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1. Introduction 
 

When a highway bridge as an important engineering 

structure collapses during earthquake, transportation is 

affected and introduces various hitches. These types of 

structure are constructed against severe earthquake ground 

motion. Thus, using stochastic approach considering 

incoherence, wave-passage and site-response effect along 

with seismic isolation system should use on designing long 

span structure as a highway bridge. Earthquake ground 

motion is described by power spectral density function as a 

random excitation in the stochastic analysis. Variation of 

ground motion is considered in the stochastic analysis. 

Incoherence, wave-passage and site-response effects should 

be considered in dynamic analysis of structural systems 

since the earth is inhomogeneity and complicated. The 

incoherence effect results from reflections and refractions 

of seismic waves through the soil during their propagation. 

The wave-passage effect results from the difference in the 

arrival times of waves at support points. The site-response 

effect is caused by differences the local soil conditions at 

the different support points.  

Triple concave friction pendulum (TCFP) bearing is an 

innovative and viable isolation system using in new and 

need of strengthening bridges and other structures. This 

system based on one of the most effective sliding isolation 

system, namely friction pendulum system, is invented by  
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Zayas et al. (1989). The TCFP bearing system consists of 

two facing concave stainless steel surfaces and an 

articulated slider is separately placed between the two 

spherical stainless-steel surfaces. Namely, in the later 

system motions occur in three sliding surfaces, so the 

system is named as triple. The principles of operation and 

force-displacement relationship of the TCFP bearing are 

developed by Fenz and Constantinou (2008a). There are 

some studies to indicate that the TCFP bearing system is 

more effective than the other sliding systems on severe 

earthquake ground motion (Barbas et al. 2011, Bucher 

2011, Yurdakul et al. 2014, Tajammolian et al. 2014, 

Loghman and Khoshnoudian 2015, Fallahian et al. 2015). 

Bi-directionally series spring model is proposed by Fenz 

and Constantinou (2008b) to exactly model for typically 

designed TCFP bearing. The model compares well to 

experimental tests. This model is used to model TCFP 

bearing by some studies (Yurdakul and Ates 2011, Ates and 

Yurdakul 2011). Fadi and Constantinou (2009) described 

simplified methods of analysis structures isolated with the 

TCFP bearing. The method provides good and often 

conservative estimates of isolator displacement demands 

and isolator peek velocities. Morgan and Mahin (2012) 

propound that selecting the appropriate values for the 

friction coefficients and radii of curvature of the TCFP 

bearing is achieved different behavior under service, design 

and maximum considered excitation. 

Long structures like bridges, dams and pipelines are 

significantly influenced by spatially varying ground 

motions. Dynamic response analysis long span non-isolated 

and isolated bridges subjected to spatially varying ground 
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motions was examined by Harichandran and Wang (1988), 

Zerva (1991), Lou and Zerva (2005). Ates et al. (2005) 

studied on stochastic responses of non-isolated and 

seismically isolated highway bridge with single friction 

pendulum (SCFP) bearing under spatially ground 

earthquake motions. The study demonstrated that SCFP 

bearing system has important effects on stochastic 

responses of bridges to spatially varying ground motions. 

Ates et al. (2006) performed a study of spatially varying 

ground motions on stochastic response of isolated bridge 

with friction pendulum bearing systems. Analysis results 

pointed out that spatially varying ground motion should be 

taken account in the analysis to be factual in calculating 

isolated bridges. Ates et al. (2009) compared stochastic 

response of non-isolated and isolated cable-stayed bridge 

with double concave friction pendulum (DCFP) bearing 

subjected to spatially varying ground motion. The study 

pointed out that cable-stayed bridge with isolation system 

subjected to spatially varying ground motion significantly 

underestimates the deck and the tower responses. Wang et 

al. (2015) studied wave passage effect on seismic 

performance of a super-long-span suspension bridge. The 

study found out that seismic performance was influenced by 

variance of wave velocity. Apaydın et al. (2016) 

investigated structural responses of Fatih Sultan Mehmet 

Bridge under spatially varying ground motions. It is 

emphasized that spatially varying ground motion should be 

taken account in the extended structures like bridge. Adanur 

et al. (2016) performed an analysis of multiple support 

seismic response of Bosphorous Bridge for various random 

vibration methods. It is shown in the analysis results; 

structural responses substantially depend on frequency 

contents of power spectral density functions and intensity 

for a random excitation analysis. 

Although stochastic responses of cable-stayed and 

highway bridges isolated with different sliding systems 

have been investigated, the TCFP bearing system exhibited 

more effective behavior than other sliding systems has not 

been widely investigated so far. The aim of this study is to 

compare the stochastic responses of the non-isolated and 

isolated highway bridges. The TCFP bearings are used to 

increase the earthquake resistance of the bridge subjected to 

the spatially varying earthquake ground motion which is 

considered the incoherency, wave passage and site response 

effects. For providing site response effects, different soil 

cases at the bridge supports are take into consideration. 
 

 

2. Description of triple concave friction pendulum  
 

TCFP bearing based on SCFP bearing was proposed by 

Zayas et al. (1989). Differences between TCFP bearing and 

conventional friction pendulum bearing are multiple 

changes in stiffness and strength with increasing amplitude 

of displacement (Fadi and Constantinou 2009). The TCFP 

bearing shown in Fig. 1 is consisted of two facing concave 

stainless steel surfaces coated with Teflon separated by a 

placed slider assembly. Ri is the radius of curvature of 

surface i, hi is the radial distance between the pivot point 

and surface i, µ i is the coefficient of friction at the sliding 

surface i and di is the displacement capacity of the surface i.  

 

Fig. 1 The cross-section of the TCFP bearing and its 

definition of dimension 

 

 

Fig. 2 Parameters of the TCFP bearing 

 

 

Outer concave plates have effective radii Reff 1 = R1−h1 and 

Reff4 = R4−h4. The articulated slider assembly consists of 

two concave plates separated by a rigid slider. While the 

innermost slider is rigid, the assembly has the capability to 

rotate to accommodate differential rotations of the top and 

bottom plates. The friction coefficients on these concave 

plates are µ1 and µ4. The inner concave plates have 

effective radii Reff 2 = R2−h2 and Reff 3 = R3−h3. Additionally, 

these surfaces are also coated with Teflon. The friction 

coefficients on these concave plates are µ2 and µ3. Unlike 

the SCFP and DCFP, in the TCFP bearing there is no 

mechanical constraint defining which defined location of 

pivot point (Fenz and Constantinou 2008a, b). In case 

economic benefits are considered, there is insignificant 

differentiation in the cost of the SCFP and the DCFP 

bearings of size. However, the TCFP bearing is cost 

effective as per bearing size and displacement capacity. 

 

2.1 TCFP bearing design 
 

2.1.1 Determination of geometric properties 
The TCFP bearing has 16 parameters, of which 12 are 

geometry dependent. The other four parameters are 

composed of the friction coefficient. These parameters are 

very difficult to determine in optimization studies. The 

standard of bearing parameters and conformation used 

before is favorable about economic and stability. Therefore, 

it should be connected to producing company and claim the 

most appropriate forms of bearing. Then designer 

determines favorable bearing requested.  

In this study, a sample design proposed by Constantinou 

et al. (2011) is used to determined parameters of TCFP 
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bearing. The parameters are shown in Fig. 2 was studied to 

determine. In general, it is adjusted as R1=R4, R2=R3, d1=d4 

and d2=d3.  

In generally, diameter of concave plates, R1 and R2, are 

equal to 2235 mm and 3048 mm respectively. However, 

diameters of these surfaces are selected as 3092 mm 

because earthquake record is used analysis and piers are 

supported on different soil conditions. When the diameter is 

selected bigger value, re-centering force is not enough for a 

Design Basis Earthquake (DBE). This situation is checked 

by Eq. (1).  

1 1

4 20.05 D
T 28

μ g

   
    

   

 (1) 

Where µ is equal to the characteristic strength of TCFP 

bearing divided by the normal load supported isolation 

devices. D represents design displacement capacity. A 

preliminary estimation of diameter of concave plate, Dc, is 

selected to be 1778 mm (typically). Calculations based on 

simplified procedure indicated that this size of plate is 

enough. Diameter of concave plate could be selected bigger 

or smaller. Selected diameter could be changed depends on 

desirable friction of coefficient and axial load supported by 

bearing. In this study, TCFP bearing is designed according 

to axial loads which are W1=9094 kN and W2=12122 kN. 

Other concave plates, DS and DR, are selected to be 584 mm 

and 457 mm, respectively.  

Heights of sliders (h1+h4, h1+h4) are selected as 406 mm 

and 305 mm, respectively. These values can be 

manufactured in different size discussed with consultation 

with manufacturers. They should not be calculated again 

because they do not affect behavior of bearing. Diameter of 

concave surfaces 1 and 2 are selected as 3962 mm and 1555 

mm, respectively. The height of plates 1 and 2 are selected 

as 203 mm and 152 mm, respectively. The displacement 

capacity of ith surface is determined by Eq. (2). 

* effi
i i

i

R
d =d

R
 (2) 

where di
* is actual displacement capacity of ith surface, di is 

displacement capacity of ith surface. The actual 

displacement capacity of surface 1 and 4 is calculated as 

566 mm. The actual displacement capacity of surface 2 and 

3 is calculated as 57 mm. 
 

2.1.2 Determination of coefficient of friction  
Bearing pressure is different on surfaces 1-4 and 2-3. 

Pressure of each of the surface is calculated by Eq. (3). 

 
2

W
P= 

π D/2
 

(3) 

in which P is bearing pressure, W is the vertical 

compressive load on the bearing and D is size of surface 

whose pressure is calculated. Tri-cycle coefficient of 

friction is determined by Eq. (4).  

3ccfk  = 0.122-0.01 P  (4) 

Table 1 Properties of TCFP and Combined System 

 

 

One-cycle coefficient of friction is determined by Eq. 

(5). 

1ccf lbcfk  = 1.2 k  (5) 

where klbcf is lower bound coefficient of friction adjusted 

for high velocity. Upper bound coefficient of friction is 

determined by Eq. (6). 

ubcf max 1ccfk  = λ k  (6) 

max results from aging, contamination and travel. It is 

selected as 1.386. The frictional properties of combined 

system are calculated by Eq. (7).   

1 1i 2 2i
ib

1 2

2Wμ +2W μ
μ =

2W +2W

 
(7) 

where μib is coefficient of friction of ith

 
surface in the 

combined situation. μ1i and μ2i are coefficient of friction of 

ith surface in case vertical load is W1 and W2, respectively. 

The properties of two different load cases are given in Table 

1. 

Effective coefficient of friction was determined by Ates 

and Constantinou (2011) for the DCFP bearing system. In 

the same way, effective coefficient of friction for the TCFP 

bearing is calculated by Eq. (8). 

       1 1 1 2 2 2 3 3 3 4 4 4

e

1 2 3 4 1 2 3 4

μ R -h μ R -h μ R -h μ R -h
μ

R +R +R +R -h -h -h -h

  
  (8) 

Seismic device as the TCFP bearing has an important 

role to changing natural period of the supported structure. 

The natural period of the vibration is given by Eq. (9). 

T=2
R

g
  (9) 

where R is the radius of spherical concave surface and g is 

the acceleration of gravity. Eq. (9) indicated that the natural 

period of vibration is independent of mass, but it is 

controlled by the radius of the concave surfaces. Therefore, 

it is too easy to change natural period of the supported 

structure. In addition, with the weight of the structure 

changing, the natural period of supported structure does not 

change. This natural period is period of the both isolated  

 W1=9094 kN W2=12122 kN Combined system (kN) 

Reff1=Reff4 (mm) 3759 3759 3759 

Reff2=Reff3 (mm) 1403 1403 1403 

d1
*=d4

*(mm) 566 566 566 

d2
*=d3

*(mm) 58 58 58 

µ1=µ4 Lower bound 0.058 0.041 0.048 

µ2=µ3 Lower bound 0.037 0.010 0.021 

µ Lower bound 0.050 0.030 0.038 

µ1=µ4 Upper bound 0.096 0.069 0.081 

µ2=µ3 Upper bound 0.061 0.016 0.035 

µ Upper bound 0.083 0.049 0.064 
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Fig. 3 Force-displacement relationship 

 

 

Fig. 4 Flow chart of single mode method 

 

 

structure and the seismic isolation system. The isolated 

period begins to dominate when the friction force is 

exceeded. Period of the seismic isolated structure is equal to 

non-isolated structure when the earthquake force is small 

than friction force of the device. When the earthquake force 

exceeds frictional forces, dynamic responses are controlled 

by seismic isolation device. The force-displacement 

relationship of the Single Concave Friction Pendulum 

(SCFP) bearings in any direction may be given by the Eq. 

(10). 

b s b

W
F= v +μ WSign(v )

R
 (10) 

where W, R, 
bv , s, and 

bv are the total weight carried by 

the SCFP, the radius of the spherical concave surface, the 

sliding displacement, the coefficient on the sliding surface 

and the sliding velocity, respectively. Sign is the signum 

function. The lateral restoring stiffness of the SCFP is given 

by the Eq. (11).   

b

W
k =

R
 (11) 

It is also shown in Eq. (11) that the stiffness of the 

pendulum depends on the weight carried by the bearing. 

Equivalent stiffness of the bearing is given by Eq. (12) 

(Scheller and Constantinou 1999).  

e
eş

eff b max

μ WW
k = +

R (v )
 (12) 

where (vb)max is maximum displacement capacity of the 

SCFP, fmin is minimum mobilized coefficient of friction. 

The stiffness of the FPS system before it sliding is given by 

Eq. (13).  

min
e

b

f W
k =

v
 (13) 

where vb is displacement of bearing.  

 

2.1.3 Determination of displacement capacity of 
TCFP 

The single mode method of analysis, spectrum analysis 

and time history analysis are used to determine 

displacement capacity of the TCFP bearing (Constantinou et 

al. 2011). The spectrum and the time history analyses are 

performed in SAP2000 (Computers and Structures Inc 

2007). Results of these analyses are compared each other 

and displacement capacity of TCFP bearing is determined. 

Single mode method of analysis is performed in the 

design earthquake (DE). Analyses procedure of seismic 

isolation system for upper bound by using bilinear 

hysteretic model is given below. The force-displacement 

relationship of isolation system is given Fig. 3. In this 

figure, Kd, Qd and Y are represented post-elastic stiffness, 

characteristic strength and yield displacement, respectively. 

Post-elastic stiffness is given by Eq. (14). 

d

eff1

W
K =

2R
 (14) 

The post-elastic stiffness is calculated as 10441 kN/m 

by means of Eq. (14). The Characteristic strength is given 

by Eq. (15)  

dQ =μW  (15) 

where  is coefficient of friction of combined system. The 

characteristic strength is calculated as 2705 kN by means of 

Eq. (15). The yield displacement is given by Eq. (16).   

1 2 eff2Y=(μ μ )R  (16) 

  The yield displacement is calculated as 0,0634 m. by 

774



 

Stochastic responses of isolated bridge with triple concave friction pendulum… 

 

means of Eq. (16). Displacement of the TCFP bearing could 

be estimated at single mode analysis and shown in flow 

chart at Fig. 4.  

1) The displacement capacity of TCFP bearing is 

selected as 0,278 m 

2) The effective stiffness is given by Eq. (17) and 

calculated as 15375 kN/m.  

d
eff d

D

Q
K =K +

D
 (17) 

3) The effective period is given by Eq. (18) and 

calculated as 3 s. 

eff

eff

W
T =

gK
 (18) 

4) The effective damping is given by Eq. (19) and 

calculated as 0.311. But effective damping should be 0.3 to 

ensure re-centering of bearing at DE.   

D
eff 2 2

eff D eff D

4μ(D Y)E
β = =

2πK D 2πK D


 (19) 

5) Damping reduction factor is given by Eq. (20) and 

calculated as 1.712. 

0.3

effβ
=

0.05

 
  

 
 (20) 

The spectral acceleration of response spectrum of 

PUL164 component of 1971 San Fernando earthquake for 

5% damping is used. The corresponding value in the 

effective period in the response spectrum is 2.084 m/s2. The 

design displacement is calculated as 0,272 m and given by 

Eq. (21) 

2

a eff
D 2

S T
S  =

4π B
 (21) 

In a similar way, the displacement of TCFP bearing was 

estimated using the bilinear hysteretic model of the isolated 

system according to the lower bound condition. Analyses 

results obtained by using single mode method of analysis 

for characteristics of the isolator used for the lower and 

upper bound conditions are given in Table 2.  

The response spectrum analysis is performed using 

SAP2000 commercial software. Each isolator device is 

represented horizontal stiffness based on single mode 

method of analysis. To obtain a response spectrum 

according as a damping ratio differs from original response 

spectrum and Eq. (22) (ASCE 41-06 Eq. (1.13)) is used.   

eff

4
=

5.6-ln(100β )
  (22) 

Where βeff is effective damping ratio, B is the coefficient 

that multiplies the 5% damped spectrum curve. The values, 

βeff and Teff, are used obtained from single mode method are 

used. βeff is calculated as 28% and 30% for lower and upper 

bound, respectively. B is calculated as 1,759 and 1,819 for  

Table 2 Displacement and damping capacities of the TCFP 

bearings using single mode method 

Parameters 

Design Earthquake 

(DE) 

Maximum Considered Earthquake 

(MCE) 

Lower bound Upper bound Lower bound Upper bound 

Displacement (mm) 284 278 578 565 

Effective Damping
 

28% 30% 28% 30% 

 

 
Lower bound 

 
Upper bound 

Fig. 5 Reduced response spectra 
 

 

lower and upper bound, respectively. Changed spectrum 

ration is only used isolation mode. In other words, in 

periods greater than 0.8 Teff, the ordinate of the 5% damped 

spectrum is reduced by B value. The reduced spectrum cure 

for lower and upper bound conditions are shown in Fig. 5. 

The displacement of the TCFP bearing obtained from 

analysis using response spectrum of PUL164 component of 

1971 San Fernando earthquake for 5% damping is 

calculated as 314 mm. 

The nonlinear time history method is used for system 

stability control and evaluation of the performance of 

structural elements as well as for estimating the maximum 

displacement of the isolator. PUL164 component of 1971 

San Fernando earthquake is used in time history analysis. 

Analyses results show that the maximum displacement of 

isolator reaches to 400 mm.       

The results of single mode method of analysis, response 

spectrum and time history analysis are compared to 

determine displacement capacity of the TCFP bearing. The 

maximum displacement of the isolator is 578 mm. The 

dimensions of the isolator are suitable because the value is 

smaller than the maximum displacement capacity of the 

selected isolator. 

 

 

3. Stochastic response 
 

The variance of the i th total response is given by Eq. 
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(23) 

i

2

z i i  
qs
zi i

qs2 2 d d
z z ,  z  )2Cov(     (23) 

Where  
2 d

zi
 is the variance of the i th quasi-static 

response component,  
2 d

zi
 is the variance of the i th 

dynamic response component and Cov(zi
qs, zi

d) is the 

covariance between the i th quasi-static and dynamic 

components. The variance of the i th quasi-static component 

can be written as Eq. (24).  

   2 1
4ω g

qs qs
z z

r r
 ω ω

v vg=1=1

 A A  S dω S dω
ml

i i imil
ml


 



 

    
(24) 

Where
qs
z

S
i
  is the i th quasi-static component of the 

spectral density function of the structural response, r is the 

number of restrained degrees of freedom,
g

v vg
S ( )

ml

  is 

the cross-spectral density function of accelerations between 

supports l and m, Ail and Aim are equal to static 

displacements for unit displacements appointed to each 

support. The variance of the i th dynamic response 

component may be given in Eq. (25). 

       
 2

H ω H ω   S ω
vg vg

d d ωz z
=1 =1 =1 =1

ψ  S dω    ψ dωj klj
l m

i i

n n r r

ij ik mk
j k l m

 

 
  

 

     
 

(25) 

Where, d
zS
i

is the i th dynamic component of the spectral 

density function of the structural response, n is the number 

of degrees of freedom, ψ is the eigenvectors, is the modal 

participation factor and  H ω is the frequency response 

function.  

The mean of maximum value and its standard deviation 

are most important parameters in stochastic analysis. The 

maximum value can be given in Eq. (26) (Button et al. 

1981, Dumanoğlu and Severn 1990).  

zp   (26) 

The standard deviation of the mean of the maximum 

value is given in Eq. (27) (Button 1981, Der Kiureghian 

1980).  

zq   (27) 

Where q and p are peak factors which are zero-crossing 

rate and functions of the time of the motion, respectively 

(Der Kiureghian and Neuenhofer 1991).   

 

 

4. Spatially varying earthquake ground motion 
 

Due to the complex nature of the earth, earthquake 

ground motion may not show the same behavior at each 

support point of long span structures such as bridge. This 

occurs by considering that travelling with finite velocity, 

coherency loss due to reflections-refractions and difference 

of local soil conditions at the supports. This variation gives  

 

PUL164 component of Pacoima Dam record of 1971 San 

Fernando earthquake 

 
H-E03230 component of El Centro Array #3 record of 1979 

Imperial Valley-06 earthquake 

Fig. 6 Earthquake records used variance of the ground 

acceleration 

 

 

PUL164 component of Pacoima Dam record of 1971 San 

Fernando earthquake 

 
H-E03230 component of El Centro Array #3 record of 1979 

Imperial Valley-06 earthquake 

Fig. 7 Power spectral density function 
 

 

rise to internal forces because of quasi-static displacement. 

In normally, quasi-static displacements do not produce 

internal force in the case of uniform ground motion.  

Therefore, spatially varying ground motion should be 

considered while analyzing large structures. Spatially 

varying earthquake ground motion model includes 

incoherency, wave passage and site response effect. The 

incoherency effect results from reflections and refractions 

of seismic waves through to the soil during their 

propagation. The wave passage effect results from 

differences in the arrival times of waves at support points. 

The site response effect results from differences in local soil 

conditions at the support point. These effects are 

characterized by the coherency function in the frequency 

domain. 
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PUL164 component of Pacoima Dam record of 1971 San 

Fernando earthquake 

 
H-E03230 component of El Centro Array #3 record of 1979 

Imperial Valley-06 earthquake 

Fig. 8 Acceleration spectral density function 
 

Table 3 Filter parameter of filtered white-noise process for 

different soil types  

Soil Type ωf (rad/sec) ξf ωg (rad/sec) ξg 

Firm 15.0 0.6 1.5 0.6 

Medium 10.0 0.4 1.0 0.6 

Soft 5.0 0.2 0.5 0.6 

 

Table 4 Intensity parameter of filtered white-noise process 

for different soil types  

Soil Type 
S0 (m2/s3) 

San Fernando Imperial Valley 

Firm 0.037373 0.000425 

Medium 0.055534 0.000631 

Soft 0.077968 0.000887 

 

 

In the stochastic analysis, the cross spectral density 

function of the earthquake ground motion, between support 

points l and m is given by Eq. (28) (Der Kiureghian and 

Neuenhofer 1991). 

(ω) (ω) ω) (ω)
vg vg vg vgvg vg

S = γ  S (  S
l l m ml m

lm
 (28) 

Where γlm(ω) is coherency function. The power spectral 

density function is suggested by Clough and Penzien (1993) 

given by Eq. (29). 

     

4 2 2 2 4

2 2 2 2 2 2 22 2 2 2 2

f

 
f

f
ovg

g g gf

  
(ω)  

 + 4   
f

ω + 4ξ ω ω ω
S S

ω ω  4ξ ω ω ω ω ξ ω ω


 

 
(29) 

Where S0 is value of spectral density function of the 

white-noise process, first term and second terms are 

frequency responses of first and second filters depicting 

characteristics of the layers of soil medium above the rock 

bed. ωf and ξf are the resonant frequency and damping of 

the first filter, ωg and ξg are those quantities of the second  

 

 

 

 

Fig. 9 Selected highway bridge model and its two-

dimensional analytical model 

 

Table 5 Properties of the bridge 

Properties Deck Pier 

Young’s modules (MPa) 32000 32000 

Cross section (m2) 6,90 4,90 

Moment of inertia in the 

case of vertical bending (m4) 
4,20 1,92 

Moment of inertia in the 

case of lateral bending (m4) 
79,18 1,92 

Torsional moment 14,18 3,84 

Poisson’s ratio 0,25 0,25 

Unit weight (kN/m3) 25,00 25,00 

Unit length weight (kN/m) 165,60 122,75 

 

 

filter.  

In this study, So is obtained for each soil type equating 

the variance of the ground acceleration to the variance of 

the two earthquake records. These are PUL164 component 

of the San Fernando earthquake recorded at Pacoima dam in 

1971 for firm soil and El Centro Array #3 component of the 

Imperial Valley-06 in 1979 for soft soil (Fig. 6). Their 

power spectral density function and their acceleration 

spectral density function for different soil types are given in 

Figs. 7-8. Soft, medium and firm soil types are used for the 

isolated and non-isolated bridge supports and the filter 

parameters for these soil types proposed by Der Kiureghian 

and Neuenhofer (1991) are also used as given Table 3. The 

calculated values of the intensity parameter for each soil 

type are given in Table 4.  

The coherency function is proposed by Nakamura et al. 

(1993) and given by Eq. (30).  

i
wγ (ω) γ (ω) γ (ω) γ (ω)s

lm lm lm lm
  (30) 

Where
i

γ (ω)
lm

indicates the incoherence effect,  
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Fig. 10 Bridge subjected to spatially varying ground 

motions for different soil condition sets 

 

Table 6 Periods of the bridges 

Mode 

Number 

Non-isolated 

(sec) 

Isolated 

(sec) 

TCFP 

SCFP 

Ates et al. 

(2005) 

SVEM SAP2000 SVEM SAP2000 SVEM 

1 1,1929 1,2279 3,6607 3,7473 2,8494 

2 0,8144 0,8516 1,0310 1,0700 1,0241 

3 0,6844 0,7197 0,7700 0,8090 0,7679 

4 0,5784 0,6124 0,5964 0,6354 0,5964 

5 0,2739 0,2959 0,3028 0,5914 0,3017 

6 0,262 0,2842 0,2799 0,5900 0,2787 

7 0,2354 0,2582 0,2419 0,5665 0,2411 

8 0,2136 0,2368 0,2123 0,5645 0,2118 

9 0,205 0,2283 0,2003 0,3235 0,2001 

10 0,1698 0,1731 0,1718 0,3026 0,1717 

11 0,1357 0,1566 0,1378 0,2672 0,1378 

12 0,1301 0,1512 0,1297 0,2398 0,1297 

13 0,1258 0,147 0,1239 0,2291 0,1239 

14 0,0862 0,0878 0,0866 0,1653 0,0865 

15 0,0583 0,0593 0,0585 0,1592 0,0584 

 

 

γlm(ω)w represents the complex valued wave-passage effect 

and γlm(ω)s characterizes the complex valued site-response 

effect. The incoherency effect is proposed by Harichandran 

and Vanmarcke (1986) and given by Eq. (31). 

     
i

γ (ω)    
(ω) (ω)

2d 2d
A exp  1 A+αA  1 A exp  1 A+αA

α θ θ
lm lm

lm

   
   
   

        (31) 

Where dlm is distance between support points l and m; A, 

, k, fo and b are 0.636, 0.0186, 31200, 1.51 Hz and 2.95, 

respectively (Harichandran et al. 1996). 

The wave-passage effect is given by Eq. (32) (Zerva 

1991, Soyluk and Dumanoğlu 2004). 

i(-  / )

γ (ω) = expW
d vL
lm app

lm



 (32) 

 

Mode 1: 3,7473 sec (longitudinal) Modal Participating 

Mass Ratio: 94,88% 

 

Mode 2: 0,8090 sec (vertical) Modal Participating Mass 

Ratio: 40,79% 

 
Mode 3: 0,6354 sec (vertical) Modal Participating Mass 

Ratio: 24,77% 

 
Mode 4: 1,0705 sec (vertical) Modal Participating Mass 

Ratio: 19,53% 

 
Mode 5: 0,5914 sec (longitudinal) Modal Participating 

Mass Ratio: 12,22% 

Fig. 11 The first 5 mode shapes of the isolated bridge with 

the TCFP bearings 

 

 

Mode 1: 1,2279 sec (longitudinal) Modal Participating 

Mass Ratio: 99,18% 

 

Mode 2: 0,8516 sec (vertical) Modal Participating Mass 

Ratio: 42,99% 

 
Mode 3: 0,7197 sec (vertical) Modal Participating Mass 

Ratio: 9,93% 

 
Mode 4: 0,6124 sec (vertical) Modal Participating Mass 

Ratio: 6,16% 

 
Mode 5: 0,2959 sec (vertical) Modal Participating Mass 

Ratio: 4,73% 

Fig. 12 The first 5 mode shapes of the non-isolated bridge 
 

 

Where vapp is the visible wave velocity.
L

lmd is projection 

of dlm on the ground surface along the direction of 

propagation of seismic waves. The visible velocities used in  
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this study are selected as 400, 700, 1000 m/sec for soft, 

medium and firm soil, respectively. 

The site response effect is given by Eq. (33) (Zerva 

1991, Soyluk and Dumanoğlu 2004). 

=

ziθ (ω)z(ω) exp lm
lm
  (33) 

 

 

5. Numerical examples 
 

A two-dimensional analytical model used by Ates et al. 

(2005) is selected as a numerical example to investigate the 

stochastic response of non-isolated and isolated bridge with 

the TCFP bearing. The selected highway bridge and its 

analytical model are shown in Fig. 9. The properties of the 

bridge are given in Table 5. Properties of the TCFP bearing 

employed in this study are given Table 6. Stochastic 

analyses of non-isolated and isolated bridge with the TCFP 

are performed for spatially varying earthquake ground 

motion by considered the incoherency, wave passage and 

site response effects.  

 

 

For this purpose, four different soil situation sets are 

considered namely Cases A to D for the bridge supports and 

shown in Fig. 10. 

Case A: All supports are assumed to be founded on 

medium soil type (Fig. 10). The soil condition where the 

structure is supported is defined as homogeneous. 

Incoherency effect and wave passage effect are considered  

(
d

m
γ (ω)
l

≠1, 
k

m
γ (ω)
l

≠1, 
m

γ (ω)z
l

=1).  

Case B: All supports are assumed to be founded on firm 

soil type (Fig. 10). The soil condition where the structure is 

supported is defined as homogeneous. Incoherency effect 

and wave passage effect are considered  

(
d

m
γ (ω)
l

≠1, 
k

m
γ (ω)
l

≠1, 
m

γ (ω)z
l

=1).  

Case C: While the side supports (1,2,5 and 6 in Fig. 10) 

are assumed to be founded of firm soil, the middle supports 

(3 and 4 in Fig. 10) are assumed to be founded on soft soil. 

In this case the incoherency, wave passage and site response 

effects are considered  

 

  

  

  
(a) Non-isolated (b) Isolated 

Fig. 13 Mean of maximum axial forces of the non-isolated and isolated bridge decks 
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(
d

m
γ (ω)

l
≠1, 

k

m
γ (ω)
l

≠1, 
m

γ (ω)z
l

≠1).  

Case D: while the side supports (1, 2, 5 and 6 in Fig. 10) 

are assumed to be founded of firm soil, the middle supports 

(3 and 4 in Fig. 10) are assumed to be founded on medium 

soil. In this case the incoherency, wave passage and site 

response effects are considered  

(
d

m
γ (ω)

l
≠1, 

k

m
γ (ω)
l

≠1, 
m

γ (ω)z
l

≠1). 

The bridge model subjected to spatially varying ground 

motions in the horizontal direction is shown in Fig 10. The 

horizontal input data is supposed to travel across the bridge 

from left to right side with finite velocities of 400, 700 and 

1000 m/s for soft, medium and firm soil, respectively.  

The stochastic analysis of spatially varying ground 

motion includes incoherency, wave passage and site 

response effects are performed with computer code SVEM 

(Dumanoglu and Soyluk 2002). However, computer code 

program called SVEM has not been performed a stochastic 

analysis of spatially varying ground motion of an isolated 

structure with the TCFP by now. Ates et al. (2005) carried  

 
 

out a stochastic analysis an isolated structure with the SCFP 

bearing. Considering the change components of the 

earthquake motion, behavior of the TCFP bearing is 

attached in the program and stochastic analysis of spatially 

varying ground motion includes incoherency, wave passage 

and site response effects are performed.  
 

 

6. Numerical results 
 

Stochastic analyses of non-isolated and isolated 

highway bridge with TCFP are performed for spatially 

varying ground motions by assuming that the different cases 

in this study. Four cases sets are considered in Fig. 10. The 

non-isolated and isolated highway bridge model subjected 

to spatially varying ground motions in the horizontal 

direction. This horizontal input is assumed to travel with 

finite velocities of 400, 700 and 1000 m/s. 

Since bridges exhibit different behaviors, it is necessary 

to consider a larger number of modes compared to other 

structures (Dumanoglu and Severn 1987). Thus, the first 15 

modes are selected according to modal participating mass 

ratio. Structures have the tendency to vibrate at certain  

  

  

  
(a) Non-isolated (b) Isolated 

Fig. 14 Mean of maximum shear forces of the non-isolated and isolated bridge decks 
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frequencies which are called natural frequencies that is 

associated with a mode shape that the model tends to 

assume when vibrating at that frequency. 

When a structure is properly excited by a dynamic load 

with a frequency that coincides with one of its natural 

frequencies, the structure undergoes large displacements 

and stresses. This phenomenon is known as resonance. 

The parameter is modal participating mass ratio (MPMR) in 

the selection of the mode number. Basically, the MPMR 

provides a measure of the energy contained within each 

resonant mode since it represents the amount of system 

mass participating in a particular mode. For a particular 

structure, with a mass matrix [M], normalized mode shapes 

[Φi] and a ground motion influence coefficient {r}, 

participation of each mode can be obtained as the modal 

mass participation ratio is given by 

    

    


 

 

T

i
i T 2

i i

M r

M

 
(34) 

Therefore, m mode with a large effective mass is usually 

a significant contributor to the response of the system. It is 

possible to calculate the MPMR for a particular direction 

(x, y or z). The sum of the effective masses for all modes in  

 

 

each response direction must equal the total mass of the 

structure. Priestley et al. (1996), among other authors, 

confirm that a sum of all MPMR, known as Cumulative 

Modal Mass Participation Ratio (CMPMR) of 80% to 90% 

in any given response direction can be considered sufficient 

to capture the dominant dynamic response of the structure, 



 
    
 


n

i
i 1

80 100 90  (35) 

where n is the number of modes taken under consideration. 

Therefore, if for example it is expected a vibration in the x 

direction, it can need to keep calculating modes until the 

sum of all MPMR in the x direction is about 80-90%. This 

should ensure a consistency in the results since it can 

compare the exciting frequency with the sufficient natural 

frequencies. It is seen that the sum of the MPMR for each 

direction is higher than 80%. 

The two-dimensional analytical model of the isolated 

and non-isolated bridges are modeled and analyzed in 

SVEM (Dumanoglu and Soyluk 2002). The first 5 mode 

shapes obtained from the analysis is given in Figs. 11 and 

12. 

In addition, the isolated bridge with the TCFP bearing is  

  

  

  
(a) Non-isolated (b) Isolated 

Fig. 15 Mean of maximum bending moments of the non-isolated and isolated bridge decks 
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modeled and analyzed in SAP2000 (Computers and 

Structures 2007). In Table 6, the periods obtained in this 

and referenced studies are compared with each other. When 

the periods obtained from SVEM are compared with 

SAP2000, it is seen that there is a good agreement between 

results. Moreover, results indicated that periods of isolated 

bridge with the TCFP bearing is longer than SCFP bearing. 

In this study, quasi-static, dynamic and total components 

of internal forces and displacements of non-isolated and 

isolated bridge are investigated for different cases. The 

TCFP bearing devices used as seismic isolation are placed 

between deck and pier.   

Means of maximum quasi-static, dynamic and total axial 

forces of the non-isolated and isolated bridge deck 

compared for Cases A to D are presented Fig. 13. The 

bridge supported on homogenous and inhomogeneous soil. 

The use of the TCFP bearing system may be reduced the 

maximum values of the quasi-static, dynamic and total axial 

forces of the bridge deck by 88%, 63% and 88%, 

respectively. These figures clearly indicated that while the 

smallest axial forces are obtained for the case B, the largest 

axial forces are obtained for the case C in both non-isolated 

and isolated bridge. Case A is more effective than Case D.  

 

 

Means of maximum quasi-static, dynamic and total 

shear forces of the non-isolated and isolated bridge deck 

compared for cases A to D are presented Fig. 14. The bridge 

supported on homogenous and inhomogeneous soil. The use 

of the TCFP bearing system may be reduced the maximum 

values of the quasi-static, dynamic and total shear forces of 

the bridge deck by 93%, 61% and 88%, respectively. These 

figures clearly indicated that case C is more effective than 

other cases for the quasi-static, dynamic and total shear 

forces of the non-isolated bridge deck. While case A is more 

effective than other cases for dynamic and total shear 

forces, case C is more effective than other cases for quasi-

static shear forces of isolated bridge deck. 

Means of maximum quasi-static, dynamic and total 

bending moment of the non-isolated and isolated bridge 

deck compared for cases A to D are presented Fig. 15. The 

bridge supported on homogenous and inhomogeneous soil. 

The use of the TCFP bearing system may be reduced the 

maximum values of the quasi-static, dynamic and total 

bending moment forces of the bridge deck by 91%, 63% 

and 88%, respectively. These figures clearly indicated that 

case C is more effective than other cases for the quasi-

static, dynamic and total bending moment of the non-

  

  

  
(a) Non-isolated (b) Isolated 

Fig. 16 Mean of maximum horizontal displacements of the non-isolated and isolated bridge decks 
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isolated bridge deck. While case C is more effective than 

other cases for quasi-static and total bending moment, case 

A is more effective than other cases for dynamic bending 

moment of isolated bridge deck. 
Means of maximum quasi-static, dynamic and total 

displacement of the non-isolated and isolated bridge deck 
compared for cases A to D are presented in Fig. 16. The 
quasi-static displacements of non-isolated and isolated 
bridge deck are very close together for case A-D. Means of 
maximum dynamic and total displacements of isolated 
bridge deck are bigger than those of non-isolated bridge by 
284% and 61%, respectively. These figures clearly showed 
that while displacements in case of case C are the biggest 
for the quasi-static, dynamic and total displacements of the 
non-isolated and isolated bridge deck. The displacements in 
case of case B is the smallest. Also figures indicated that 
displacements in case of case A are bigger than those of 
case B. 

 

 

7. Conclusions 
 

In this paper, the stochastic response of the non-isolated 

and isolated bridge with the TCFP bearing system which is 

more effective than other sliding systems on severe 

earthquake ground motion is performed. The TCFP bearing 

system was designed and installed between bridge deck and 

pier. The incoherency, the wave passage and the site 

response effects are considered in the spatially varying 

ground motions. The analyses are carried out for non-

isolated and isolated bridges, separately. The non-isolated 

and isolated bridge models subjected to spatially varying 

ground motions are compared their performance with each 

other. The means of maximum responses of the non-isolated 

and isolated bridges are also compared with each other for 

cases A to D. The results obtained from this study can be 

written as: 

• The periods of the bridge isolated with the TCFP 

bearings longer than those of the isolated bridge with the 

SCFP and the DCFP bearings. 

• The more difference between the local soil types at the 

support points, the more response values of isolated and 

non-isolated bridges occur. When the soil types come close 

to each other, values of internal forces decrease. 

• The results obtained from the analyzes were compared 

with the help of graphs. It can be seen that the spatially 

varying earthquake motion is affected both for the isolated 

bridges and for the non-isolated bridge bridges. 

• The use of isolation systems causes the bridge to be 

less affected during earthquakes. 

• The use of the TCFP bearing system on the isolated 

bridge may be average reduced the total responses of the 

bridge deck by 85%. 

• When the periods obtained from modal analyses in the 

SVEM and SAP2000 are compared, there is a good 

agreement between results. 

• The response of the non-isolated bridge shows similar 

variance with those of the isolated bridge along the bridge 

deck length. 

• In the isolated bridge, the modal mass participation 

ratio is as effective as the advanced modes than the non-

isolated bridge. 
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