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1. Introduction 
 

These days, small size structures have possessed a huge 

application in many micro/nano electromechanical systems 

(MEMSs/NEMSs) as sensors, actuators, transistors and 

resonators (Ebrahimi and Salari 2015a). Owing to this fact, 

lots of researchers utilize such tiny elements in their probes 

analyzing the mechanical responses of those called 

structures. Clearly, small size effects shall be regarded once 

studying the mechanical responses of size-dependent 

beams, plates or shells than ones of macro scales. Due to 

this fact, the nonlocal continuum theories are developed to 

capture the small-scale effects while investigating 

mechanical characteristics of nanodevices. Eringen (1972, 

1983) presented the first nonlocal theory, called nonlocal 

elasticity theory (NET), which expresses the stress state in a 

desired point to be a function of the strains of all other 

adjacent points besides the strain of that specific point. This 

theory has been employed by a widespread range of 

authors, thus, it is worth mentioning to remonstrate some of 

the previous works gaining NE during their study on the 

mechanical responses of nanostructures. Wang and Varadan 

(2007) studied the wave dispersion properties of nanosize 

shells in the framework of a nonlocal shell theory. Reddy 

and Pang (2008) tried to magnify small scale influences 

investigating the bending, buckling and free vibration 

responses of carbon nanotubes (CNTs). Bending, buckling  
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and free vibration answers of nanobeams are studied by 

Aydogdu (2009). Wang et al. (2010) analyzed the wave 

dispersion characteristics of nanoplates employing NE. 

Malekzadeh et al. (2011) showed the free vibration 

responses of orthotropic arbitrary straight-sided 

quadrilateral nanoplates. The study of temperature effects 

on wave dispersion properties of size-dependent plates is 

performed by Narendar and Gopalakrishnan (2012a). Also, 

Narendar and Gopalakrishnan (2012b) could explain 

surface effects on wave propagation behaviors of a 

nanoplate. Eltaher et al. (2013) described the vibrational 

properties of nanobeams in the framework of a finite 

element method (FEM) and Euler-Bernoulli beam theory. In 

another attempt, Ebrahimi and Salari (2015b) surveyed the 

vibration properties of CNTs by the means of NET. 

Moreover, the coupled influences of thermal environments 

and surface elasticity are regarded by Ebrahimi et al. 

(2016g) while studying the vibration and buckling answers 

of nanotubes. The bending vibration analysis of nanobeams 

is performed by Ghadiri and Shafiei (2016) utilizing 

differential quadrature method (DQM). In many researches, 

authors utilized the NET to investigate the mechanical 

responses of size-dependent beams and plates subjected to 

various external loads (Ebrahimi and Barati 2016a, b, c, d, 

e, f, 2017a, b, c, d, Ebrahimi and Dabbagh 2017a, Ebrahimi 

and Hosseini 2016, Ebrahimi et al. 2016a, c, e, f, Ebrahimi 

and Hosseini 2016). Even though Eringen’s theory has been 

employed by a large number of authors, this theory is not 

powerful enough to depict the size-dependent behaviors of 

nanostructures entirely. Remarking this fact, some 

researches are allocated to investigate the deficiencies of 
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NE (Fleck and Hutchinson 1993, Lam et al. 2003). Lam et 

al. (2003) proved the crucial role of elastic strain gradient in 

the size-dependent responses of small structures. Coupling 

the NET and strain gradient theory, Lim et al. (2015) 

organized a new nonlocal strain gradient theory (NSGT) in 

which considers both of the former effects. In this new 

theory, the stiffness-hardening influence is considered in 

addition to the stiffness-softening effect. Furthermore, Lim 

et al. (2015) could show the ingenuity of this novel theory 

in predicting wave dispersion responses of CNTs. 

Thereafter, many researchers tried to use this theory 

studying vibration, bending, buckling or wave propagation 

answers of nanostructures. The examination of the thermo-

mechanical buckling properties of orthotropic nanoplates 

has been performed by Farajpour et al. (2016) in the 

framework of the NSGT. The wave dispersion properties of 

nano-beams and-plates are investigated in detail in the 

framework of the NSGT by Ebrahimi et al. (2016b, d) and 

Ebrahimi and Dabbagh (2017b, c). Lately, some authors 

have analyzed the vibration, stability, and wave dispersion 

responses of composite nanosize beams, rods, and tubes 

using NSGT (Li and Hu 2015, 2017, Li et al. 2015). Also, 

Ebrahimi and Barati (2017e, f) employed the NSGT in 

order to highlight effect of various parameters in their 

researches on vibrational responses of compositionally 

graded nanobeams. Most recently, Ebrahimi and Barati 

(2017g) presented a NSG based theory for vibration 

analysis of viscoelastic nanoplates whenever rested on 

visco-Pasternak substrate. For better understanding of the 

characteristics of the size-dependent elements, the readers 

are advised to see other attempts performed by researchers 

dealing with the statical and dynamical behaviors of small 

scale structures (Ahouel et al. 2016, Al-Basyouni et al. 

2015). 
On the other hand, a large variety of carbon-based 

structures including CNTs, carbon nanocones and nanorings 
can be achieved by generating some controlled distortions 
in single-layered graphene sheets (SLGSs) (Arani and Jalaei 
2016). In addition, graphene sheets encompass some 
superiorities compared with other small size structures 
made of many various types of materials like higher elastic 
potential (Lee et al. 2008) and larger thermal conductivity 
(Seol et al. 2010). According to above information, it is 
necessary to obtain detailed results about the mechanical 
responses of these types of nanostructures. Thus, Liew et al. 
(2006) studied the vibration characteristics of multi-layered 
graphene sheets (MLGSs) embedded in an elastic medium. 
Murmu and Pradhan (2009) tried to show dynamic answers 
of embedded SLGSs employing Eringen’s nonlocal theory. 
Moreover, Pradhan and Phadikar (2009) investigated the 
vibrational responses of MLGSs rested in polymer matrix. 
Also, the study of size-dependent buckling properties of 
SLGSs is performed by Pradhan and Murmu (2010). Ansari 
et al. (2010) tried to introduce a new FE based method for 
vibration analysis of embedded MLGSs. In addition, Ansari 
et al. (2011) utilized a generalized DQM in order to solve 
the vibration problem of a MLGS considering diverse 
boundary conditions. Pradhan and Kumar (2011) used 
DQM to show the reliability of this solution approach in 
solving vibration problems of orthotropic SLGSs. Rouhi 
and Ansari (2012) presented an atomistic FE based model 
for vibration and axial buckling analysis of SLGSs. Natsuki 

et al. (2012) employed the NET to show the buckling 
responses of double-layered circular graphene sheets. In 
another attempt, Arani et al. (2013) could exactly highlight 
the influences of substrate parameters on the nonlinear 
thermo-mechanical vibration answers of orthotropic DLGSs 
in the framework of DQM. Murmu et al. (2013) 
investigated the transverse vibrational responses of a 
magnetically affected SLGS using NET. Farajpour et al. 
(2013) analyzed the Postbuckling characteristics of MLGSs 
once a non-uniform biaxial compression is applied. Also, 
Anjomshoa et al. (2014) used NET incorporated with FEM 
to study the buckling responses of embedded MLGSs. 
Wang et al. (2015) employed the nonlocal relations of 
Eringen in order to investigate the nonlinear vibration 
problem of a double-layered viscoelastic graphene sheets 
(DLVGSs). Also, Hashemi et al. (2015) presented an exact 
solution for vibration analysis of orthotropic DLGSs. 
Furthermore, magneto-mechanical vibration and stability 
analysis of SLGSs rested on viscoelastic foundation is the 
issue of another research performed by Arani et al. (2016). 
Zenkour (2016) surveyed the transient vibration problem of 
a SLGS rested on a viscoelastic foundation. Influence of 
initial shear stress is regarded by Ebrahimi and Shafiei 
(2017) analyzing vibrational characteristics of SLGSs 
rested on Winkler-Pasternak foundation. Most recently, 
Ebrahimi and Barati (2018) could show the viscoelastic 
dynamic characteristics of SLGSs embedded on three-
parameter viscoPasternak medium utilizing NSGT. 

In addition, thermo-mechanical analysis of various 

elements under different thermal loadings are studied by 

several researchers (Ebrahimi and Habibi 2017a, b, 

Ebrahimi and Shaghaghi 2016). 

Obviously, the vibration and buckling responses of 

single- or multi-layered graphene sheets has been 

performed by a large number of authors, whereas, the wave 

propagation analysis of the same structure is not studied a 

lot. Even though this academic lack, nobody doubts in the 

crucial role of wave propagation-based methods in various 

fields. For instance, wave propagation analysis can be 

useful for defect detection in the applications in which 

performing non-destructive tests is not practical. However, 

some of the authors tried to investigate the wave 

propagation behaviors of desirable structures in the recent 

years (Karami et al. 2017, Yahia et al. 2015). Lately, a few 

endeavors on the wave dispersion properties of graphene 

sheets has been performed by some of the authors. For 

example, size-dependent mechanical properties of 

propagating waves in graphene sheets are exactly studied 

by Arash et al. (2012) by the means of the nonlocal 

elasticity. Also, Liu and Yang (2012) employed a nonlocal 

model to investigate the wave propagation problem of an 

embedded isotropic graphene sheet. Most recently, Xiao et 

al. (2017) presented a nonlocal strain gradient-based theory 

to examine wave propagation behaviors of viscoelastic 

monolayer graphene sheets. Thereafter, Ebrahimi and 

Dabbagh (2017d) surveyed the thermo-mechanical wave 

propagation behavior of DLGSs, rested on a viscoelastic 

substrate, based on the NE. 

A brief literature review reveals a lack in the scientific 

researches about the wave propagation responses of 

embedded DLGSs in hygro-thermal environments. Actually, 

it can be found that in the previous researches the authors  
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Fig. 1 Geometry of a double-layered graphene sheet rested 

on Winkler-Pasternak foundation 

 

 

focused on the some of the issues concerned in this attempt 

individually. In other words, although a wide range of 

endeavors are performed to analyze the mechanical 

behaviors of GSs, there is no article available dealing with 

the hygro-thermo-elastic wave dispersion behaviors of 

DLGSs using NSGT. Herein, by coupling the principle of 

virtual work with the kinematic relations of Kirchhoff plate 

theory the governing equations are derived. Furthermore, an 

analytical solution is utilized to solve the final nonlocal 

differential equations. Then, a separate section is allocated 

to investigate effect of each parameter on the wave 

frequency and phase velocity of propagated waves. 

 

 

2. Theory and formulation 
 

2.1 Kinematic relations 
 

Present part is devoted to describe the kinematic 

behaviors of graphene sheets. The schematic of an 

embedded DLGS can be seen in Fig. 1. 

The basic assumptions of the classical theory of plates 

can be summarized as: 

• straight lines normal to the mid-surface of the plate 

remain straight after deformation. 

• straight lines normal to the mid-surface of the plate 

remain normal to the mid-surface after deformation. 

• straight lines normal to the mid-surface remain normal 

to the mid-surface after deformation. 

It is of significance to point that in some of the newly 

developed theories, shear deformation effects are included 

based on a three-variable plate model (Houari et al. 2016). 

Ones who are interested in studying different kinematic 

theories are referred to study more references (Ebrahimi 

and Heidari 2017, Ebrahimi and Jafari 2017, 2018). 

Here, the displacement fields can be written as 
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where wi is bending deflection of the i-th plate in the 

thickness direction. Now, the nonzero strains for each of the 

graphene sheets can be stated as follows 
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Besides, the Hamilton’s principle can be defined as 
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in which U is strain energy, T is kinetic energy and V is 

work done by external loads. The variation of strain energy 

for each plate can be calculated as 
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Substituting Eq. (2) in Eq. (4) reveals 
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in Eq. (5) the unknown parameters can be defined in the 

following form 
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Furthermore, variation of work done by external forces 

can be shown as follows 

0 0

0 0

, (1, 2)

i i i i

x y

w ia b

i i i i i

p

i

d

w w w w
N N

x x y y

k w

V dydx iw w w w
k

x x y y

w
C

t

 



  



    
 

   
 
  
 

      
      

 
 

 
 

 
 

(7) 

where 
0 0,x yN N  are in-plane applied loads; kw, kp and Cd 
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are Winkler, Pasternak and damping coefficients, 

respectively. The variation of the kinetic energy will be 

written as 
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Inserting Eqs. (5), (7) and (8) in Eq. (3) and setting the 

coefficients of δwi to zero, the Euler-Lagrange equations of 

each of the graphene sheets can be rewritten as 
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where 
0 0 T H

x yN N N N  
, in which NT and NH stand for 

applied loads made of temperature and moisture change, 

respectively. 

 

2.2 The nonlocal strain gradient elasticity 
 

According to the nonlocal strain gradient theory, the 

stress field takes into consider the effects of nonlocal elastic 

stress field besides strain gradient stress field. So, the theory 

can be expressed as follows for elastic solids 
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in above equation, the stresses 
(0)
xx  (classical stress) and 

(1)
xx  (higher-order stress) are corresponding to strain εxx 

and strain gradient εxx,x, respectively as follows 
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in which Cijkl is the elastic modulus tensor; e0a and e1a are 

introduced to account for the nonlocality effects which is a 

decreasing (softening) effect physically. Also, l captures the 

strain gradient effects to take into consider the hardening 

impact in nanoscale. In this research the influences of 

structure’s thickness are not included. However, Li et al. 

(2018) have recently presented a new NSG based theory to 

investigate the mechanical responses of nanobeams which 

can be employed in other future researches. Once the 

nonlocal kernel functions α0 and α1 satisfy the developed 

conditions, the constitutive relation of nonlocal strain 

gradient theory can be expressed as below 
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in which 
2 denotes the Laplacian operator. Herein, the 

assumption of e0=e1=e is employed for simplicity. 

Afterwards, the general constitutive relation in Eq. (15) 

becomes 
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Finally, the simplified constitutive relation can be 

written as follows 
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in above equation 

11 22 12 11 662
, ,

2(1 )1

E E
Q Q Q Q Q


   


 (16) 

where µ=e0a and η=l. Now, inserting Eq. (6) in Eq. (15) 

gives 
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in Eq. (17), the cross-sectional rigidities can be formulated 

as follows 
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By substituting Eq. (17) in Eq. (10), the nonlocal 

governing equation of each layer of DLGSs can be directly 

derived in terms of displacements as follows 
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The above equation is the nonlocal governing equations 

of each of the layers without any attention to the 

interactions between the layers. Herein, van der Waals 

(vdW) model is employed to account for this phenomenon 

as follows 
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in above equations, C stands for vdW interaction 

coefficient. In this research, the dimensions of the 

nanoplates in both longitudinal and transverse directions are 

too long and actually there in no need to introduce 

boundary conditions. However, different types of boundary 

conditions are discussed in some attempts conducted by 

authors (Ebrahimi and Jafari 2016, Ebrahimi and Salari 

2017). 

 

 

3. Analytical solution 
 

In this part, the nonlocal governing equations derived in 

previous section are going to be solved analytically. The 

displacement fields are assumed to be exponential and can 

be defined as follows 
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 (22) 

where W1 and W2 are the unknown coefficients; β1 and β2 

are the wave numbers of wave propagation along x and y 

directions respectively, and finally ω is wave’s angular 

frequency. Now, substituting Eq. (22) into Eqs. (20) and 

(21) results 

       2

2 2 2 2
0K M

 
    (23) 

where the corresponding kij, mij are as written in appendix. 

The unknown parameters of Eq. (23) can be noted as 

follows 

   1 2,
T

W W   (24) 

In order to attaining wave’s angular frequency, the 

determinant of the left-hand side of Eq. (23) should be set 

to zero 

   2

2 2 2 2
0K M

 
   (25) 

In above equation by setting β1=β2=β and solving the 

obtained equation for ω, the wave’s angular frequency of 

embedded DLGSs can be calculated. If the angular 

frequency is divided by wave number, the phase velocity 

can be obtained as below 

pc



  (26) 

Also, the escape frequency of DLGSs can be derived by 

tending wave number to infinity 

lim
2

escf





  (27) 

 

 

4. External forces 
 

Here, the external applied forces can be expressed as 

follows 
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Table 1 Comparison of frequency of FG nanoplates for 

various nonlocal parameters (p=5) 

µ a/h=10   a/h=20  

 Present Natarajan et al. (2012)  Present Natarajan et al. (2012) 

0 0.043803 0.0441  0.011255 0.0113 

1 0.040051 0.0403  0.010288 0.0103 

2 0.037123 0.0374  0.009534 0.0096 

4 0.032791 0.033  0.008418 0.0085 
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 (28) 

in above relation, E, ν, α, β, ΔC and ΔT are Young’s 

modulus, poison’s ratio, thermal expansion coefficient, 

moisture expansion coefficient, moisture concentration and 

temperature gradient, respectively. 
 

 

5. Results and discussion 
 

Herein, the wave propagation responses of DLGSs are 

compared once various parameters are supposed to be 

changed. The material properties of graphene sheets are 

defined as: E=1 TPa, ν=0.19, ρ=2300 kg/m3, α=1.6×10-6 

1/K, β=0.0026 (Ebrahimi and Barati 2018). Also, the 

thickness is presumed to be h=0.34 nm. In addition, the 

vdW interaction coefficient can be supposed to be C=-108 

GPa/nm (Liew et al. 2006). In the following diagrams wave 

frequencies are calculated by dividing wave’s angular 

frequency to 2π (f=ω/2π). Moreover, the validity of reported 

results is proven setting a comparison between results of 

present research with those of antecedent works. 

Also, it is of importance to point that in some of the 

recent researches, the nonlocal and length scale parameters 

are determined on the basis of data obtained from 

experiments or molecular dynamic simulations. Volunteers 

are offered to read Karami et al. (2017) and Zhu and Li 

(2017a). 

Fig. 2 is devoted to show the influence of nonlocal and 

length scale parameters on wave frequency of DLGSs with 

respect to variations of wave number. It is clear that in the 

case of the NE (η=0), a rise in the amount of nonlocal 

parameter reveals a decrease in the value of wave 

frequency. In this condition, by adding wave number wave 

frequency increases gradually until obtaining its peak 

amount. Once the strain gradient elasticity is considered 

(η≠0), wave frequency tends to infinity as wave number 

becomes greater. Also, in this situation length scale 

parameter acts in the way of increasing wave frequency. In 

other words, if nonlocal parameter is supposed to be 

constant, an increase in the value of length scale parameter 

can be resulted in a raise in the amount of wave frequency. 

In Fig. 3, variation of phase velocity versus wave  

 

Fig. 2 Coupled effect of nonlocal and length scale 

parameters on wave frequency of DLGSs (kw=kp=0, Cd=0, 

ΔT= ΔC=0) 

 

 

Fig. 3 Coupled effect of nonlocal and length scale 

parameters on phase velocity of DLGSs (kw=kp=0, Cd=0, 

ΔT= ΔC=0) 

 

 

number is plotted for various nonlocal and length scale 

parameters. Obviously, it is clear that phase velocity rises to 

its maximum amount and then starts to diminish 

continuously as wave number increases when the NET is 

utilized (η=0). Also, it is worth mentioning that nonlocal 

parameter has a softening effect on the phase velocity of 

DLGSs as same as their wave frequency. Indeed, phase 

velocity can be easily detracted by choosing a bigger 

nonlocal parameter. In addition, if NSGT is applied (η≠0), 

by increasing wave number phase velocity becomes bigger 

and whenever reached to its maximum amount remains 

constant. It shall be mentioned that a larger phase velocity 

value can be obtained once a greater length scale parameter 

is utilized. 
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Fig. 4 Coupled effect of temperature gradient and moisture 

concentration on wave frequency of DLGSs (µ=η=0.1 nm, 

kw=kp=0, Cd=0) 

 

 

Fig. 5 Coupled effect of Winkler and Pasternak coefficients 

on wave frequency of DLGSs (µ=η=0.1 nm, Cd=0, ΔT= 

ΔC=0) 

 

 

Fig. 4 is presented in order to characterize the variation 

of wave frequency versus wave number for different values 

of temperature gradient and moisture concentrations. It is 

clear that wave frequency can be affected by making a 

change in the temperature gradient or moisture 

concentration in small wave numbers. As predicted before, 

increasing temperature gradient leads to a decrease in the 

amount of wave frequency. Moreover, a similar behavior 

can be observed by changing moisture concentration. In 

other words, smaller wave frequencies are achieved once a 

raise is produced in the moisture concentration. Once wave 

number is tended to infinity, variations of wave frequency 

become insensible. Therefore, one of the ways of obtaining 

smaller wave frequencies is to utilize hygro-thermal  

 

Fig. 6 Variation of phase velocity of a DLGS versus 

temperature gradient for different moisture concentrations 

(µ=η=0.1 nm, kw=kp=0, Cd=0, β=0.2) 

 

 

environment than thermal one. Effect of various Winkler 

and Pasternak coefficients on the wave frequency of DLGSs 

is shown in Fig. 5. It is clear that in a constant amount of 

each of these parameters bigger wave frequencies can be 

obtained by choosing a higher value for another coefficient. 

It shall be considered that in small wave numbers Winkler 

coefficient can influence wave frequency more than 

Pasternak coefficient. However, in wave numbers bigger 

than β=0.2 (1/nm) effect of Pasternak coefficient is more 

observable. Thus, it can be concluded that a higher wave 

frequency value can be reached by employing bigger 

amounts for linear or nonlinear medium parameters. 

Furthermore, in Fig. 6 variation of phase velocity versus 

temperature gradient is plotted for different moisture 

concentrations. Depending on this figure, both of the 

temperature gradient and moisture concentration are able to 

decrease phase velocity values whenever they are raised. In 

each desired moisture concentration, phase velocity starts 

from its maximum amount and diminishes to zero in a 

continuous manner. This phenomenon happens in a smaller 

temperature gradient if moisture concentration is 

intensified. 

Besides, Fig. 7 is devoted to study the variation of phase 

velocity versus damping coefficient for both thermal and 

hygro-thermal conditions. It can be understood that once 

graphene sheets are rested on a viscoelastic substrate their 

wave dispersion response can be damped in comparison 

with a Winkler-Pasternak foundation. Also, it shall be 

mentioned that wave propagation responses of DLGSs are 

not too different in thermal and hygro-thermal situations. 

However, whenever hygro-thermal condition is chosen the 

outcome can be a very tiny decrease in the phase velocity 

value compared with thermal condition. So, despite phase 

velocity is not sensitive to thermal or hygro-thermal being 

of the environment, selecting a hygro-thermal environment 

can be considered as one of the alternatives for obtaining 

smaller phase velocities. 
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Fig. 7 Variation of phase velocity of a DLGS versus 

damping coefficient for both thermal and hygro-thermal 

conditions (µ=η=0.1 nm, kw=kp=0, β=2 

 

 

Fig. 8 Variation of wave frequency of a DLGS versus 

damping coefficient for various Winkler coefficients and 

both thermal and hygro-thermal conditions (µ=η=0.1 nm, 

kp=0, β=0.2) 

 

At last, Figs. 8 and 9 are plotted to magnify the 

influences of viscoelastic medium on wave frequency of 

DLGSs under thermal and hygro-thermal conditions. It can 

be well observed that wave frequency shows a damping 

influence whenever its variations are plotted with respect to 

damping coefficient of visco-Pasternak foundation. As 

estimated before, wave frequency will be of a smaller 

magnitude once a hygro-thermal environment is considered.  

As a matter of fact, both of the linear (Winkler) and 

nonlinear (Pasternak) coefficients are powerful enough to 

enlarge the amount of wave frequency. It is worth 

mentioning that effect of Winkler coefficient can be damped 

by using a smaller damping coefficient. Furthermore, it is of 

significance to point that Pasternak coefficient requires  

 

Fig. 9 Variation of wave frequency of a DLGS versus 

damping coefficient for various Pasternak coefficients and 

both thermal and hygro-thermal conditions (µ=η=0.1 nm, 

kw=0, β=0.2) 

 

 

bigger values to generate an increase in the amount of wave 

frequency once compared with Winkler coefficient. 

Obviously, whenever higher wave frequency is the main 

purpose, it is better to pay more attention to Pasternak 

coefficient; because, in a same amount of linear and 

nonlinear foundation parameters this coefficient can 

enormously amplify wave frequency compared with 

Winkler coefficient. 

 

 

6. Conclusions 
 

Presented article aims to survey wave propagation 

responses of DLGSs under hygro-thermal environments 

once it is rested on a visco-Pasternak foundation. Also, a 

more accurate size-dependent analysis is performed on the 

basis of the NSGT. Moreover, mixing the principle of 

virtual work with the kinematic relations, the final equation 

of motion is derived for each graphene sheet. Then, these 

equations are coupled to each other by the means of vdW 

interaction model. Finally, wave frequencies are achieved in 

the framework of an analytical solution method. Now, it is 

time to recall some of the most significant effects as 

follows: 

• Wave frequency and phase velocity can be easily 

strengthened if length scale parameter is added or nonlocal 

parameter is decreased. 

• Linear and nonlinear medium parameters are able to 

increase wave frequency or phase velocity once they are 

amplified. 

• Whenever damping coefficient is captured, wave 

frequency or phase velocity can be finally damped in each 

desired wave number. 

• Wave dispersion responses of DLGSs are smaller once 

hygro-thermal condition is applied compared with thermal 

condition. 
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• Increasing temperature gradient or moisture 

concentration is a practical way of decreasing wave 

frequency and phase velocity amounts of DLGSs. 
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Appendix 
 

The kij and mij arrays in Eq. (23) are defined in the 

following form 
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