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1. Introduction 
 

Functionally graded materials (FGMs) are a class of 

composites that have continuous variation of material 

properties from one surface to another and thus eliminate 

the stress concentration found in laminated composites. The 

concept of FGM has been widely explored in various 

engineering applications including mechanical, aerospace, 

nuclear, and civil engineering (Shahrjerdi et al. 2011, Kar 

and Panda 2014, Swaminathanand Naveenkumar 2014, 

Kolahchi et al. 2015, Belkorissat et al. 2015, Ghorbanpour 

Arani et al. 2016, Bellifa et al. 2016, Boukhari et al. 2016, 

Bounouara et al. 2016, Bousahla et al. 2016, Barati and 

Shahverdi 2016, Bellifa et al. 2017a). The increase in FGM 

applications requires accurate models to predict their 

responses. Since the shear deformation has significant 

effects on the responses of functionally graded (FG) plates, 

shear deformation theories are used to capture such shear 

deformation effects. The first-order shear deformation  
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theory FPT (Mindlin 1951, Reissner 1945) accounts for 

shear deformation effects, but violates the equilibrium 

conditions at the top and bottom surfaces of the plate. A 

shear correction factor is therefore required (Yaghoobi and 

Yaghoobi 2013, Araniand Kolahchi 2016, Madani et al. 

2016, Zamanian et al. 2017). The higher-order shear 

deformation theories (HSDT) (Reddy 1984, Reddy 2000, 

Ren 1986, Touratier 1991, Soldatos 1992, Xiang et al. 2009, 

Akavci 2010, Grover et al. 2013, Karama et al. 2003, 

Pradyumna and Bandyopadhyay 2008, Ait Atmane et al. 

2010, Mantari et al. 2012, Zidi et al. 2014, Larbi Chaht et 

al. 2015, Mahi et al. 2015, Taibi et al. 2015, Zemri et al. 

2015, Kolahchi and Moniri Bidgoli 2016, Saidi et al. 2016, 

Houari et al. 2016, Baseri et al. 2016, Kolahchi et al. 

2016a, b, Kolahchi 2017, Kolahchi et al. 2017, Zidi et al. 

2017, Abdelaziz et al. 2017, Youcef et al. 2018) account for 

shear deformation effects and satisfy the equilibrium 

conditions at the top and bottom surfaces of the plate 

without requiring any shear correction factors. In a number 

of recent articles, a new refined and robust plate theory for 

bending response and vibration of simply supported FGM 

plate with only four unknown functions has been developed 

(Bourada et al. 2012, Bachir Bouiadjra et al. 2012, Tounsi 

et al. 2013, Kettaf et al. 2013). In addition, many of the 
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above-mentioned papers deal with temperature- 

independent materials with shear deformation theories. 

Temperature-dependent materials in temperature variations 

with surface-to-surface heat flow through the thickness 

direction were considered in other research by applying 

first, third and higher order shear deformation theories. 

However, the bending analyses of FGMs resting on an 

elastic foundation are quite limited. Many models related to 

soil-structure interaction were proposed by scientists (Kerr 

1964), the simplest one is the Winkler model, which regards 

the foundation as a series of closed-spaced springs without 

coupling effects between them, the disadvantage of this 

model is that it assumes no interaction between the springs. 

To overcome this problem, several two-parameter models 

have been proposed. Zhemochkin and Sinitsyn (1947) 

introduced a combined elastic foundation, which is the 

classical foundation covered by a layer of Winkler 

foundation. Filonenko-Borodich (1940) developed an 

improved Winkler model by connecting the top ends of the 

springs with an elastic membrane stretched to a constant 

tensile stress. Hetényi (Hetényi 1946, 1950) created an 

interaction between the springs by incorporating an 

additional plate into the Winkler foundation. Vlasov (1949) 

also suggested a more refined two-parameter model. 

Gorbunov-Posadov (1949) considered problems on the 

flexure of plates and beams lying on a linearly deform able 

foundation. Pasternak (1954) improved the Winkler model 

by connecting the ends of the springs to a plate, or “shear 

layer,” consisting of in compressible vertical elements able 

to de form only in lateral shear. Since then, the Pasternak 

model has been widely used to describe the mechanical 

behavior of structure-foundation interactions (Shen 1995, 

Omurtag et al. 1997, Matsunaga 2000, Filipich and Rosals 

2002, Zhou et al. 2004, Huang et al. 2008, Bilouei et al. 

2016). Kolahchi et al. (2016) studied the dynamic stability 

response of temperature-dependent functionally graded 

CNT-reinforced visco-plates resting on orthotropic 

elastomeric medium. All of the previous work has been 

analyzed plates or beams resting on elastic foundations with 

constant moduli. However, studies on structures resting on 

variable elastic foundation are limited in literature. The 

vibration and buckling of beams on variable two-parameter 

elastic foundations were discussed by Eisenberger and 

Clastornik (1987). Zhou (1993) studied vibration of a 

uniform single span beam resting on variable Winkler 

elastic foundation. Pradhan and Murmu (2009) illustrated 

the thermo-mechanical vibration of FG sandwich beam 

resting on variable elastic foundations. 
The aim of this work is to develop a simple higher-order 

shear deformation theory for thermo mechanical bending of 
temperature-dependentfunctionally graded (FG) plates 
resting on variable two-parameter elastic foundations. The 
proposed theory contains fewer unknowns and equations of 
motion than the first-order shear deformation theory, but 
satisfies the equilibrium conditions at the top and bottom 
surfaces of the plate without using any shear correction 
factors. Further simplifying supposition are made to the 
conventional HSDT so that the number of unknowns is 
reduced, and consequently, makes the present theory much 
more amenable to mathematical implementation. The 
temperature is assumed to be constant in the plane of the  

 

Fig. 1 Schematic representation of FGM plate resting on 

elastic foundation 
 
 

plate. The variation of temperature is assumed to occur in 
the thickness direction only. The FG plates are assumed to 
be simply supported with temperature-dependent material 
properties with a power law distribution in terms of the 
volume fractions of the constituents and subjected to 
nonlinear temperature rise. Equations of motion are derived 
from the principle of virtual displacements. The accuracy of 
obtained solutions is verified by comparing the present 
results with those predicted by solutions available in the 
literature. 

 

 

2. Theoretical developments 
 

Consider a simply supported rectangular FG plate with 

the length a width b, and thickness h. The x-, y-, and z-

coordinates are taken along the length, width, and height of 

the plate, respectively (Fig. 1). The plate lies on two-

parameter elastic foundation model which consists of 

closely spaced springs interconnected through a shear layer 

made of incompressible vertical elements, which deform 

only by transverse shear. The formulation is limited to 

linear elastic material behavior. The FG plate isisotropic 

with its material properties vary smoothly through the 

thickness of the plate. 

 

2.1 Kinematics and strains 
 

In this article, further simplifying supposition are made 

to the conventional HSDT so that the number of unknowns 

is reduced. The displacement field of the conventional 

HSDT is given by  

),,()(),,(),,,( 0
0 tyxzf

x

w
ztyxutzyxu x



  (1a) 

),,()(),,(),,,( 0
0 tyxzf

y

w
ztyxvtzyxv y



  (1b) 

),,(),,,( 0 tyxwtzyxw   (1c) 

Where u0; v0; w0, φx, φy are five unknown displacements 

of the mid-plane of the plate, f(z) denotes shape function 

representing the variation of the transverse shear strains and 

stresses within the thickness. By considering that

454



 

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations 

 

 dxyxx ),( , and  dyyxy ),(  (Besseghier et al. 

2017, Sekkal et al. 2017a, Khetir et al. 2017, Menasria et 

al. 2017, Yazid et al. 2018), the displacement field of the 

present model can be expressed in a simpler form as 
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In this work, the present higher-order shear deformation 

plate theory is obtained by setting 
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It can be seen that the displacement field in Eq. (2) 

introduces only four unknowns (u0, v0, w0 and θ). The 

nonzero strains associated with the displacement field in 

Eq. (2) are 
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The integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows 
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Where the coefficients A’ and B’ are expressed 

according to the type of solution used, in this case via 

Navier. Therefore, A’, B’, k1 and k2 are expressed as follows 
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Where α and β are defined in expression (27). 

 

2.2 Constitutive relations 
 

FGMs are composite materials made of ceramic and 

metal. There are some models in the literature that express 

the variation of material properties in FGMs (Chi and 

Chung 2006a, b). The most commonly used is the power 

law distribution of the volume fraction. According to this 

model, the material properties of FG plates are assumed to 

be position and temperature- dependent and can be 

expressed as the following (Kim 2005, Bouderba et al. 

2013, Attia et al. 2015, El-Haina et al. 2017, Mouffoki et al. 

2017) 
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Where Γ denotes a generic material property such as 

elastic modulus E, the Poisson’s ratio v, mass density ρ and 

thermal expansion coefficient α of FG plates; furthermore, 

subscripts m and c refer to the pure metal and ceramic 

plates, respectively. Vc denotes the ceramic volume fraction, 

where p≥0 is a namely grading index that is the volume 

fraction exponent. The non-linear FG plate’s material can 

be expressed as the following 

 3
3

2
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Where  denotes material property; P-1, P0, P1, P2 and 

P3 are the coefficients of temperature-dependent material 

properties unique to the constituent materials, and ΔT is the 

temperature rise only through the thickness direction. 

Temperature-dependent typical values for some functionally 

graded materials components are in Table 1. 

Taking into account the thermal effects and using Eqs. 

(4) and (2), the stress-strain relationships of the FGM plate 

can be written as 
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where (σx, σy, τyz, τxz, τxy) and (εx, εy, γyz, γxz, γxy) are the stress 

and strain components, respectively. Using the material 

properties defined in Eq. (8), stiffness coefficients, Cij, can 

be expressed as 
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The plate is assumed to rest on two parameter elastic 

foundation model which consists of closely spaced springs 

interconnected through a shear layer made of 

incompressible vertical elements, which deform only by 

transverse shear. The response equation of this foundation is 

given by 

R(x,y)= ( )K x w(x,y)- G 2 w(x,y) (12) 

Where R is the density of the reaction force of elastic 

foundation. K is Winkler parameter depended on x only. It 

is assumed to be linear, parabolic or sinusoidal (Pradhan 

and Murmu 2009, Sobhy 2015, Beldjelili et al. 2016) 
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In witch J1 is a constant and ς is a varied parameter. G is 

the shear layer foundation stiffness 

2 is the Laplace operator in x and y, and w is the 

deflection of the plate. 

Note that, if ς=0, the elastic foundation becomes 

Pasternak foundation and if the shear layer foundation 

stiffness is neglected, the Pasternak foundation becomes the 

Winkler foundation. 

 

2.3 Equations of motion 
 

The principle of virtual work is herein utilized to 

determine the equations of motion (Bellifa et al. 2017b, 

Benadouda et al. 2017, Chikh et al. 2017, Ahouel et al. 

2016, Bouderba et al. 2016, Al-Basyouni et al. 2015, Ait 

Yahia et al. 2015, Ait Amar Meziane et al. 2014) 
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Where Ω is the top surface, and q is the applied 

transverse load. 

Subtitling Eqs. (4) and (2) into equations. (14) and 

integrating through the thickness of the plate, Eq. (14) can 

be rewritten as  
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Where the stress resultants N , M , and S  are defined 

by 
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By substituting Eqs. (2) and (5) into Eq. (15), the 

following can be derived 
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(17) 

Substituting Eq. (10) into Eq. (16) and the subsequent 

results into Eq. (15), the stress resultants are obtained in 

terms of strains as following compact form 
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And stiffness components are given as 

  dzzfzfzzfzzC

HDBDBA

HDBDBA

HDBDBA

h

h

sss

sss

sss


















































2

1

1

)(),( ),(,,,1
2/

2/

22
11

666666666666

121212121212

111111111111




, (20a) 

   ssssss HDBDBAHDBDBA 111111111111222222222222 ,,,,,,,,,,  , (20b) 

  ,)(
2/

2/

2
445544 




h

h

ss dzzgCAA  (20c) 

Introducing Eq. (18) into Eq. (17), the equations of 

motion can be expressed in terms of displacements (u0, v0, 

w0, θ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential 

operators 
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2.4 Temperature field 

The nonlinear temperature rise across the thickness of 

the plate is determined by solving the one-dimensional heat 

conduction equation. The one dimensional steady-state heat 

conduction equation in the z-direction is given by 

0)( 









dz

dT
zk

dz

d
 (23) 

With the boundary condition T(h/2)Tt and 

T(−h/2)=Tb=T0. Here a stress-free state is assumed to exist 

at T0=300 K. The analytical solution of Eq. (23) is 
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In the case of power-law FG plate, the solution of Eq. 

(18) also can be expressed by means of a polynomial series 
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Where ktb=kt−kb, with kt and kb are the thermal 

conductivity of the top and bottom faces of the plate, 

respectively. 

 

 

3. Analytical solutions 
 

Based on the Navier approach with simply supported 

boundary conditions, the displacement fields are expressed 

as 
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(27) 

where Umn, Vmn, Wbmn and θmn are arbitrary parameters to be 

determined, and α=mπ/a and β=nπ/b.  

 

 

4. Numerical results 
 

457



 

Amina Attia, Abdelmoumen Anis Bousahla, Abdelouahed Tounsi, S.R. Mahmoud and Afaf S. Alwabli 

 

Table 1 Temperature-dependent coefficients for ZrO2/Ti-

6Al-4V (Reddy and Chin 1998) 

Material 1P  0P  1P  2P  3P  

E  
Ti-6Al-4V 0 122.56e+9 -4.586e-4 0 0 

ZrO2 0 244.27e+9 -1.371e-3 1.214e-6 -3.681e-10 

  
Ti-6Al-4V 0 7.5788e-6 6.638e-4 -3.147e-6 0 

ZrO2 0 12.766e-6 -1.491e-3 1.006e-5 -6.778e-11 

k  
Ti-6Al-4V 0 7.82 0 0 0 

ZrO2 0 1.80 0 0 0 

 

 

We present the bending results of a FG plate simply 

supported and resting on variable elastic foundations. This 

plate is subjected to thermal and mechanical loads. We 

choose the constituent materials of the FGM plate to be 

composed of a titanium alloy (Ti-6Al-4V) and zicronia 

(ZrO2). Temperature-dependent coefficients of Young’s 

modulus E, thermal expansion α and thermal conductivity k 

are given in Table 1. While Poisson’s ratio is assumed to be 

a constant v=0.3.  

The used non-dimensional parameters are 
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As is described in references (Sobhy 2015). The top 

surface is ceramic-rich and the bottom surface is metal-rich. 

Verification is carried out by assuming the the following 

values (unless otherwise stated) a/h=10; J1=J2=100; b/a=1; 

m=n=1; ζ=10; q0=105. 

 

4.1 Validation of the results 
 

In this section, various numerical results for 

temperature-dependent FG plates computed using the 

present theory having four unknowns are compared to those 

of other higher-order shear deformation theories with more 

unknowns (Sobhy 2015). 

Example 1: 

In the first example, a FG ZrO2/Ti–6Al–4V square and 

rectangular plates resting on elastic foundations with a 

parabolic Winkler modulus is considered for various values 

of mod numbers (m, n) and the dimensionless deflections 

are tabulated in Table 2. It can be seen from Table 2 that the 

results computed using the present efficient higher-order 

shear deformation theory is in a good agreement with other 

results from Refs (Sobhy 2015). It is clear that the 

deflection of the rectangular plate is higher than that of the  

Table 2 the deflection w  of FGM square and rectangular 

plate simply supported and resting on elastic foundations 

(∆T=300; p=1) 

(a)Sobhy (2015) 

 

Table 3 the deflection w  of FGM square plates without or 

resting on elastic foundations (∆T=300; p=1, ζ=0) 

J1 J2 Theory 
a/h 

5 10 15 20 25 30 50 

0 0 

FPT(a) 0.72464 2.50034 5.45984 9.60314 14.93025 21.44115 59.32280 

HPT(a) 0.72413 2.50010 5.45965 9.60296 14.93007 21.44098 59.32257 

SPT(a) 0.72385 2.49988 5.45944 9.60276 14.92988 21.44079 59.32241 

present 0.72382 2.49972 5.45916 9.60237 14.92936 21.44014 59.32124 

103 0 

FPT(a) 0.56180 2.00022 4.39367 7.74398 12.05137 17.31589 47.94570 

HPT(a) 0.56149 2.00006 4.39355 7.74386 12.05126 17.31578 47.94558 

SPT(a) 0.56132 1.99992 4.39367 7.74373 12.05113 17.31566 47.94544 

present 0.56130 1.99982 4.39323 7.74347 12.0508 17.31526 47.94468 

103 103 

 

FPT(a) 0.10335 0.40422 0.90506 1.60613 2.50748 3.60913 10.01867 

HPT(a) 0.10334 0.40421 0.90505 1.60612 2.50748 3.60912 10.01865 

SPT(a) 0.10333 0.40421 0.90505 1.60612 2.50747 3.60912 10.01865 

present 0.10333 0.40420 0.90504 1.60612 2.50746 3.60910 10.01862 

(a)Sobhy (2015) 

 

 

square plate. It should be noted that deflection decreases 

with the increase of m and n. 

Example 2: 

In the next example, aZrO2/Ti–6Al–4V square plate 

without or resting on one-parameter ortwo-parameter elastic 

foundations is considered for different values of the side-to-

thickness ratio a/h. the obtained results are compared to 

those of Sobhy (2015), as shown in Tables 3. It can be seen 

that the computed results are in good agreement with the 

previously published results (Sobhy 2015). 

m n Theory Square plate 
Rectangular plate 

(b/a = 2) 

1 

1 
SPT(a) 1.57312 3.11472 

present 1.58118 3.14664 

3 
SPT(a) -0.10770 -0.72382 

present -0.10770 -0.72551 

2 

1 
SPT(a) 0.00000 0.00000 

present 0.00000 0.00000 

3 
SPT(a) 0.00000 0.00000 

present 0.00000 0.00000 

3 

1 
SPT(a) -0.10765 -0.12701 

present -0.10773 -0.12296 

3 
SPT(a) 0.04059 0.08825 

present 0.04060 0.08831 

4 

1 
SPT(a) 0.00000 0.00000 

present 0.00000 0.00000 

3 
SPT(a) 0.00000 0.00000 

present 0.00000 0.00000 
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Table 4 The transverse shear stress xz  in FGM square 

plates without or resting on elastic foundations (∆T=300; 

p=1, ζ = 0) 

J1 J2 Theory 
a/h 

5 10 15 20 25 30 50 

0 0 

FPT(a) 1.91547 1.91547 1.91547 1.91547 1.91547 1.91547 1.91547 

HPT(a) 2.38438 2.38915 2.39004 2.39035 2.39049 2.39057 2.39069 

SPT(a) 2.45911 2.46518 2.46632 2.46671 2.46687 2.46700 2.46714 

present 2.45911
 
2.46517 2.46630 2.46669 2.46683 2.46698 2.46713 

103 0 

FPT(a) 1.48501 1.53232 1.54142 1.54462 1.54612 1.54694 1.54811 

HPT(a) 1.84885 1.91131 1.92334 1.92758 1.92956 1.93062 1.93220 

SPT(a) 1.90696 1.97216 1.98473 1.98918 1.99122 1.99235 1.99399 

present 1.90698 1.97219 1.98474 1.98918 1.99124 1.99236 1.99398 

103 103 

 

FPT(a) 0.27321 0.30969 0.31754 0.32037 0.32171 0.32243 0.32349 

HPT(a) 0.34029 0.38629 0.39624 0.39981 0.40149 0.40245 0.40379 

SPT(a) 0.35107 0.39860 0.40886 0.41257 0.41433 0.41525 0.41667 

present 0.35107 0.39862 0.40887 0.41258 0.41432 0.41527 0.41666 

(a)Sobhy (2015) 

 

Table 5 the in-plane shear stress xy  in FGM square plates 

without or resting on elastic foundations (∆T=300; p=1, 

ζ=0) 

J1 J2 Theory 
a/h 

5 10 15 20 25 30 50 

0 0 FPT(a) 9.81157 9.81156 9.81156 9.81153 9.81156 9.81159 9.81157 

  

HPT(a) 10.16623 9.90037 9.85112 9.83369 9.82579 9.82149 9.81513 

SPT(a) 10.18859 9.90608 9.85362 9.83516 9.82662 9.82216 9.81546 

present 10.18068
 
9.89877 9.84800 9.83074 9.82299 9.81893 9.81338 

103 0 

FPT(a) 7.60670 7.84902 7.89561 7.91202 7.91967 7.92383 7.92990 

HPT(a) 7.88289 7.92022 7.92750 7.92991 7.93117 7.93182 7.93276 

SPT(a) 7.90093 7.92493 7.92954 7.93116 7.93116 7.93239 7.93300 

present 7.89490 7.91920 7.92512 7.92763 7.92899 7.92986 7.93138 

103 103 

 

FPT(a) 1.39937 1.58622 1.62642 1.64099 1.64783 1.65155 1.65701 

HPT(a) 1.45083 1.60071 1.63304 1.64472 1.65023 1.65023 1.65763 

SPT(a) 1.45449 1.60174 1.63349 1.64499 1.65040 1.65335 1.65769 

present 1.45344 1.60065 1.63264 1.64431 1.64982 1.65286 1.65735 

(a)Sobhy (2015) 

 

 

Example 3: Tables 4 and 5 show the comparison 

between the results of the present theory and those of Sobhy 

(2015) for transverse shear stress 𝜏𝑥̅𝑧and in-plane shear 

stress 𝜏𝑥̅𝑦in bending of FGM square plates without or 

resting on one-parameter ortwo-parameter elastic 

foundations for different values of the side-to-thickness 

ratio a/h. Again, a good agreement between the present 

results and those of Sobhy (2015) is observed. The 

difference observed in the results between the present 

theory and HPT, EPT and SPT of Sobhy (2015) are due to 

the displacement fields assumed by these theories. It should 

be noted that the present theories give the accurate  
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Fig. 2 Effect of the power-law index p on the deflection w  

of FGM plates under (a) mechanical load and (b) 

thermomechanicalload ∆T=200 

 

 

representation of the transverse shear strain, the transverse 

shear correction factor is not needed as against in the case 

of the FPT. It can be concluded that the present theory is not 

only accurate but response of FG plates. In addition, all 

displacements and stresses are decreasing with increasing J1 

and J2. It is indicated that large moduli of elastic foundation 

can enhance bending rigidity of the plate. 

 

4.3 Results of present study 
 

The effects different parameters such as the power law 

index, elastic foundation, plate geometry, and temperature 

field on the bending of FG plates are investigated here.  

The central deflection versus the side-to-thickness ratio a/h 

of the simply supported FGM square plates for different 

values of the power-law index pis plotted in Fig. 2 the plate 

is resting on parabolic elastic foundations and subjected to 

mechanical or thermomechanical loads. As expected, the 

deflection w increases with the increasing of the ratio a/h. 
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Fig. 3 Variation of the transverse shear stress xz  through 

the thickness of FGM plates under (a) mechanical load and 

(b) thermomechanicalload ∆T=200 
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Fig. 4 the deflection w  of FGM plate (p=1, ζ=20) versus 

to the side to thickness ratio a/h under (a) mechanical load 

and (b) thermomechanicalload ∆T=300 for various types of 

Winkler parameter 
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Fig. 5 Variation of the transverse shear stress xz of FGM 

plate (p=1, ζ=20) versus to the side to thickness ratio z/h 

under (a) mechanical load and (b) thermomechanicalload 

∆T=300 for various types of Winkler parameter 
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Fig. 6 The deflection w of FGM plate (p=1) against the 

side to thickness ratio a/h under thermomechanicalload 

(∆T=300) for different values of the parabolic parameter ζ 

(J1 =1000) 

 

 

The FG platedeflection is between those of plate made of 

ceramic (ZrO2) and metal (Ti–6Al–4V). It can be observed 

that the deflection of metal rich plates is larger when 

compared to ceramic rich FGMplates. 
Fig. 3 shows the through-the-thickness distributions of 

the stress xz axial stress of FG plate resting on parabolic 
elastic foundations for different values of the power-law 
index p. the maximum value xz  occurs at a point which is 
not at the plate center as in the homogeneous case. It is 
evident that the maximum stresses decrease with the 
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increase of the power-law index p. 
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Fig. 7 Variation of the transverse shear stress xz  through 

the thickness of FGM plate (p=1) under 

thermomechanicalload (∆T=300) for different values of the 

parabolic parameter ζ (J1 =1000) 
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Fig. 8 Effect of the temperature difference ΔT on the 

deflection w of the FGM plate (p=1) against the ratio a=h 

 

 

The deflection w and the stress xz of simply supported 

FGM (p=1) square plate subjected to mechanical and 

thermomechanical loads are compared in Figs. 4-5 for 

different type of elastic foundations (parabolic, linear, 

sinusoidal). It can be noted that the results depend on the 

type of elastic foundations. The thermomechanical load 

always over predicts the deflection w whereas the 

mechanical load always over predicts the xz  magnitude. 

Figs. 6-7 shows the variation of the deflection and stress 

of simply supported FGM plate (p=1) restingon parabolic 

elastic foundation and under thermomechanical load for 

ζ=10, 30, 50, 80. Also, as is evident, as the parabolic 

parameter ζ decrease, the deflection w  and the transverse 

shear stress xz decrease.  

The effect of the temperature difference ΔT on the 

deflection w of simply supported FGM plate (p=1) resting 

on parabolic elasticfoundations (ζ=50) is explained in Fig. 

8. As expected, the deflectionsincrease as the temperature 

difference increases. 

 

 

5. Conclusions 
 

In this research study, we have analyzed thermoelastic 

bending of FG plates subjected to thermomechanical loads 

and resting on two-parameterelastic foundations. One of 

these parameters is varying in the direction of x-axis 

aslinear, parabolic or sinusoidal functions of x. This 

parameter represents Winklersprings modulus. The second 

parameter represents the shear layer modulus that takes 

constant values. The main advantage of the proposed theory 

over the existing higher-order shear deformation theories is 

that the present ones involve fewer variables as well as 

equations of motion. The computational cost can therefore 

be reduced. Material properties of FG plates are assumed to 

be temperature-dependent and graded through the thickness 

according to a power-law distribution in terms of volume 

fractions of constituents. Numerical results show that the 

proposed theory give results close to those of existing 

higher-order shear deformation theories. Applications of 

this work for the thicker FG structures can be extended in 

future with considering new formulations developed by 

other works (see, e.g., Bessaim et al. 2013, Belabed et al. 

2014, Hebali et al. 2014, Bousahla et al. 2014, Fekrar et al. 

2014, Hamidi et al. 2015, Bourada et al. 2015, Bennoun et 

al. 2016, Draiche et al. 2016, Bouafia et al. 2017, Sekkal et 

al. 2017b, Benahmed et al. 2017, Abualnour et al. 2018, 

Benchohra et al. 2018). 
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