐

𝜕𝑥
+ 
𝜕 𝜏𝑥𝑧

𝑐

𝜕𝑧
 = 0 (44) 

𝜕𝜏𝑥𝑧
𝑡

𝜕𝑥
 = 0 (45) 

Which means that the shear stress is constant along X 
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axis. Referring to Eq. (42), as 𝜏𝑥𝑧
𝑐  is constant in x, this will 

force  
𝜕4𝑤

𝜕𝑥^4
 =0. Hence, the polynomial order of w can be 

3𝑟𝑑 order. Accordingly,  𝑢0𝑡 and  𝑢0𝑏 will be quadratic. 

From the constitutive relation, 𝜏𝑥𝑧
𝑐  can be written as 

𝜏𝑥𝑧
𝑐  =  

    𝜕𝑢𝑐
𝜕𝑧

+ 
𝜕𝑤 

𝜕𝑥
 (46) 

If longitudinal displacement in core, 𝑢𝑐 is assumed to 

vary linearly between longitudinal displacements at 

interfaces  𝑢𝑡  and 𝑢𝑏 , it results in a constant value of  
𝜕𝑢𝑐

𝜕𝑧 
 across the core. As 

𝜕𝑤

𝜕𝑥 
 is constant across the depth of 

core, this will enforce 𝜏𝑥𝑧
𝑡 = 𝜏𝑥𝑧

𝑏 ,  thereby 
𝜕2𝑢𝑐

𝜕𝑥2 
 =0.For 

bending to be present in the core of beam, 𝑢𝑐should vary at 

least as quadratic function in 𝑧𝑐 across the depth of core. 

As the core is assumed to be rigid, the bending contribution 

from core is negligible and hence, 
𝜕2𝑢𝑐

𝜕𝑥2 
 =0 and 𝑢𝑐will vary 

linearly across the depth of core. From Eq. (46), 𝑢𝑐 can be 

written as 

  𝜕𝑢𝑐
𝜕𝑧

 =  
  𝜏𝑥𝑧

𝑐

𝐺𝑐
− 
𝜕𝑤 

𝜕𝑥
 (47) 

On integration with respect to 𝑧, 𝑢𝑐 can be determined 

as, 

𝑢𝑐 = 𝑢0𝑡 + (
ℎ𝑡
2
+
ℎ𝑐
2
− 𝑧𝑐 )

𝑑𝑤

𝑑𝑥
+ (𝑧𝑐 −

ℎ𝑐
2
)
𝜏𝑥𝑧
𝑐

𝐺𝑐
 (48) 

Using the expression for 𝑢𝑐 , 𝜎𝑥𝑥
𝑐  can be written as, 

𝜕𝜎𝑥𝑥
𝑐

𝜕𝑥
= 𝐸𝐶  

𝜕2𝑢0𝑡
𝜕𝑥2

+ 𝐸𝑐(
ℎ𝑡
2
+
ℎ𝑐
2
− 𝑧𝑐 )

𝑑3𝑤

𝑑𝑥3
= 0 (49) 

From Eq. (44) upon integration, one ca =n write, 

𝜏𝑥𝑧
𝑡 − 𝜏𝑥𝑧

𝑏 + 𝐸𝑐ℎ𝑐
𝜕2𝑢0𝑡
𝜕𝑥2

+ 𝐸𝑐ℎ𝑐 ( 
ℎ𝑡 + ℎ𝑐
2

)
𝑑3𝑤

𝑑𝑥3
= 0 (50) 

As 𝜏𝑥𝑧
𝑡  = 𝜏𝑥𝑧

𝑏  , the above equation will be reduced to, 

𝐸𝑐ℎ𝑐
𝜕2𝑢0𝑡
𝜕𝑥2

+ 𝐸𝑐ℎ𝑐 ( 
ℎ𝑡 + ℎ𝑐
2

)
𝑑3𝑤

𝑑𝑥3
= 0 (51) 

From Eqs. (41) and (43), as 𝜏𝑡  = 𝜏𝑏, we can derive a 

relation between 𝑢0𝑡 and 𝑢0𝑏 as, 

𝜕2𝑢0𝑡
𝜕𝑥2

= − 
𝜕2𝑢0𝑏
𝜕𝑥2

 (52) 

Based on the above observations and relations, the 

displacement fields can be assumed as 

𝑢0𝑡 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 

𝑢0𝑏 = 𝑎3 + 𝑎4𝑥 − 𝑎2𝑥
2 

𝑤 =  𝑎5  + 𝑎6𝑥 + 𝑎7𝑥
2 + 𝑎8𝑥

3 

𝜕𝑤

𝜕𝑥 
= 𝑎6 + 2 𝑎7𝑥 + 3 𝑎8𝑥

2 = 𝜃 

(53) 

Total number of unknown polynomial coefficients are 9 

and 𝑁𝑥
𝑡 , 𝑉𝑥 , 𝑀𝑥 , 𝑁𝑥

𝑏 are forces at node, which makes to 8 

force resultants per element. One more unknown 

polynomial coefficient needs to be determined so that the 

total number of unknown polynomial coefficients will 

become 8 to define the displacement functions completely. 

We can use Eq. (52) to get this additional condition, which 

is given by, 𝑎8  =  𝑐1𝑎2, where 𝑐1  =  
2

3(ℎ𝑡+ℎ𝑐)
.Accordingly, 

the polynomials expressed in Eq. (53) can be rewritten as, 

𝑢0𝑡 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 

𝑢0𝑏 = 𝑎3 + 𝑎4𝑥 − 𝑎2𝑥
2 

𝑤 = 𝑎5  + 𝑎6𝑥 + 𝑎7𝑥
2 + 𝑐1𝑎2𝑥

3 

𝜕𝑤

𝜕𝑥 
= 𝑎6 + 2 𝑎7𝑥 + 3 𝑐1𝑎2𝑥

2 = 𝜃 

(54) 

In this element, the shear stress from core is constant 

across the interface of the core and also the rotation is the 

derived quantity from the transverse displacement, which 

ensures that the shear locking will not occur. In this 

formulation, expressions given in Eq. (54) are considered as 

interpolating functions corresponding to the degrees of 

freedom of element, {𝑢}𝑇  =  {𝑢0𝑡 , 𝑤,
𝜕𝑤

𝜕𝑥
, 𝑢0𝑏}. Using the 

procedure explained in Eqs. (14) to (17), the displacement 

functions can be expressed in terms of nodal 

displacements, {𝑢𝑒}
𝑇   at both ends of element, x=0 and 

x=L through shape function of element, [𝑁]𝑇  as shown 

below. 

{𝑢}4×1   = [𝑁]4×8  {𝑢
𝑒}8×1  (55) 

In this element, the strains considered in face sheets are 

𝜖𝑥𝑥  only while the strains in core are 𝜖𝑥𝑥
𝑐 , 𝛾𝑥𝑧

𝑐 . The 

stiffness matrix of element is determined and is given by 

[𝐾𝑒]8×8   = [𝐾𝑡]   + [𝐾𝑏] + [𝐾𝑐] (56) 

where [𝐾𝑒]  is the element stiffness matrix of beam 

obtained by integrating the stiffness contributions from top 

face [𝐾𝑡], bottom face, [𝐾𝑏] and core, [𝐾𝑐]. Forces acting 

on the element at the nodes are written as 

{𝐹}𝑇   = {𝑁1
𝑡 , 𝑉1

𝑡 ,𝑀1
𝑡 , 𝑁1

𝑏 , 𝑁2
𝑡 , 𝑉2

𝑡 , 𝑀2
𝑡 , 𝑁2

𝑏} (57) 

Once the stiffness and force matrices are obtained at 

element level, assembly of these for all elements discretized 

to model the given structure is done to get the global or 

overall system matrices. These matrices are solved to find 

out the unknowns. 

Mass matrix of element is built with contributions from 

face sheets and core, as given by 

[𝑀𝑒]   = [𝑀𝑡]   + [𝑀𝑏] + [𝑀𝑐] (58) 

Mass matrices from top and bottom face sheets are 

computed using the consistent mass model using the shape 

functions derived above in Eq. (54).  [𝑀𝑡] and [𝑀𝑏] are 

computed as given in Eqs. (27) and (28).  As the 

displacements from core 𝑢𝑐, 𝑤𝑐  are not available as 

degrees of freedom, the mass from core is lumped at the 

corresponding degrees of freedom that belongs to face 

sheet. Lumped mass matrix from core for the present 

element is given by, 

{ 𝑀𝑐 }
𝑇   =

𝜌𝑐𝐴𝑐𝐿

4
{1,2,

𝐿

6
, 1,1,2,

𝐿

6
, 1} 

 

 

4. Ten DOF flexible core euler bernoulli beam 
element (Eul10d) 
 

This is higher order element assuming the flexible 

666



 

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core 

 

effects of core by considering the presence of both shear 

stress and normal transverse stresses along with the six 

displacement dof which are independent at both the top and 

bottom face sheets. Free body diagram, of and forces details 

are shown earlier in Figs. 1 and 2. Applying Hamilton's 

principle for the top and bottom face sheets, the following 

governing differential equations are obtained.  

For top face sheets, the governing equations are given 

by 

𝐼0𝑡  
𝜕2𝑢0𝑡
𝜕𝑡2

− 𝐼𝑖𝑡  
𝜕3𝑤𝑡
𝜕𝑡2 𝜕𝑥

− 𝑏 𝐴11𝑡  
𝜕2𝑢0𝑡
𝜕𝑥2

+ 𝑏 𝐵11𝑡  
𝜕3𝑤𝑡
𝜕𝑥3

− 𝑏𝜏𝑥𝑧
𝑡 = 0 

(59) 

𝐼0𝑡  
𝜕2𝑤𝑡
𝜕𝑡2

− 𝐼𝑖𝑡  
𝜕2𝑢0𝑡
𝜕𝑡2 

+ 𝑏 𝐵11𝑡  
𝜕3𝑢0𝑡
𝜕𝑥3

 

−𝑏 𝐷11𝑡  
𝜕4𝑤𝑡
𝜕𝑥4

− 𝑏𝜎𝑧𝑧
𝑡 + 𝑏

ℎ𝑡
2
 
𝜕𝜏𝑥𝑧

𝑡

𝜕𝑥 
= 0 

(60) 

For bottom face sheets, the same can be written as 

𝐼0𝑏  
𝜕2𝑢0𝑏
𝜕𝑡2

− 𝐼𝑖𝑏  
𝜕3𝑤𝑏
𝜕𝑡2 𝜕𝑥

− 𝑏 𝐴11𝑏  
𝜕2𝑢0𝑏
𝜕𝑥2

+ 𝑏 𝐵11𝑏  
𝜕3𝑤𝑏
𝜕𝑥3

+ 𝑏𝜏𝑥𝑧
𝑏 = 0 

(61) 

𝐼0𝑏  
𝜕2𝑤𝑏
𝜕𝑡2

− 𝐼𝑖𝑡  
𝜕2𝑢0𝑏
𝜕𝑡2 

+ 𝑏 𝐵11𝑏  
𝜕3𝑢0𝑏
𝜕𝑥3

 

−𝑏 𝐷11𝑏  
𝜕4𝑤𝑏
𝜕𝑥4

+ 𝑏𝜎𝑧𝑧
𝑏 + 𝑏

ℎ𝑏
2
 
𝜕𝜏𝑥𝑧

𝑏

𝜕𝑥 
= 0 

(62) 

The associated forced boundary conditions for top and 

bottom sheets can be expressed as given below. 

𝑏 𝐴11𝑡  
𝜕𝑢0𝑡
𝜕𝑥

− 𝑏 𝐵11𝑡  
𝜕2𝑤𝑡
𝜕𝑥2

= 𝑁𝑡 

𝑏 𝐵11𝑡  
𝜕𝑢0𝑡
𝜕𝑥

− 𝑏 𝐷11𝑡  
𝜕2𝑤𝑡
𝜕𝑥2

= 𝑀𝑡 

𝑏 𝐵11𝑡  
𝜕2𝑢0𝑡
𝜕𝑥2

− 𝑏 𝐷11𝑡  
𝜕3𝑤𝑡
𝜕𝑥3

+ 𝑏
ℎ𝑡
2
𝜏𝑥𝑧
𝑡 = 𝑉𝑡 

𝑏 𝐴11𝑏  
𝜕𝑢0𝑏
𝜕𝑥

− 𝑏 𝐵11𝑏  
𝜕2𝑤𝑏
𝜕𝑥2

= 𝑁𝑏 

𝑏 𝐵11𝑏  
𝜕𝑢0𝑏
𝜕𝑥

− 𝑏 𝐷11𝑏  
𝜕2𝑤𝑏
𝜕𝑥2

= 𝑀𝑏 

𝑏 𝐵11𝑏  
𝜕2𝑢0𝑏
𝜕𝑥2

− 𝑏 𝐷11𝑏  
𝜕3𝑤𝑏
𝜕𝑥3

+ 𝑏
ℎ𝑡
2
𝜏𝑥𝑧
𝑏 = 𝑉𝑏 

(63) 

where as 𝑁𝑡 , 𝑉𝑡  , 𝑀𝑡 , 𝑁𝑏 , 𝑉𝑏 and 𝑀𝑏 represents the axial 

force, shear force and bending moment acting at two ends 

of beam, acting at top and bottom face sheets. It is to be 

noted that the governing equations derived above are 

corresponding to the top and bottom face sheets of the 

sandwich beam, wherein the effect of core has been 

included through the shear stress of the core 𝜏𝑥𝑧
𝑐  and the 

transverse normal stress 𝜎𝑧𝑧
𝑐 . In order to proceed with the 

super convergent formulation, we need to obtain exact 

solution to Eqs. (59)-(62). As the number of degrees of 

freedom considered in the element are 10, total number of 

degrees of freedom and force resultants available in the 

element at two nodes is equal to 20. Here we need to follow 

certain approach to determine the order of polynomials of 

different dof. 

It can be observed that the degree of freedom with 

minimum polynomial order is for variables 𝜎𝑧𝑧
𝑡  and 𝜎𝑧𝑧

𝑏 . 

Assuming the constant variation for 𝜎𝑧𝑧
𝑡  and 𝜎𝑧𝑧

𝑏 , 

corresponding polynomial orders for other degrees of 

freedom 𝜏𝑥𝑧
𝑡 , 𝜏𝑥𝑧

𝑏  is linear, while 𝑢0𝑡 , 𝑢0𝑏 , 𝜙𝑡 , 𝜙𝑏   is 3𝑟𝑑 

order and 𝑤𝑡 , 𝑤𝑏  is 4𝑡ℎ order. This makes total number of 

polynomial unknown coefficients as 24. With these 

assumed polynomials order, the conditions from the Eqs. 

(59)-(62) that will result are about 6, which will yield about 

18 unknown polynomial coefficients, lesser than the total 

number of degrees of freedom per element. Hence, the 

assumptions will not yield the exact interpolation functions. 

Assuming the linear variation for 𝜎𝑧𝑧
𝑡  and 𝜎𝑧𝑧

𝑏 , the total 

number of polynomial unknown coefficients will be 32 and 

the conditions that will result will be about 10 and this will 

yield about 22 unknown polynomial coefficients, more than 

the total number of degrees of freedom per element, which 

is equal to 20. In order to derive the exact interpolation 

functions, we need one more condition which will provide 

two relations between the polynomial coefficients. We can 

derive one more condition from core equilibrium equations 

as given below. 

The governing core equations are given by 

𝜕𝜎𝑥𝑥
𝑐

𝜕𝑥
+ 
𝜕𝜏𝑥𝑧

𝑐

𝜕𝑧
 = 0 (64) 

𝜕𝜎𝑧𝑧
𝑐

𝜕𝑧
+  

𝜕𝜏𝑥𝑧
𝑐

𝜕𝑥
 = 0 (65) 

Assuming 𝜏𝑥𝑧
𝑐  as the linear variation across depth of 

core, between 𝜏𝑥𝑧
𝑡  and 𝜏𝑥𝑧

𝑏 , 𝜎𝑧𝑧
𝑐  can be computed as, 

𝜏𝑥𝑧
𝑐 = (

1

2
+
𝑧𝑐
ℎ𝑐
) 𝜏𝑥𝑧

𝑡 + (
1

2
−
𝑧𝑐
ℎ𝑐
 ) 𝜏𝑥𝑧

𝑏  (66) 

𝜎𝑧𝑧
𝑐   =  −𝑧𝑐  ∫

𝜕𝜏𝑥𝑧
𝑐

𝜕𝑥
 dz (67) 

𝜎𝑧𝑧
𝑐  can be derived and 𝜎𝑧𝑧

𝑏  can be obtained as 

𝜎𝑧𝑧
𝑐  = 𝜎𝑧𝑧

𝑡 + ( 
3 ℎ𝑐
8

−
𝑧𝑐
2
− 

𝑧𝑐
2

2 ℎ𝑐
)
𝜕 𝜏𝑥𝑧

𝑡

𝜕 𝑥 

+ ( 
3 ℎ𝑐
8

−
𝑧𝑐
2
+ 

𝑧𝑐
2

2 ℎ𝑐
)
𝜕 𝜏𝑥𝑧

𝑏

𝜕 𝑥 
   

(68) 

𝜎𝑧𝑧
𝑏  = 𝜎𝑧𝑧

𝑡 +
ℎ𝑐
2
 ( 
𝜕𝜏𝑥𝑧

𝑡

𝜕𝑥
+
𝜕𝜏𝑥𝑧

𝑏

𝜕𝑥
) (69) 

Eq. (69) can be rewritten as, 

𝜎𝑧𝑧
𝑡 − 𝜎𝑧𝑧

𝑏  +
ℎ𝑐
2
 ( 
𝜕𝜏𝑥𝑧

𝑡

𝜕𝑥
+
𝜕𝜏𝑥𝑧

𝑏

𝜕𝑥
) = 0 (70) 

If 𝜎𝑧𝑧
𝑐  assumes linear variation across longitudinal axis 

x of beam, Eq. (70) will provide two more conditions, 

which makes the total number of conditions as 12. This will 

make total number of unknown polynomial coefficients as 

20. This will give the super convergence property as this 

will solve the governing equations exactly. 

Assumed displacement fields are 

𝑢0𝑡  =   𝑎0  +  𝑎1 𝑥 +  𝑎2 𝑥
2  +  𝑎3 𝑥

3  +  𝑎4 𝑥
4  

𝑤𝑡 = 𝑎5 + 𝑎6 𝑥 + 𝑎7 𝑥
2 + 𝑎8 𝑥

3 + 𝑎9 𝑥
4 + 𝑎10 𝑥

5 
(71) 
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𝜕 𝑤𝑡
𝜕 𝑥 

= 𝑎6 + 2 𝑎7𝑥 + 3 𝑎8𝑥
2 + 4 𝑎9𝑥

3 + 5 𝑎10 𝑥
4 

 𝜏𝑥𝑧
𝑡  =   𝑎11  +  𝑎12 𝑥 +  𝑎13 𝑥

2    
𝜎𝑧𝑧
𝑡 =  𝑎14  +  𝑎15 𝑥     

𝑢0𝑏 = 𝑎16 + 𝑎17 𝑥 + 𝑎18 𝑥
2 + 𝑎19 𝑥

3 + 𝑎20 𝑥
4  

𝑤𝑏 = 𝑎21 + 𝑎22𝑥 + 𝑎23 𝑥
2 + 𝑎24 𝑥

3 + 𝑎25𝑥
4 + 𝑎26 𝑥

5 
𝜕 𝑤𝑏
𝜕 𝑥

= 𝑎22 + 2𝑎23𝑥 + 3 𝑎24𝑥
2 + 4 𝑎25𝑥

3 + 5𝑎26𝑥
4  

𝜏𝑥𝑧
𝑏 = 𝑎27  +  𝑎28 𝑥 +  𝑎29 𝑥

2    

𝜎𝑧𝑧
𝑏  =   𝑎30  +  𝑎31 𝑥 

By substituting these polynomials in the governing 

equations, listed in Eqs. (59)-(62) and also additional 

equation from core Eq. (70), 12 conditions are obtained.  

From these conditions, some of the polynomial unknown 

coefficients are expressed in terms of other coefficients 

which will reduce the total number of unknown coefficients 

to 20. The displacement functions thus obtained by solving 

these equations are given as below. 

𝑢0𝑡  =   𝑎0  +  𝑎1 𝑥 +  𝑎2  𝑥
2  +  𝑎3 𝑥

3  +  𝑎4 𝑥
4  

𝑤𝑡   =   𝑑2 𝑥
4 𝑎3 + 𝑎5  +  𝑥 𝑎6  +  𝑎7 𝑥

2  +  𝑎8 𝑥
3  

+  𝑎10 𝑥
5  +  𝑑1 𝑥

4 𝑎19  +  𝑑3 𝑥
4 𝑎25 

𝜕 𝑤𝑡
𝜕 𝑥 

=   4 𝑥3 𝑑2 𝑎3 + 𝑎6 +  2 𝑥 𝑎7 + 3 𝑥
2 𝑎8

+ 5 𝑥4 𝑎10 + 4 𝑥
3 𝑑1 𝑎19

+  4𝑥3𝑑3 𝑎25  
𝜏𝑥𝑧
𝑡 = −2𝐴11𝑡𝑎2 + (24 𝐵11𝑡  𝑑2 − 6 𝐴11𝑡)𝑥𝑎3

− 12 𝑥2𝐴11𝑡  𝑎4 + 6𝐵11𝑡𝑎8  
+ 60 𝑥2 𝐵11𝑡  𝑎10 + 24 𝑥 𝐵11𝑡  𝑑1𝑎19
+ 24 𝑥𝐵11𝑡𝑑3 𝑎25 

𝜎𝑧𝑧
𝑡        =  𝑑10 𝑎3 + (24 𝐵11𝑡  − 12 ℎ𝑡  𝐴11𝑡 )𝑥 𝑎4  

+ (60 ℎ𝑡  𝐵11𝑡 − 120 𝐷11𝑡)𝑥 𝑎10
+ 𝑑11𝑎19  +  𝑑12 𝑎25   

𝑢0𝑏 = 𝑎16 + 𝑎17 𝑥 +  𝑎18 𝑥
2  + 𝑎19 𝑥

3  +  𝑎20 𝑥
4  

𝑤𝑏 = 𝑑4 𝑥
5 𝑎4 − 𝑑5 𝑥

5 𝑎10 − 𝑑6 𝑥
5 𝑎_20 + 𝑎21  

+ 𝑎22 𝑥 + 𝑎23𝑥
2 + 𝑎24 𝑥

3 + 𝑎25 𝑥
4 

𝜕 𝑤𝑏
𝜕 𝑥 

= 5𝑥4 𝑑4 𝑎4 − 5 𝑥
4 𝑑5 𝑎10 − 5 𝑥

4 𝑑6 𝑎20 + 𝑎22

+ 2 𝑥 𝑎23 + 3 𝑥
2 𝑎24  + 4 𝑥

3𝑎25 
𝜏𝑥𝑧
𝑏   =  −60 𝑑4 𝐵11𝑏 𝑥

2 𝑎4  +  60 𝑑5 𝐵11𝑏𝑥
2 𝑎10

+  2 𝐴11𝑏 𝑎18  +  6 𝑥 𝐴11𝑏 𝑎19   
+ (12 𝐴11𝑏 + 60 𝑑𝑏 𝐵11𝑏)𝑥

2𝑎20
−  6 𝐵11𝑏𝑎24  −  24 𝑥 𝐵11𝑏 𝑎25  

𝜎𝑧𝑧
𝑏  =  𝑑13 𝑥 𝑎4  −   𝑑14 𝑥 𝑎10  

−  (6 𝐵11𝑏  +  3 ℎ𝑏𝐴11𝑏)𝑎19
− 𝑑15 𝑥 𝑎 20    
+ (24 𝐷11𝑏 +  12 ℎ𝑏𝐵11𝑏)𝑎25 

(72) 

Where 

𝑑1 = 
6 𝐵11𝑏  + 3 ℎ𝑏 𝐴11𝑏 −  3 ℎ𝑐  𝐴11𝑏

𝑑𝑒𝑛1
  

𝑑2 = 
6 𝐵11𝑡 −  3 ℎ𝑡  𝐴11𝑡  +  3 ℎ𝑐  𝐴11𝑡

𝑑𝑒𝑛1
 

𝑑3 = − 
24 𝐷11𝑏 +  12 ℎ𝑏 𝐵11𝑏 −  12 ℎ𝑐  𝐵11𝑏

𝑑𝑒𝑛1
 

𝑑4  =  
24 𝐵11𝑡 − 12 (ℎ𝑡 − ℎ𝑐)𝐴11𝑡

𝑑𝑒𝑛2
 

(73) 

𝑑5 =
12 𝐴11𝑏 (ℎ𝑐 − ℎ𝑏) − 24 𝐵11𝑏

𝑑𝑒𝑛2
 

  𝑑6 = 
60(ℎ𝑐 − ℎ𝑡)𝐵11𝑡 +  120 𝐷11𝑡

𝑑𝑒𝑛2
  

𝑑7  =  (120 𝐷11𝑏 +  60 ℎ𝑏  𝐵11𝑏)𝑑4 
𝑑8  =  (120 𝐷11𝑏 +  60 ℎ𝑏  𝐵11𝑏)𝑑5 

𝑑9 = 12ℎ𝑏𝐴11𝑏 + 𝐵11𝑏(24 + 60 ℎ𝑏𝑑6) + 120 𝐷11𝑏 𝑑6  
𝑑10 = 6 𝐵11𝑡 − 3 ℎ𝑡𝐴11𝑡 + 12 𝑑2 𝐵11𝑡  ℎ𝑡 − 24 𝑑2 𝐷11𝑡   

𝑑11 = (12 ℎ𝑡𝐵11𝑡 − 24 𝐷11𝑡)𝑑1 
𝑑12 = (12 ℎ𝑡  𝐵11𝑡 − 24 𝐷11𝑡)𝑑3 

𝑑13 = (120 𝐷11𝑏 +  60 ℎ𝑏 𝐵11𝑏)𝑑4 
𝑑14  =  (120 𝐷11𝑏 +  60 ℎ𝑏  𝐵11𝑏)𝑑5 

𝑑15 = 24 𝐵11𝑏 + 12 ℎ𝑏 𝐴11𝑏
+ (120 𝐷11𝑏 + 60 ℎ𝑏 𝐵11𝑏)𝑑6  

𝑑𝑒𝑛1 = 12 𝐵11𝑡  ℎ𝑐 − 12 𝐵11𝑡  ℎ𝑡 + 24 𝐷11𝑡   

𝑑𝑒𝑛2  = 120 𝐷11𝑏 + 60 (ℎ𝑏 − ℎ𝑐)𝐵11𝑏 

It can be noted that 𝑎0,  𝑎1,  𝑎2,  𝑎3,  𝑎4,  𝑎5,  𝑎6,
𝑎7,  𝑎8,  𝑎10, 𝑎16, 𝑎17,  𝑎18,  𝑎19, 𝑎20, 𝑎21,
𝑎22, 𝑎23, 𝑎24, 𝑎25 are independent unknown polynomial 

coefficients, which  need to be evaluated. The expressions 

defined in Eq. (72) will be used as interpolating functions in 

super convergent element formulation while deriving the 

stiffness matrix of the element. Using the procedure 

explained in Eqs. (14)-(17), the displacement functions can 

be expressed in terms of nodal displacements, {𝑢𝑒}
𝑇   at 

both ends of element, 𝑥 = 0 and 𝑥 = 𝐿  through shape 

function of element, [𝑁]𝑇  as shown below. 

{𝑢}10×1  = [𝑁]10×20{𝑢
𝑒}20×1  (74) 

In this element, the strains considered in face sheets are 

𝜖𝑥𝑥  only while the strains in core are 𝜖𝑥𝑥
𝑐 , 𝜖𝑧𝑧

𝑐  and 𝛾𝑥𝑧
𝑐 . As 

explained earlier, the stiffness matrix of element is 

determined and is given by 

[𝐾𝑒]20×20  = [𝐾𝑡] + [𝐾𝑏] + [𝐾𝑐] (75) 

Where [𝐾𝑒] is the element stiffness matrix of beam 

obtained by integrating the stiffness contributions from top 

face [𝐾𝑡] , bottom face, [𝐾𝑏] and core, [𝐾𝑐]. 
Forces acting on the element at the nodes are written as 

{𝐹𝑒} = {
𝑁1
𝑡 , 𝑉1

𝑡 , 𝑀1
𝑡 , 𝜏1

𝑡 , 𝑁𝑧1
𝑡 , 𝑁1

𝑏 , 𝑉1
𝑏 ,𝑀1

𝑏 , 𝜏1
𝑏 , 𝑁𝑧1

𝑏

𝑁2
𝑡 , 𝑉2

𝑡 , 𝑀2
𝑡 , 𝜏2

𝑡 , 𝑁𝑧2
𝑡 , 𝑁𝑧2

𝑏 , 𝑉2
𝑏 , 𝑀2

𝑏 , 𝜏2
𝑏 , 𝑁𝑧2

𝑏 }

𝑇

 (76) 

Once the stiffness and force matrices are obtained at 

element level, assembly of these for all elements discretized 

to model the given structure is done to get the global or 

overall system matrices. These matrices are solved to find 

out the unknowns. 

Mass matrix of element is built with contributions from 

face sheets and core, as given by 

[𝑀𝑒]  = [𝑀𝑡] + [𝑀𝑏] + [𝑀𝑐] (77) 

Mass matrices from top and bottom face sheets are 

computed using the consistent mass model using the shape 

functions derived above in Eq. (72). [𝑀𝑡] and [𝑀𝑏] are 

computed as given in Eqs. (27) and (28). As the 

displacements from core 𝑢𝑐, 𝑤𝑐  are not available as 

degrees of freedom, the mass from core is lumped at the 

corresponding degrees of freedom that belongs to face 

sheet. Lumped mass matrix from core for the present 

668



 

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core 

 

element is given by, 

{𝑀𝑐 } =
𝜌𝑐𝐴𝑐𝐿 

4
{
1,1,

𝐿

12
, 0,0,1,1,

𝐿

12
, 0,0,

1,1,
𝐿

12
, 0,0,1,1,

𝐿

12
, 0,0

}

𝑇

 

The elements corresponding to shear and normal 

transverse stresses needs to be condensed out. The 

condensation process to obtain the reduced matrices is done 

by expressing the internal degrees of freedom in terms of 

degrees of freedom at boundaries. The reduced matrices for  

[𝐾𝑟], [𝑀𝑟] and [𝐹𝑟] can be expressed as, 

[𝐾𝑟]12×12  = [𝑇]12×20
𝑇 [𝐾]20×20[𝑇]20×12 (78) 

[𝑀𝑟]12×12  = [𝑇]12×20
𝑇 [𝑀]20×20[𝑇]20×12 (79) 

[𝐹𝑟]12×12  = [𝑇]12×20
𝑇 [𝐹]20×20[𝑇]20×12 (80) 

where [𝐾] represents the overall stiffness matrix  [𝑀] is 

the overall mass matrix and [𝐹] represents the force vector 

for overall system. 

The dynamic equation of motion can be written as 

follows. 

[𝑀𝑟] {�̈�} +  [𝐾𝑟] {𝑢} = {𝐹𝑟}  (81) 

The solution of this equation is as explained earlier in 

subsection ‘Global matrices and their solution’. 

 

 

5. Numerical experiments 
 

The formulated element has super convergent property 

as explained in the earlier sections and so one element is 

sufficient to capture the exact response for static analysis, 

with concentrated loads, which results in substantial 

reduction in the system size. For dynamic analysis, for a 

given discretization, the accuracy of the present formulation 

is expected to be superior to elements formulated based on 

conventional polynomial approximation. This is because, 

the stiffness of the structure is exactly represented even 

though the inertial distribution is approximate. Hence, good 

accuracy in dynamic analysis can be expected from this 

element using smaller system sizes. 

The aim of this section is twin fold, first is to validate 

the element with some of the available results from 

published literature and the second is to bring forth the 

super convergence property of the formulated element. 

These objectives are verified for a number of examples 

under static, free vibration and wave propagation analysis. 

Both metallic and composite face sheets are considered in 

the analysis. One example on wave propagation is presented 

to illustrate the computational advantages, accuracy of the 

results that can be obtained using the present element under 

high frequency impact. 

 

5.1 Static analysis 
 

Test cases are studied in this section in order to validate 

the formulated elements for static analysis under various 

load conditions such as point load, uniformly distributed  

 

Fig. 3 Cantilever beam subjected to point load 

 

Table 1 Sandwich beam details for static loads 

Material properties  

Face sheets: 

Young’s modulus (𝐸𝑓) 

Mass density (𝜌𝑓) 

Poisson’s ratio (𝜈𝑓) 

Core: 

Shear modulus (𝐺𝑐) 
Mass density(𝜌𝑐) 

Poisson’s ratio, (𝜈𝑐) 

Aluminium 

68970 N/𝑚𝑚2, 
2683 kg/m^3 , 

0.3 

Calcium Alginate 
82.764 N/ 𝑚𝑚2 

32.8381 kg/𝑚3 

0.3 

Geometry Details  

Length ‘l’ and width ‘b’of the beam 

Length to depth ratio ‘l/H’ 

thickness ratio of core to face sheets,ℎ𝑐/ℎ 

thickness ratio of face sheets, ℎ𝑡/ℎ𝑏 

Load, at free end of top face sheet 

1000 mm, 40 mm,  

100 

10 

1 

Unit point load 

 

  

(a) Eul4d (b) Eul10d 

Fig. 4 Transverse displacement profile of a cantilever beam 

with one element 

 

 

load. The aim of these examples is to demonstrate the super 

convergence property and validation of these elements. 

 

5.1.1 Cantilever beam with metallic face sheet 
A simple case of a cantilever beam (Fig. 3) subjected to 

a point load at the free end is considered to verify the 

displacement prediction with the developed elements. In the 

present case, the analysis is carried out for the beam 

configuration given as in above Table 1. 

The transverse displacement profile along the length of 

beam is shown in Fig. 4. The value of displacements plotted 

at midpoint of core, which is computed as the average of 

the corresponding displacement of the top and bottom face 

sheets. The exact displacement as given by Backstrom and 

Nilson (2007) in case of cantilever sandwich beam at 

midpoint of the core is given as 
WL3

3EI
+

WL

Gcbhc
, where EI is the 

section rigidity with E being the Young's modulus and I 

being the moment of Inertia of the beam. W is the point 
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(a) Eul4d (b) Eul10d 

Fig. 5 Super Convergence property of Euler elements 

  

 

Fig. 6 Simply Supported beam 

 

Table 2 Details of Sandwich beam with composite face 

sheets 

Material properties  

Face sheets: 

Modulus of Elasticity (𝐸𝑡, 𝐸𝑏) 

Poisson’s ratio (𝜈𝑓) 

Core: 

Modulus of Elasticity, 𝐸𝑐 
Shear modulus, 𝐺𝑐 

Glass Fiber 

18000 MPa, 
0.3 

Devincile foam 

140 MPa 

53.9 MPa 

Geometry Details  

Length ‘l’ and width ‘b’of the beam 

ℎ𝑡, ℎ𝑏, ℎ𝑐 
Load, 𝑞𝑤 

1600 mm, 300 mm, 6 

mm, 6 mm, 60 mm 

UDL of 0.10 Mpa 

 

 

load which in this case is assumed as unity. By substituting 

the values appropriately given in Table 1, it can be found 

out that the transverse displacement turns out to be 5.8635 

mm. It can be observed from the plots that the 

displacements obtained using one element matches well 

with the theoretical displacement value. Displacement 

profile clearly shows the top, bottom and mid core 

displacement values, which are zoomed in a window. 

Fig. 4 shows the displacement profile captured with one 

element for element types Eul4d and Eul10d. For studying 

super convergence property of these elements, the number 

of elements are increased from 1 to 100 at regular intervals. 

 

5.1.2 Super convergence 
Super convergence property is examined next for a 

cantilever beam with  
𝑙

𝐻
 ratio of 100 and ℎ𝑐/ℎ  of 10 (h 

is the sum of the thicknesses of the top and bottom face 

sheets, (ℎ = ℎ𝑡 + ℎ𝑏 ) with a point load applied at free end 

on the top face sheet. The obtained displacements are 

normalized with exact solution obtained using the 

expression given by Backstrom and Nilson (2007). In case 

of element models with flexible core, the transverse 

displacement values at mid core are considered by 

averaging the displacements corresponding to the top and 

bottom face sheets. Normalized displacements for Eul4d 

and Eul10d element types with increasing number of 

elements are shown in Fig. 5. 

It can be noticed that the normalized displacement 

values with one element for Euler Bernoulli beam elements 

Eul10d, Eul4d obtained are above 0.99 and these values are 

remaining constant with increase in number of elements. In 

other words, one element irrespective of the length of the 

element is sufficient to capture the displacement accurately 

for the case when the beam is loaded with point loads. Also, 

it is expected that all elements irrespective of whether the 

shear stress is constant or higher order across the 

longitudinal axis or across the depth of core, the formulated 

element will give accurate results. The displacements 

predicted are at top, bottom face sheets in case of Eul10d 

while the displacement predicted in case of Eul4d is at the 

center of core. 
 

5.1.3 Simply supported beam with composite face 
sheets 

In this case, we consider a simply supported beam with 

composite face sheet loaded under uniformly distributed 

loading (UDL) as shown in Fig. 6 and this problem have 

been reported by Frostig (2003). The beam parameters are 

given in Table 2. 

In Eul4d, the transverse displacement degrees of 

freedom is constant though out the depth of element and 

hence the 𝑞𝑤  UDL is theoretically applied at the center of 

core while practically it is not. In Eul10d element model, 

where the top and bottom transverse displacements are the 

degrees of freedom, acting at the face sheets, the loads are 

applied on the top face sheet. 

Fig. 7(a) gives the displacement profile predicted by 

various theories and enlarged view of displacements where 

they are maximum are plotted in Fig. 7(b). From Fig. 7, it 

can be clearly observed that the present theory results are 

closely matching with other theories. Allen, Frostig using 

Ordinary Sandwich Panel Theory(OSPT) (Frostig (2003) 

predicts same displacements for both top and bottom face 

sheets. This is because, OSPT averages the displacement 

across the thickness coordinates. However, Higher order 

SAndwich Panel Theory(HSAPT) (Frostig 2003) predicts 

different top and bottom face sheets displacements. The 

displacements obtained using Eul10d element at top and 

bottom face sheets, which are represented in brackets with 

U for top face sheets and L for bottom face sheets are 

matching closely with other theories. This is because, 

HSAPT and the present theory interpolates the top and 

bottom displacements separately. 

In case of higher order theories like HSAPT and Eul10d 

elements, the transverse displacements at top face sheets are 

allowed as free and hence the transverse displacements will 

not be zero at the supports unlike in other elements. The 

displacement values obtained at the supports can be clearly 

found from Fig. 7. Although the present formulation is 

exact in case with point loads, when the beam is subjected 

to uniformly distributed loading, it requires more elements 

to capture the behavior. While the displacements are  
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Table 3 Details of Sandwich beam with metallic face sheets 

Material properties  

Face sheets: 

Young’s modulus (𝐸𝑓) 

Mass density (𝜌𝑓) 

Poisson’s ratio (𝜈𝑓) 

Core: 

Shear modulus (𝐺𝑐) 
Mass density(𝜌𝑐) 

Poisson’s ratio, (𝜈𝑐) 

Aluminium 

68970 N/𝑚𝑚2, 
2683 kg/m3, 

0.3 

Calcium Alginate 
82.764 N/ 𝑚𝑚2 

32.8381 kg/𝑚3 

0.3 

Geometry Details  

Length ‘l’ and width ‘b’ 

ℎ𝑡, ℎ𝑏, ℎ𝑐 
712.2 mm, 25.4 mm, 0.4572 mm, 

0.4572 mm, 12.7 mm 

 

 

accurately predicted even with less number of formulated 

elements, other theories require 20 elements and the values 

are obtained from the plots given in the work published by 

Frostig (2003). 

It can be noticed that the models proposed with the rigid 

core where 𝑤𝑡 = 𝑤𝑏 = 𝑤,  Eul4d predicts displacement 

as the average of displacements corresponding to top and 

bottom face sheets.  These displacements are matching 

closely with the theories proposed by others such as 

Howard (1969). While the displacements predicted using 

Eul10d element at top and bottom face sheets, are matching 

well with OSPT and HSAPT Frostig (2003). Displacement 

values obtained using Eul4d, Eul10d and other theories are 

enlarged near the center of simply supported beam in Fig. 

7(b) for study among various theories. 

The displacements predicted by higher order element 

Eul10d are closely matching with the displacements 

obtained by OSPT and HSAPT theories. As expected, 

Eul4d values are matching with Allen and Eul10d values 

are matching well with OSPT, HSAPT higher order element 

theories. 

Displacement profiles for the developed higher order 

elements using Euler Bernoulli beams-Eul10d were shown 

in Fig. 7(b). This is to see the variation of transverse 

displacements of top and bottom face sheets. In case of  

 

 

Eul10d, the consideration of shear variation across 

longitudinal axis and the associated normal transverse stress 

components really provides the flexibility. 

 

5.2 Free vibration analysis 
 

In this subsection, the free vibration analysis results are 

validated against the results available in published 

literature. Consistent as well as Lumped mass models were 

considered in the free vibration analysis. The results 

obtained using consistent model are represented with 

Eul4d(C), Eul10d(C) and results through lumped mass 

model are represented with Eul4d(L), Eul10d(L). 

 

5.2.1 Cantilever beam with metallic face sheets 
For free vibration problem, a thin sandwich cantilever 

beam composed of two isotropic face sheets and a flexible 

core is investigated. Details of beam are given in Table 3. 

The obtained results are compared with the results based 

on other theories, available in published literature and the 

results for first 5 modes are presented in Table 4. The 

number of elements used in the present work is 15 as used 

by other researchers such as Ahmed (1971) and Mead and 

Sivakumaran (1961) in their respective works. Ahmed 

(1971) had put forward three displacement models 

incorporating an element having 3, 4 and 5 degrees of 

freedom per node for modeling the curved sandwich beams 

with a general assumption that the material is elastic and 

homogeneous and the transverse displacement does not 

vary through thickness of the sandwich beam. Results by 

Mead and Sivakumaran (1961) are based on the Stodala 

method. Hwu et al. (2004), presented a close form solution 

for an identical free vibration problem and derived an 

orthogonal relation taking into account the effects of rotary 

inertia and shear deformation. Marur and Kant (1996) have 

reported results using Timoshenko theory and Higher Order 

Beam Theories (HOBT), namely HOBT4a, HOBT4b (both 

4 degrees of freedom per node) and HOBT5 (5 degrees of 

freedom per node). But the results using HOBT5 element  

 
 

(a) Displacement profile (b) Zoom at maximum location 

Fig. 7 Displacement profile: SS Beam under UDL 
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Table 4 Comparison of frequencies-Cantilever beam, 

Frequencies in Hz 

Mode 1 2 3 4 5 

Timo (Marur 1996) 33.60 195.00 492.00 857.00 1260.00 

HOBT5 (Marur 1996) 33.70 197.50 505.50 890.50 1231.00 

Ahmed (Ahmed 1971) 32.80 193.50 499.00 886.00 1320.00 

Mead (Mead 1961) 34.20 201.85 520.85 925.40 1381.30 

C Hwu (Hwu 2004) 32.00 193.00 509.00 923.00 1402.00 

Eul4d (C) 33.63 198.15 510.48 904.97 1346.80 

Eul10d (C) 33.64 198.20 510.14 902.49 1338.80 

Eul4d (L) 33.56 196.35 501.85 880.14 1291.60 

Eul10d (L) 33.55 196.06 499.82 873.18 1274.80 

 

Table 5 Comparison of frequencies-SS beam, 

Frequencies(Hz) 

Mode 1 2 3 4 5 

Timo (Marur 1996) 57.00 216.00 452.00 736.00 1054.00 

HOBT5 (Marur 1996) 57.00 218.00 461.00 759.00 1097.00 

Ahmed (Ahmed 1971) 55.50 - 451.00 - 1073.00 

Exact (Chen 1961) 57.48 220.68 467.00 770.00 1108.50 

C Hwu (Hwu 2004) 54.00 212.00 457.00 770.00 1130.0 

Eul4d (C) 56.93 218.44 461.88 761.66 1096.70 

Eul10d (C) 56.94 218.49 461.56 758.90 1086.80 

Eul4d (L) 56.84 217.01 454.97 741.04 1049.50 

Eul10d (L) 56.84 216.91 454.08 737.10 1038.10 

 

 

only were considered for study. 

The exact solution  for fundamental frequency of a 

cantilever sandwich beam by Backstrom and Nilson (2007) 

is given as (
1.875

𝑙
)
2

√
𝐷

𝜇
, where D is the bending stiffness, 

(which is equal to 𝐸𝑡  𝐼𝑡 + 𝐸𝑏  𝐼𝑏) and 𝜇 is mass per unit 

area of the homogenous beam(which is equal to 
𝑙𝑏 (ρtht+ ρbhb+ρchc)

𝑙𝑏
. As per this expression, the fundamental 

frequency of the present cantilever sandwich beam is 33.75 

Hz and the results obtained using the formulated elements 

are matching closely. In the present work, the frequencies 

are computed using both consistent and lumped mass 

models and the results obtained are presented in Table 4. 

 

5.2.2 Simply supported beam with metallic face sheet 
Next, the beam considered here is same as what was 

studied in last section, the properties of which is given in 

Table 3 except that the length l is assumed as 0.9144𝑚.  

For this example, exact solution was referred by Chen et al. 

(2003), and the frequencies obtained are compared with the 

results that are obtained with other theories explained in the 

last example. Table 5 shows the comparison of results. We 

can clearly see that the results predicted by the present 

elements is very close to the exact results given by Chen et 

al. (2003), compared to other theories. Referring to 

Backstrom and Nilson (2007), the expression for exact 

solution for fundamental frequency of a simply supported  

 

Table 6 SS Sandwich beam with composite face sheet 

Material properties 

Face sheets: Quasi-isotropic glass ceramic composite 

Young’s modulus (𝐸𝑓): 36000 N/ 𝑚𝑚2 

Mass density (𝜌𝑓): 4400 kg/𝑚3 

Core: Isotropic Polymethacrylimide rigid foam 

Shear modulus (𝐺𝑐) 20 N/𝑚𝑚2 

Mass density(𝜌𝑐) 52.06 kg/𝑚3 

Geometry Details 

Length ‘l’, width ‘b’: 300 mm, 20 mm 

ℎ𝑡 , ℎ𝑏 , ℎ𝑐: 0.5 𝑚𝑚, 0.5 𝑚𝑚 , 20 𝑚𝑚 

 

Table 7 Comparison of Frequency (Hz) Results for SS 

beam 

Yang,Qiao 

model A* 

Yang,Qiao 

model B* 

Frostig,Baruch 

model B* 
ABAQUS* 

362.96 325.98 325.98 349.86 

*[Yang et al. (2005)]  

Eul10d 

model A 

Eul4d 

model A 

Eul10d 

model B 

Eul4d 

model B 

359.12 358.38 322.94 322.28 

 

 

sandwich beam is given as (
𝜋

𝑙
)
2

√
𝐷

𝜇
,, where  D is the 

bending stiffness,( which is equal to 𝐸𝑡  𝐼𝑡 + 𝐸𝑏  𝐼𝑏  ) and 𝜇 

is mass per unit area of the homogenous beam which is 

equal to 
𝑙𝑏 (ρtht+ ρbhb+ρchc)

𝑙𝑏
. As per this expression, the 

fundamental frequency of the present simply supported 

sandwich beam is 57.3778 Hz and the results obtained 

using the formulated elements are matching closely. 

In both test cases above, it can be noticed that the 

frequencies obtained using both consistent and lumped 

mass models are predicting closer and accurate values in 

both Eul4d and Eul10d elements.  

Following observations can be made based on the 

results. 

• It can be observed from Tables 4 and 5, that the results 

predicted by Eul4d and Eul10d elements in both the models 

are matching well with other theories. 

• It can be observed that the values predicted by 

consistent model are on higher side, as expected for both 

the elements. It is also can be noted down that the values 

predicted by Eul4d are higher than Eul10d element in both 

the models. 

• The frequencies predicted using lumped mass are 

matching very closely with Timoshenko model and HOBT5 

theories. The results indicate that the frequencies computed 

using lumped mass model are matching more closely with 

Timoshenko model (Ahmed 1971). The second and third 

modes predicted with the present theory are matching well, 

but are very close to HOBT5, Mead and Hwu results. 

Higher modes predicted using present theory are slightly 

higher than that of Timoshenko while they are very close to 

those predicted by Mead and Hwu. 

It can be noted down that the formulated elements are 

not only able to predict the results close to many higher 

order theories, but also able to do so using smaller number 

of elements. 
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Fig. 8 Triangle pulse Load diagram 

 
 
5.2.3 Simply supported beam with composite face 

sheet 
To study the dynamic effects of core, a simply supported 

sandwich beam with composite face sheets, whose 

properties are given in Table 6 is considered. The focus of 

this example is to illustrate the ability to incorporate the 

dynamic effects of the core while carrying out the free 

vibration analysis. The natural frequencies are obtained for 

two cases namely  

i) model A: the dynamic effects of core are neglected. 

ii) model B: dynamic effects of core are included. 

The results of fundamental frequencies predicted by the 

developed elements (with 20 elements)- Eul10d, Eul4d and 

are compared with the results obtained by Yang and Qiao 

(by using the series solution), FE solution using ABAQUS 

(face sheets are modelled using 2-D elements and core is 

modelled with 3-D elements) reported by Yang et al. 

(2005), and the results obtained by Frostig and Baruch, 

based on higher order theory 

The constitutive models assumed for the present 

elements are close to the theories proposed by Yang et al. 

One can notice that the frequencies predicted by various 

theories in model A and model B differ significantly, which 

is due to the dynamic effects of core. In FE ABAQUS 

model, sandwich beams are modeled with 2D elements for 

face sheets and 3D elements for core. Generally, 2D 

elements as against beam elements for face sheets and 3D 

elements for core will make the sandwich beam stiffer and 

also introduce the incompatibility in slope/rotation between 

2D bending and 3D elements, may contribute lesser energy 

transfer between the face sheets and core. Hence, the 

frequencies obtained using FE analysis in ABAQUS are on 

higher side when compared to the similar model B results. 

Following observations can be made based on the 

results. 

• Yang, Qiao results for model A are matching with FE 

results predicted by ABAQUS while Yang and Qiao results 

for model B are matching with Frostig, Baruch. 

• Eul10d model A results are matching closely with the 

Yang, Qiao model A results and FE results predicted by 

ABAQUS. 

• Results of Eul10d, Eul4d elements for model B are 

matching closely with the corresponding results by Yang, 

Qiao and Frostig, Baruch (model B) 

In FE model, sandwich beams are modeled with 2D 

elements for face sheets and 3D elements for core. 

Generally, 2D elements against beam elements for face  

Table 8 Details of sandwich beam taken for Wave 

propagation studies 

Material properties 

𝐹𝑎𝑐𝑒 𝑠ℎ𝑒𝑒𝑡𝑠: 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚 
𝐸𝑡 = 𝐸𝑏 =  68𝐸3 𝑀𝑝𝑎, 𝜌𝑡 = 𝜌𝑏  =  2683 𝐾𝑔/𝑚

3 
𝐶𝑜𝑟𝑒: 𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝐴𝑙𝑔𝑖𝑛𝑎𝑡𝑒 

𝐺𝑐 = 82.764 𝑀𝑝𝑎 , 𝜌𝑐 =  32.8381 𝐾𝑔/𝑚3 

Geometry Details 

Length ‘l’, width ‘b’: 1000 mm, 20 mm 

ℎ𝑡, ℎ𝑏, ℎ𝑐: 2 𝑚𝑚, 2 𝑚𝑚 , 20𝑚 𝑚 

 

 

sheets and 3D elements for core will make the sandwich 

beam stiffer and also the incompatible slope/rotation 

between 2D bending and 3D elements may contribute to 

lesser energy transfer between the face sheets and core. 

Hence, the frequencies obtained using FE analysis in 

ABAQUS are on higher side when compared to the similar 

model B results. 

It can be noticed that the frequencies predicted for 

present developed elements match closely with the results 

referred above for the cases with and without dynamic 

effects of core. Hence, it is evident that the elements 

developed can be used for predicting the fundamental 

frequencies of the sandwich beams accurately. 

 

 

6. Wave propagation analysis 
 

In all wave propagation problems, a large number of 

modes contribute to the dynamic response and very high 

frequency content of the exciting force is needed to excite 

all the higher modes.  From the view point of FE analysis, 

this requires the element size to match with the wavelength 

and hence very fine mesh discretization is generally 

adopted. In this context, the super convergence property of 

element gives an advantage to analyze the wave 

propagation problems with less number of elements. 

Element size in FE analysis can be decided based on the 

wavelength of the wave that can traverse the structure as 

well as the frequency content of the signal. Typically, it 

requires nearly 6 to 10 elements to model a wavelength. 

This section outlines the details of wave propagation studies 

carried out using super convergent finite elements 

developed in this paper and the validation of results 

obtained using NASTRAN. 

A cantilever beam subjected to impact load, as shown in 

Fig. 8, applied in longitudinal and transverse directions at 

top face at free end, is chosen as a test case and the 

geometric, material properties are given in Table.8. In this 

case, the load duration is about 50 micro seconds and 

frequency of loading, 𝜔 is (
2 π

50
) 106   cycles per sec, 

longitudinal wave speed is given as c=√
Et

ρt
  and 

wavelength is given by 𝛿 =  
2 𝜋 𝑐

𝜔
, which is calculated as 8 

mm approximately. In order to capture such wavelength, the 

number of elements required to model the length are in the 

range of 600 to 1000.  While the number of super 

convergent FE required will be much lesser from 40 to 100  
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as the displacement functions are higher order and the 

stiffness is accurate. 

As the bending or transverse waves are highly 

dispersive, the wave speed changes with frequency. Lower 

frequency components travel slower.  Hence, they appear 

late in the time window as opposed to higher frequency 

components, which travel fast and appear earlier in the 

chosen time window. Using the broad band signal, as 

chosen in this example, excites many higher order bending 

modes and hence 100 formulated elements are used to 

model this problem. Analysis has been carried out using 

Newmark time marching scheme and for this case a time 

step,(Δ 𝑡) of 1 𝜇 sec is used. The responses are measured at 

the free end tip of the top and the bottom face sheets. For 

comparison, the same configuration is analysed using 

NASTRAN, a general-purpose Finite element software, for 

undamped condition in the dynamic analysis. Direct 

Integration Method is used for the analysis in NASTRAN. 

 

6.1 Validation using homogenous I beam 
 

In this study, all the super convergent FE sandwich 

beam elements developed (Eul10d and Eul4d) are 

considered. First, validation of the results under transient 

load as shown in Fig. 8 is carried out, where the load is 

acting in longitudinal and transverse directions separately. 

For this validation, the same beam is assumed with I cross 

section by considering the equivalent material properties. 

This means that the beam is homogenous with geometrical 

properties of ℎ𝑡 =  2 𝑚𝑚, ℎ𝑏 = 2 𝑚𝑚, ℎ𝑐 = 20 𝑚𝑚.  In 

NASTRAN, I beam cross section is defined while the 

discretization of the beam was carried out using 1000 beam 

elements. The loads and boundary conditions are applied at 

the element node line which is the center line of core, while 

they are actually applied at the top and the bottom face 

sheets, in case of Eul10d. In case of Eul4d, they will act at 

center line of the core. 

The velocity responses obtained with the elements 

developed in the present work and NASTRAN I beam are  

 

 

Fig. 10 Discretization of the sandwich beam 

 

 

compared. In order to simulate the loads application closely 

with actual case, the loads in case of Eul10d are applied at 

the top and the bottom face sheets, distributed equally. As 

the loads and boundary conditions are symmetric, the 

velocity responses at top and bottom face sheets are 

expected to be same. Hence, only the results obtained at the 

top face sheet are compared with NASTRAN results as the 

part of validation. 

The longitudinal velocity responses, when the beam is 

subjected to the transient load applied in the longitudinal 

direction and the transverse velocity response under the 

loads in the transverse direction are presented in Fig. 9. 

From Fig. 9, it can be observed that the longitudinal and 

transverse velocity responses obtained using Eul4d and 

Eul10d matches closely with the NASTRAN I beam results. 

The results show that the formulated elements are able to 

predict the reflection away due to fixed boundary, 

accurately for the both cases. That is, this example shows 

that, one can use homogenous beam assumption to obtain 

responses of the hybrid sandwich structure. 

The wave is expected to travel a distance of 1 m 

forward, 1m backward with a speed of 5000 m/s and hence, 

the first reflection is expected after 0.0004 seconds since 

the application of loading. The first longitudinal reflection 

is predicted around 525 𝜇 seconds and second reflection 

around 925 𝜇 seconds. The longitudinal response predicted 

by NASTRAN ‘I’ beam represents a wavy nature which is  

 
 

(a) Longitudinal velocity response (b) Transverse velocity response 

Fig. 9 Transient responses for a typical I beam at mid core 
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due to approximation mode in the analysis. One can 

perform similar analysis to predict results from the 

formulated element for transverse loading to show that the 

predictions of formulated element as opposed to NASTRAN 

I beam results are very accurate. Next, we use the 

formulated elements for the case of sandwich beam with 

soft core and asses their performance. 

 

6.2 Sandwich beam with soft core 
 

Modeling of sandwich beams is possible in NASTRAN, 

in multiple ways, by using different elements for the face 

sheets and core. Combination of different set of elements 

for face sheets and core will simulate the corresponding 

kinematics for sandwich beams, some will result in rigid 

core, some will represent the flexible core with high or 

moderate stiff face sheets. This kinematics will hold the key 

in obtaining the transient responses according to the modes 

that it can simulate. Face sheets can be modeled with 

bending elements, CBEAM in 1D, CQUAD4 in 2D and 

CHEXA in 3D while the core with shear elements, namely 

CSHEAR, CQUAD Shear in 2D and CHEXA in 3D. 

CSHEAR and CQUAD4 shear elements generally 

represents pure shear elements and it will not consider any 

bending in the core. In case of the use of different elements 

for face sheets and core, the kinematics compatibility at the 

interface simulated will cause the responses accordingly. In 

the present study, the model with CHEXA for face sheets as 

well as the core is used to avoid all compatible expected 

with combination of elements, although it requires more 

elements and consumes more computer time. As 3d 

CHEXA elements are used to model, the responses are 

preliminary controlled by the in-plane stiffness and are 

represented through the deformations. 

In order to ensure proper core action, about ten layers of 

CHEXA elements are used for modeling of core across its 

depth. FE mesh comprises total number of CHEXA 

elements about 140000 with total number of nodes about 

168614 and total degrees of freedom about 448380. The 

mesh is as shown in Fig. 10. 

The longitudinal velocity response at top and bottom  

 

 

face sheets obtained under the unit load applied in 

longitudinal direction on top face sheet are presented in Fig. 

11. Transverse velocity profile, when a unit load is applied 

in the transverse direction, at top and bottom face sheets are 

plotted in Fig. 12. Figs. 11(a), (b) shows the comparison of 

longitudinal velocity responses. and Figs. 12(a), (b) shows 

the comparison of transverse velocity responses. Among all 

models, the response predicted by Eul4d is on higher side as 

it is lower order element with incompressible effects of core 

and hence the energy capture between the face sheets and 

core will not be full.  

Following are the observations that can be made based 

on the results. 

• The longitudinal velocity response at top and bottom 

face sheets, 𝑉𝑙
𝑡  and  𝑉𝑙

𝑏    shows close match between 

the predictions made by Eul4d, Eul10d and NASTRAN. 

The velocity profiles predicted by all are similar and 

different from a simple beam. Wavy nature seen in the 

response curves due to the interactions through 𝜎𝑧𝑧
𝑐   and 

𝜏𝑥𝑧
𝑐  due to their approximations in the model. All models 

have predicted the reflections accurately. 

• The velocity response predicted at top face sheet, 𝑉𝑙
𝑡, 

at 125 𝜇 seconds during transient state, by Eul4d, Eul10d 

and NASTRAN at top face sheet are about 1.65, 1.650 and 

1.85 mm/s. While at bottom face sheet, the responses 𝑉𝑙
𝑏 

are about 0.40, 0,40 and 0.45 mm/s. 

• As expected, CHEXA predicts are on higher side while 

compared to Euler elements due to the lesser stiffness 

considerations. 

• The transverse velocity response, 𝑉𝑡
𝑡, predicted during 

the transient phase at 125 𝜇  seconds by Eul4d, Eul10d 

and   NASTRAN are about 4.2, 5.25, 8.5mm/s. Response 

predicted by Eul4d and Eul10d are matching closely 

although the response by Eul10d is wavy. It is due to the 

presence of 𝜎𝑧𝑧
𝑐 . The response predicted by Eul4d are the 

same throughout depth of core, which can be considered at 

mid core. 

• The response predicted at bottom face sheet, 𝑉𝑡
𝑏, by 

Eul10 d  and  NAS TRAN  a r e  abo ut  3.0, 1.3  mm/s 

respectively. As Eul4d has transverse displacement same  

  

(a) At top face sheet, 𝑉𝑙
𝑡 (b) At bottom face sheet, 𝑉𝑙

𝑏 

Fig. 11 Transient response-Longitudinal velocities 
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throughout the core, both 𝑉𝑡
𝑡 , 𝑉𝑡

𝑏 are same. 

• If the average of these responses at top and bottom 

face sheets for Eul10d and NASTRAN are computed, they 

can be approximately 4.10, 4.9  mm/s while response 

predictions by Eul4d are 4.2 mm/s. This which clearly 

brings out that the response predictions on overall beam as 

a whole are matching well and the distribution internally is 

different in models. 

It is necessary to bring out an important aspect of the 

use of time and computer resources for analysis. As 

NASTRAN model has considerable degrees of freedom, it 

has taken considerable time, in hours while the developed 

elements require fraction of seconds for analysis on same 

computer.  It is proved with the current study that the 

elements developed are accurate for wave propagation 

studies, which are key in health monitoring studies and also 

computationally efficient, takes less time to solve with 

lesser resources. 
 

 

7. Conclusions 
 

This paper presented the necessity of having accurate, 

powerful finite elements for modeling sandwich beams with 

metallic or composite face sheets and soft material cores. 

The following conclusions can be made from this paper. 

• Super convergent sandwich finite beam elements 

Eul10d and Eul4d based on the Euler Bernoulli Beam 

theory, compressible and incompressible rigid core were 

developed. 

• Formulation of super convergent sandwich beam 

elements were presented along with their development of 

stiffness and mass matrices. 

• The performance of the developed elements is 

thoroughly validated under static loads and free vibration 

for the sandwich beams with metallic as well as composite 

face sheets. 

• The extensive detailed studies carried out show that 

the results predicted by these elements are closer to the  

 

 

results predicted by higher order theories using only a 

smaller set of unknowns. Therefore, these elements 

developed demonstrated their super convergence property. 

This is due to exact representation of beam stiffness in the 

formulation. 

• Later, the wave propagation analysis under impact load 

is dealt with and the advantages of this element for its 

computational efficiency is demonstrated by its ability to 

capture wave responses at a fraction of computational cost, 

which can be clearly seen from the wave propagation 

studies. 

• Super convergent sandwich beam finite elements are 

proved for their accuracy and performance which is 

presented in the paper. They are recommended for their use 

in the industry for the analysis while designing them. 

• Super Convergent elements Eul4d and Eul10d can be 

used to carry out the analysis of sandwich beams for the 

design of sandwich beams. 

 

 

Acknowledgments 
 

The authors are grateful to Aeronautical Development 

Agency, Ministry of Defence, Bangalore for carrying out 

the work and permission to publish in this journal. 

 

 

References 
 
Frostig, Y. (2003), “Classical and higher order computational 

models in the analysis of modern sandwich panels”, Compos.  

Part B: Eng., 34, 83-100. 

Frostig, Y. (1992), “Behavior of delaminated sandwich beam with 

transversely flexible core-high order theory”, Compos. Struct., 

20, 1-16. 

Frostig, Y. and Baruch, M. (1994), “Free vibrations of sandwich 

beams with a transversely flexible core: A higher order 

approach”, J. Sound Vibr., 176(2), 195-208. 

Marur, S.R. and Kant, T. (1996), “Free vibration analysis of fiber 

reinforced composite beams using higher order theories and 

  
(a) At top face sheet, $V^t_{t} (b)  At bottom face sheet $V^b_{t}$ 

Fig. 12 Transient response-Transverse velocities 

676



 

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core 

 

finite element modeling”, J. Sound Vibr., 194(3), 337-351. 

Zhen, W. and Wanji, C. (2008), “An assessment of several 

displacement-based theories for the vibration and stability 

analysis of laminated composites and sandwich beams”, 

Compos. Struct., 84(4), 337-349. 

Yang, M. and Qiao, P. (2005), “Higher order impact modelling of 

sandwich structures with flexible core”, J. Sol. Struct., 42, 

5460-5490. 

Yang, M. and Qiao, P. (2007), “Impact and damage prediction of 

sandwich beams with flexible core considering arbitrary 

boundary effects”, J. Sandw. Struct. Mater., 9(5), 411-444. 

Catherine, N.P., Yeoshua, F. and George, A.K. (2012), “Analysis 

of sandwich beams with a compliant core and with in-plane 

rigidity-extended high-order sandwich panel theory versus 

elasticity”, J. Appl. Mech., 79(4). 

Li, X.Y. and Liu, D. (1997), “Generalised laminate theories based 

on double superposition hypothesis”, J. Numer. Meth. Eng., 40, 

1197-212. 

Cho, M. and Parmerter, R. (1993), “Efficient higher order 

composite plate theory for general lamination configurations”, 

AIAA J., 31, 1299-1306. 

Marco, G. (2013), “On the use of zigzag functions in equivalent 

single layer theories for laminated composite and sandwich 

beams: A comparative study and some observations on external 

weak layers”, J. Appl. Mech., 80(6). 

Matsunaga, H. (2001), “Vibration and buckling of multi layered 

composite beams according to higher order deformation 

theories”, J. Sound Vibr., 246, 47-62. 

Kant, T. and Swaminathan, K. (2001), “Analytical solutions for 

free vibrations of laminated composite and sandwich plates 

based on a higer order refined theory”, Compos. Struct., 53, 73-

85. 

Reddy, J.N. (1984), “A Simple higher order theory for laminated 

composite plates”, J. Appl. Mech., 51, 745-752. 

Damanpacka, A.R. and Khalilia, S.M.R. (2012), “High-order free 

vibration analysis of sandwich beams with a flexible core using 

dynamic stiffness method”, Compos. Struct., 94(5), 1503-1514. 

Inés, I., Carlos, S. and Sonia, S.S. (2010), “FEM analysis of 

dynamic flexural behaviour of composite sandwich beams with 

foam core”, Compos. Struct., 92(9), 2285-2291. 

Gillich, G.R., Praisach, Z.I., Abdel Wahab, M. and Vasile, O. 

(2014), “Localization of transversal cracks in sandwich beams 

and evaluation of their severity”, Shock Vibr., 607125, 10. 

Wang, Z., Jing, L., Ning, J. and Zhao, L. (2011), “The structural 

response of clamped sandwich beams subjected to impact 

loading”, Compos. Struct., 93(4), 1300-1308. 

Banerjee, J.R., Cheung, C.W., Morishima, R., Perera, M. and 

Njuguna, J. (2007), “Free vibration of a three-layered sandwich 

beam using the dynamic stiffness method and experiment”, J. 

Sol. Struct., 44, 7543-7563. 

Tagarielli, V.L., Deshpande, V.S. and Fleck, N.A. (2010), 

“Prediction of the dynamic response of composite sandwich 

beams under shock loading”, J. Imp. Eng., 37(7), 854-864. 

 Poortabib, A. and Maghsoudi, M. (2014), “The analytical 

solution for buckling of curved sandwich beams with a 

transversely flexible core subjected to uniform load”, Struct. 

Eng. Mech., 52(2). 

 Mohammadimehr, M. and Shahedi, S. (2016), “Nonlinear 

magneto-electro-mechanical vibration analysis of double-

bonded sandwich Timoshenko microbeams based on MSGT 

using GDQM”, Steel Compos. Struct., 21(1). 

Yan, J.B., Liew, J.Y.R. and Zhang, M.H. (2015), “Ultimate 

strength behavior of steel-concrete-steel sandwich beams with 

ultra-lightweight cement composite, part 2: Finite element 

analysis”, Steel Compos. Struct., 18(4). 

Yusuf, C. (2015), “Free vibration analysis of edge cracked 

symmetric functionally graded sandwich beams”, Struct. Eng. 

Mech., 56(6). 

Noureddine, E.M., Tounsi, A., Ziane, N., Mechab, I. and Adda 

Bedia, E.A. (2011), “A new hyperbolic shear deformation 

theory for buckling and vibration of functionally graded 

sandwich plate”, J. Mech. Sci. 

Mohamed Ait Amar, M., Hadj, H.A. and Abdelouahed, T. (2014), 

“An efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under various 

boundary conditions”, J. Sandw. Struct. Mater., 16(3), 293-318. 

Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. 

(2016), “A new simple three-unknown sinusoidal shear 

deformation theory for functionally graded plates”, Steel 

Compos. Struct., 22(2), 257-276. 

Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2016), “An efficient shear deformation theory 

for wave propagation of functionally graded material plates”, 

Struct. Eng. Mech., 57(5), 837-859. 

Hichem, B., Kouider, H.B., Hadji, L., Mohammed, S.A.H. and 

Abdelouahed, T. (2016), “Bending and free vibration analysis of 

functionally graded plates using a simple shear deformation 

theory and the concept the neutral surface position”, J. Braz. 

Soc. Mech. Sci. Eng., 38(1), 265-275. 

Hadj, H.A., Hassen, A.A., Ismail, M., Lakhdar, B., Abelouahed, T., 

Adda Bedia, E.A. (2011), “Static analysis of functionally graded 

sandwich plates using an efficient and simple refined theory”, 

Chin. J. Aeronaut., 24(4), 434-448. 

Hadj, H.A., Mohamed, A.A.M., Abdelmoumen, A.B., 

Abdelouahed, T., Mahmoud, S.R. and Afaf, S.A. (2017), “An 

efficient hyperbolic shear deformation theory for bending, 

buckling and free vibration of FGM sandwich plates with 

various boundary conditions”, Steel Compos. Struct., 25(6), 

693-704. 

Malekzadeh Fard, K. (2014), “Higher order free vibration of 

sandwich curved beams with a functionally graded core”, 

Struct. Eng. Mech., 49(5). 

Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), 

“A computational shear displacement model for vibrational 

analysis of functionally graded beams with porosities”, Steel 

Compos. Struct., 19(2), 369-384. 

Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), 

“Wave propagation in functionally graded plates with porosities 

using various higher-order shear deformation plate theories”, 

Struct. Eng. Mech., 53(6), 1143-1165. 

 Lazreg, H., Zoubida, K. and Adda Bedia, E.A. (2016), “A new 

higher order shear deformation model for functionally graded 

beams”, KSCE J. Civil Eng., 20(5), 1835-1841. 

Habib, H., Abdelouahed, T., Mohammed, S.A.H. and Aicha, B. 

(2014), “A new quasi-3D hyperbolic shear deformation theory 

for the static and free vibration analysis of functionally graded 

plates”, ASCE J. Eng. Mech., 140, 374-383. 

Zakaria, B., Mohammed, S.A.H., Abdelouahed, T., Mahmoud, 

S.R. and Anwar Bég, O. (2014), “An efficient and simple higher 

order shear and normal deformation theory for functionally 

graded material (FGM) plates”, Compos.: Part B, 60, 274-283. 

Amale, M.E., Abbas Adda, B. and Abdelouahed, T. (2015), “A 

new hyperbolic shear deformation theory for bending and free 

vibration analysis of isotropic, functionally graded, sandwich 

and laminated composite plates”, Appl. Math. Model., 39, 2489-

2508. 

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A 

new simple shear and normal deformations theory for 

functionally graded beams”, Steel Compos. Struct., 18(2), 409-

423. 

Bennai, R., Atmane, H.A. and Tounsi, A. (2015), “A new higher-

order shear and normal deformation theory for functionally 

graded sandwich beams”, Steel Compos. Struct., 19(3). 

Mohamm, M.B., Houari, M.S.A. and Tounsi, A. (2016), “A novel 

677



 

V Sudhakar, S Gopalkrishnan and K Vijayaraju 

 

five variable refined plate theory for vibration analysis of 

functionally graded sandwich plates”, Mech. Adv. Mater. 

Struct., 23(4), 423-431. 

Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. 

(2016), “A nonlocal zeroth-order shear deformation theory for 

free vibration of functionally graded nanoscale plates resting on 

elastic foundation”, Steel Compos. Struct., 20(2), 227-249. 

Abdelouahed, T., Mohammed, S.A.H., Samir, B. and El Abbas, 

A.B. (2013), “A refined trigonometric shear deformation theory 

for thermoelastic bending of functionally graded sandwich 

plates”, Aerosp. Sci. Technol., 24(1), 209-220. 

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), 

“Thermomechanical bending response of FGM thick plates 

resting on Winkler-Pasternak elastic foundations”, Steel 

Compos. Struct., 14(1), 85-104. 

Ahmed, H., Mohammed, S.A., Houari, S.R.M. and Abdelouahed, 

T. (2015), “A sinusoidal plate theory with 5-unknowns and 

stretching effect for thermomechanical bending of functionally 

graded sandwich plates”, Steel Compos. Struct., 18(1), 235-253. 

Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. 

(2016), “Thermal stability of functionally graded sandwich 

plates using a simple shear deformation theory”, Struct. Eng. 

Mech., 58(3), 397-422. 

Abdelmoumen, A.B., Samir, B., Abdelouahed, T. and Mahmoud, 

S.R. (2016), “On thermal stability of plates with functionally 

graded coefficient of thermal expansion”, Struct. Eng. Mech., 

60(2), 313-335. 

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), 

“Thermal buckling analysis of cross-ply laminated plates using 

a simplified HSDT”, Smart Struct. Syst., 19(3), 289-297. 

Fouzia, E.H., Bakora, A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “A simple analytical approach for 

thermal buckling of thick functionally graded sandwich plates”, 

Struct. Eng. Mech., 63(5), 585-595. 

Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and 

Mahmoud, S.R. (2017), “A new and simple HSDT for thermal 

stability analysis of FG sandwich plates”, Steel Compos. Struct., 

25(2), 157-175. 

Hichem, B., Ahmed, B., Abdelouahed, T., Abdelmoumen, A.B. 

and Mahmoud, S.R. (2017), “An efficient and simple four 

variable refined plate theory for buckling analysis of 

functionally graded plates”, Steel Compos. Struct., 25(3), 257-

270. 

Gopalakrishnan, S. (2000), “A deep rod finite element for 

structural dynamics and wave propagation problems”, J. Numer. 

Meth. Eng., 48, 731-744. 

 Chakraborty, A., Mahapatra, D.R. and Gopalakrishnan, S. (2002), 

“Finite element analysis of free vibration and wave propagation 

in asymmetric composite beams with structural discontinuities”, 

J. Compos. Struct., 55, 23-36. 

Mitra, M., Gopalakrishnan, S. and Seetharam Bhat, M. (2004), “A 

new super convergent thin walled composite beam for analysis 

of box beam structures”, J. Sol. Struct., 41, 1491-1518 

Murthy, M.V.V.S., Mahapatra, D.R., Badarinarayana, K.  and 

Gopalakrsihnan, S. (2005), “A refined higher order finite 

element for asymmetric composite beams”, Compos. Struct., 67, 

27-35. 

Murthy, M.V.V.S., Gopalakrsihnan, S. and Nair, P.S. (2007), “New 

locking free higher order finite element formulation for 

composite beams”, J. Comput. Mater. Contin., 5(1), 43-62. 

Ghosh, D.P. and Goplakrishnan, S. (2007), “A super convergent 

finite element for composite beams with embedded 

magnetostrictive patches”, Compos. Struct., 79, 315-330. 

Sudhakar, G. and Vijayaraju. (2010), “Development of a new 

finite element for the analysis of sandwich beams with soft 

core”, J. Sandw. Struct. Mater., 12, 649-683. 

Backstrom, D. and Nilson, A.C. (2007), “Modelling the vibration 

of sandwich beams using frequency-dependent parameters”, J. 

Sound Vibr., 300, 589-611. 

Ahmed, K.M. (1971), “Free vibrations of curved sandwich beams 

by the method of finite elements”, J. Sound Vibr., 18(1), 61-74. 

Hwu, C. and Chang, W.C. and Gai, H.S. (2004), “Vibration 

suppression of composite sandwich beams”, J. Sound Vibr., 

272, 1-20. 

Chen, W.Q., Lv, C.F. and Bian, Z.G. (2003), “Elasticity solution 

for free vibration of laminated beams”, Compos. Struct., 62, 75-

82. 

Allen, H.G. (1969), Sandwich Beams, Analysis and Design of 

Structural Sandwich Panels, 1st Edition, Pergamon Press Ltd, 

London, U.K.  

Gopalakrishnan, S., Chakraborty, A. and Mahapatra, D.R. (2008), 

Spectral Finite Element Method, Springer-Verlag, New York, 

U.S.A. 

Cook, R.D. and Malkus, D.S. and Plesha, M.E. and Whitt, R.J. 

(2002), Finite Elements in Structural Dynamics and Vibrations 

and Plate bending, Concepts and Applications of Finite Element 

Analysis, 4th Edition, John Wiley and Sons (ASIA) Pte Ltd, 

Singapore. 

Irving, H.S. and Clive, L.D. (2003), Energy an Finite Element 

Methods in Structural Mechanics, New Age International(P) 

Limited, Publishers. 

Mario, P. (2001), Structural Dynamics Theory and Computation, 

CBS Publishers and Distributors, New Delhi, India.  

Vinson, J.R. (1999), The Behaviour of Sandwich Structures of 

isotropic and Composite Materials, 1st Edition, Technomic 

Publishing Company, U.S.A.  

Mead, D.J. and Sivakumaran, S. (1961), “The Stodala method 

applied to sandwich beam vibration”, Proceedings of the 

Symposium on Numerical Methods for Vibration Problems, 

University of Southampton. 

 

 

CC 

678




