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1. Introduction 
 

Many engineering phenomena can be modeled 

mathematically. The mathematical models could be in linear 

and nonlinear partial differential equations. Generally, it’s 

not an easy task to prepare analytical solution for nonlinear 

partial differential equations. Therefore in recent years, 

scientific has been working on approximate analytical 

solution for nonlinear problems such as: Homotopy 

perturbation method (Baki et al. 2011); Variational 

approach method (He 2007); Energy balance method (He 

2002, 2010, Mehdipour et al. 2010) Galerkin method (Chen 

1987); Variational Iterational method (He 1999); harmonic 

balance method (Lau 1983) and many other proposed 

methods (Akgoz et al. 2011, Bayat 2015a, b, c, 2016, 2012, 

Pakar et al. 2015, Shen et al. 2009, Wu 2011, Öziş et al. 

2017, Hashemietal 2013, Kaya 2013, Bayat 2017, Zhifeng 

2013, Radomirovic 2015, Filobello-Nino 2015). 

In this paper, variational approach method has been used 

to solve high nonlinear vibration equations. The method 

first was proposed by He (2007). It has been shown that the 

first iteration of the variational approach leads us to a high 

accuracy of the solution and has an excellent agreement 

with the numerical solutions. To show the efficiency and 

accuracy of the methods some comparisons have done with 

the results obtained by the variatioanl approach method and 

Runge-kutta. The energy balance method has an excellent 

agreement with the Runge-kutta and are valid for whole 

domain.  

 

 

2. Mathematical formulation 

                                           

Corresponding author, Researcher 

E-mail: mbayat14@yahoo.com or mbayat@riau.ac.ir 

 

 

A conservative nonlinear single degree of freedom is 

shown in Fig. 1. The governing equation of the oscillation is 

as follows 
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Where m1 is the first mass of system, m2 is the second 

mass of system, k spring stiffness, l distance between two 

mass and g is gravity. 

For the simplicity of the system let consider 

2 1R m m and u x l . Then expanding for 1u  , 

obtain. 
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With boundary condition  

(0) (0) 0u A u   (4) 

 

 

3. Basic idea of variational approach (VA) 
 

He suggested a variational approach which is different 

from the known variational methods in open literature (He 

2007). Hereby we give a brief introduction of the method 

( ) 0u f u   (5) 

Its variational principle can be easily established 

utilizing the semi-inverse method (He 2007) 
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Where T is period of the nonlinear oscillator, F f
u

 


. 

Assume that its solution can be expressed as 

( ) cos( )u t A t  (7) 

Where A  and ω are the amplitude and frequency of 

the oscillator, respectively. Substituting Eq. (3) into Eq. (2) 

results in 
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(8) 

Applying the Ritz method, we require 
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But with a careful inspection, for most cases we find 

that 
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Thus, we modify conditions Eqs. (5) and (6) into a 

simpler form 
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Fig. 1 A conservative Nonlinear single degree of freedom 

Table 1 Comparison of frequency corresponding to various 

parameters of system 

A m1 m2 L g K VA  NM  Error(%) 

0.1 4 2 2 10 5 3.74657 3.77425 0.73876 

0.5 3 1 5 10 10 3.92683 3.95378 0.68637 

1 4 5 4 10 20 6.43010 6.51424 1.30861 

2 2 4 4 10 5 3.57071 3.59453 0.66710 

3 1 3 5 10 15 5.64007 5.69443 0.96397 

4 2 5 4 10 10 2.79508 2.80374 0.30956 

5 1 4 5 10 30 5.45750 5.52437 1.22534 

10 3 4 10 10 20 1.29797 1.29453 0.26533 

 
 
4. Application of variational approach 
 

Variational formulation can be readily obtained Eq. (11) 

as follows 
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Choosing the trial function  ( ) cos( )u t A t   into 

Eq. (13) we obtain 
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The stationary condition with respect to A leads to 
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Solving Eq. (16), according to ω, we have 
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Then we have 
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According to ( ) cos( )u t A t and (18), we can obtain 

the following approximate solution 
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(a) 

 
(b) 

Fig. 2 Comparison of VA solution of ( )u t based on time 

with the numerical solution for 

(a):
 1 22, 4, 4, 10, 5, 2m m l g k A       

(b):
 1 21, 4, 5, 10, 30, 5m m l g k A       

 

 

5. Results and discussions 
 

In this section, to illustrate the accuracy of variational 

approach (VA), the results obtained with this method are 

compared with numerical solutions. It has been shown that 

the methods work well for whole range of amplitudes. 

Comparisons of angular frequencies for different 

parameters via numerical is presented in Table 1. The 

maximum relative error between the Variational approach 

results and numerical results is 1.3%. 

Fig. 2 is the displacements results of VA compared with 

numerical solution for two different cases:  

(a):
1 22, 4, 4, 10, 5, 2m m l g k A       

(b):
1 21, 4, 5, 10, 30, 5m m l g k A       

Fig. 3 is the variation of frequency respect to various 

parameters of amplitude and l. Fig. 4 is the variation of 

frequency respect to various parameters of two masses of  

 

 

Fig. 3 Variation of frequency respect to various parameters 

of amplitude and l 

 

 

 

Fig. 4 Variation of frequency respect to various parameters 

of two masses of the system
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Fig. 5 Sensitivity analysis of nonlinear frequency 

 

 

the system.  Fig. 5 shows the Sensitivity analysis of 

nonlinear frequency for different important parameters. As 

shown in Figs. 2 to 5 and Table 1, it is apparent that the 

Variatioanl approach (VA) has an excellent agreement with 

the numerical solution using Rung-Kutta and these 

expressions are valid for a wide range. 

 

 

6. Conclusions 
 

In this paper, Varitioanl approach method was applied 

successfully for high nonlinear vibration equations.  The 

validity of the proposed method was compared with 

numerical solution using Runge-kuttas algorithm. An 

excellent agreement of the Varitioanl Approach (VA) 

solutions and the Runge-Kutta solutions shows the 

reliability and the efficiency of the method. Only one 

iteration of the proposed approach leads to high accurate 

solution for whole domain. The method is useful to obtain 

analytical solution for all oscillators and vibration problems. 

The Varitioanl Approach (VA) is a well-established method 

for analyzing nonlinear systems, which can be easily 

extended to any nonlinear equation. 
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