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1. Introduction 
 

The failure process of a RC structure is often 

accompanied with the generation and propagation of cracks. 

Cracks not only induce discontinuity in the medium but also 

cause stress redistribution and stiffness degradation in 

regions around cracks, which makes the failure process 

analysis of RC structures a complicated and difficult task. 

Finite element method (FEM) is the main method used 

in the failure process analysis of RC structures, in which 

two measures are often adopted to deal with cracks. One 

measure is to regard cracks as boundaries of elements 

(Carter et al. 2000), which must update the element mesh 

with the propagation of cracks to ensure that cracks are 

always on the boundaries of elements. The other measure is 

to smear cracks into elements, and the effect of cracks is 

taken into consideration by adjusting element stiffness 

matrixes or material constitutive relations (Hariri-Ardebili 

and Seyed-Kolbadi 2015, Ors et al. 2016, Kara et al. 2017, 

Murthy and Priya 2017). This measure can avoid updating 

the element mesh but fails to provide the characteristics of 

the cracks, such as the profile and the position. Belytschko 

et al. (Belytschko and Black 1999, Jiang and Du 2017,  
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Nanda Kumar et al. 2017) proposed a modified FEM named 

the Extended Finite Element Method to analyze the 

propagation process of cracks, in which the step function 

and the enrichment function are introduced to describe the 

discontinuous displacements around cracks. This measure 

has the advantages of the above two but cannot work with 

the phenomenon of multidirectional cracking. 

In recent years, numerical methods based on discrete 

mechanics have been proposed and widely applied to rock 

and concrete structures (Shi 1988, 1994, Li et al. 2015, Guo 

and Zhao 2014, Burns and Hanley 2017). The discrete 

methods do not rely on the continuum assumption which 

makes it an efficient and convenient tool to simulate the 

cracking process of structures. The rigid body spring 

method (RSBM) is one such method which was firstly 

proposed by Kawai (1977). RBSM can show realistic 

behavior from cracking to failure (Yao et al. 2015, Yao et 

al. 2017, Gu et al. 2013, Zhang et al. 2012, Zhang 1999), 

and has been successfully applied to investigate the 

behavior of reinforced concrete (RC) members and 

prestressed concrete members (Bolander and Saito 1998, 

Saito and Hikosaka 1999, Bolander et al. 2000). However, 

the theoretical researches and engineering applications of 

this method mainly focus on two-dimensional problems as 

yet, which greatly limit its applications in actual 

engineering projects. In this study, a 3-D RBSM for 

simulating the failure process of reinforced concrete 

structures is proposed. 

In the proposed model, concrete, reinforcing steels, and 

their interface are represented as discrete entities. Concrete  
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is partitioned into a collection of rigid blocks, and a uniform 

distribution of normal and tangential springs along their 

boundaries is defined to reflect the material properties of 

concrete, as shown in Fig. 1(a). Reinforcement is modeled 

as a series of bar element that can be freely positioned in the 

structural domain and irrespective of the mesh geometry of 

concrete. The bond-slip characteristics between reinforcing 

steel and concrete are also considered by introducing 

special linkage elements that are placed along the 

reinforcement-concrete interface, as shown in Fig. 1(b). 

Numerical integration on complex polyhedrons and 

polygons is the key problem of three-dimensional RBSM, 

and an efficient and accurate integral method is proposed in 

this paper. The effectiveness and applicability of the 

proposed method is firstly verified through the analyses of 

an elastic cantilever T-shape beam under two different load 

conditions, and then it is applied to analyze the failure 

processes of a Z-type component under direct shear loading 

and a RC beam under two-point loading. 
 

 

2. Concrete model 
 

2.1 Basic displacements of blocks 
 

In this study, the rigid blocks used to represent concrete 

may be arbitrary three-dimension convex polyhedrons, and 

there are six degrees of freedom (DOF) defined at the 

centroid of each block, three translational DOFs and three 

rotational DOFs, as shown in Fig. 2. The displacements of 

an arbitrary point on a block are completely controlled by 

centriodal freedoms of the block, the mathematical 

expression is as follows, 
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where u, v, w are the translation displacements of a point on  

 

 

Fig. 2 Centriodal freedoms of blocks 

 

 

Fig. 3 Local system for interface elements 

 

 

the block, respectively; N, ug are the shape function matrix 

and the centroidal displacements of the block, respectively; 

ug, vg, wg, θx, θy, θz are the translational displacements and 

the rotational displacement of the block respectively, as 

shown in Fig. 2; x, y, z are the global coordinates of an 

arbitrary point on the block; xg, yg, zg are the global 

coordinates of the centroid. 

 

2.2 Spring deformation and spring force of interfaces 
 

Interface elements can be generated by checking the 

common vertexes of any two blocks in rigid body spring 

models. If there are three or more common vertexes 

between two blocks, there is an interface. Rather than using 

concentrating springs to reflect the properties of concrete in 

the initial RBSM (Bolander and Saito 1998, Saito and 

Hikosaka 1999, Bolander et al. 2000), a uniform 

distribution of normal and tangential springs is defined 

 

Fig. 1 a rigid body spring model for RC structures: (a) concrete model; (b) reinforcement and bond-slip modeling 
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along the boundaries of adjacent rigid blocks in this paper. 

Fig. 3 shows the corresponding relationship between the 

local system of interface elements and the global system, 

which is the premise to calcuate the sping deformation and 

force of interface elements. The local coordinate system 

consists of two tangential vectors ( 1s


, 2s


) and an outer 

normal vector ( n


), which can be established by the method 

as shown in Fig. 3. 

Point Rv in Fig. 3 is defined as, 
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where mblock is the number of vertexes composing the rigid 

block, and xi, yi, zi are their coordinates. 

The spring deformation of an interface can be 

determined by the relative displacement between two 

neighbouring blocks, 

   2121
uuLδ

T
 ssn   (5) 

where δn, 
1s

 , 
2s  are the relative displacements of one 

point on the block interface, respectively; u1 and u2 are the 

displacements of adjacent rigid blocks respectively, which 

are defined by Eq. (1); L is the coordinate-transformation 

matrix. 

With the local system established in Fig. 3, L is given 

by 
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The local spring forces T on the interface are related to 

the spring deformation δ by the following constitutive 

relation 

  DδT
T


21 ssn   (7) 

where σn, 
1s

 , 
2s denote the normal and tangential spring 

forces of concrete, respectively; D is the matrix of 

interfacial spring stiffness, 
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λ, E are Poisson’s ratio and the elastic modulus of 

concrete, respectively; dn and ds are the stiffness of the 

normal and tangential springs, respectively; h1 and h2 are 

the vertical distances from the centroids of neighbouring 

blocks to their interface, respectively. 

 

2.3 Virtual work equation 
 

The overall energy balance equation is given as follows 
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where Ωe is the domain of definition; 
eS  is the force 

boundary; 
rS0  is an interface in the domain; fi, Pi are the 

gravity density of the material and the imposed loads, 

respectively. (Note: throughout the article, superscript i 

means the number of interfaces and subscript i means the 

number of blocks.) 

After applying the principle of stationary potential 

energy, the following equilibrium equation is obtained 

RUK g   (10) 

where K is the global stiffness matrix of the model; R is the 

equivalent nodal load array of the model; Ug is the global 

displacement array of the model. 

 

2.4 Material model for concrete 
 

Penetration and separation between two blocks are 

allowed in the proposed model, which can be used to reflect 

the compressive strain and tensile strain of concrete, 

respectively. Stiffnesses of springs defined along interfaces 

reflect the ability of concrete to resist penetration and 

separation between two blocks, which can be adjusted 

according to current stress states of interfaces to simulate 

the nonlinearity of concrete. 

 

2.4.1 Concrete model under compression 
In this study, the concrete under compression shows the 

nonlinear behaviour up to the compressive strength and 

after the peak a softening branch exists until failure, as 

shown in Fig. 4(a), which is idealized as the following 

equations (Saito and Hikosaka 1999). 
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where ε=δn/(h1+h2); E0 is the initial modulus of elasticity; fc 

is the compressive strength, and ε0=2fc/E. The ultimate 

strain εcu is set to 4 ε0, and μ is set to 0.2 in this study. 

The secant modulus of concrete E is determined by the 

following equation, 
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Fig. 5 Tension softening model for concrete 
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It has been experimentally observed that, in presence of 

compressive stresses, concrete tends firstly to compact and 

subsequently to expand after the appearance of micro 

cracks. To reproduce this behavior, the Poisson coefficient λ 

is expressed as function of the non-linearity index β and 

properly adjusted during the analysis according to Bernardi 

et al. (2015), as shown in Fig. 4(b). That is, 
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(13) 

where β ε/ε0, and limit value βa equal to 0.8; λ0 indicates the 

initial value of Poisson coefficient (assumed equal to 0.2), 

while λf represents its secant value at peak (approximately 

equal to 0.36). 

 
2.4.2 Concrete model under tension 
Concrete under tension behaves linearly elastic up to the 

tensile strength, then the stress-strain relationship exhibits 

strain softening until failure, as shown in Fig. 5. By 

introducing the damage parameter ω, the tension softening 

curve is defined by (Saito and Hikosaka 1999) 
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Fig. 6 Mohr-Coulomb criterion for shear spring 

 

 

in which ε is the normal strain of concrete, and εt=ft/E0; ft is 

the tensile strength. The damage parameter ω represents the 

degree of damage and varies from 0 (no damage) up to 1 

(complete damage). The constant parameter κ is set to 5. 

The ultimate strain εtu is calculated by the following 

equation, 
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where Gf is the fracture energy which represents the amount 

of energy consumed to create a crack of one-unit area; h1 

and h2 are the vertical distances from the centroids of 

adjacent blocks to the interface. 

The Poisson coefficient λ of concrete under tension is 

equal to λ0 until the tensile stress reaches the tensile 

strength, after that it turns to λf. 

 

2.4.3 Shear transferring model for concrete  
Tangential springs represent the shear transferring 

mechanism of concrete. The shear strength is assumed to 

follow the Mohr-Coulomb type criterion with the tension 

and compression caps, as shown in Fig. 6. C and φ are the 

cohesion and internal friction angle, respectively. ψ is a 

constant parameter, and is set to 0.5. The shear fracture 

criterion is therefore expressed as (Saito and Hikosaka 

1999), 
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where  

 

Fig. 4 Concrete model under compression: (a) compression model; (b) Poisson’s ratio 
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When the tangential spring reaches the strength τf, 

cracks occur. There are two failure modes: the tensile-shear 

failure ( 122 f , 0 ) and the compression-shear 

failure ( 122 f , 0 ).  

For the compression-shear failure, the original interface 

spring matrix Eq. (8) is replaced by 
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where χ is a reduction coefficient of the spring stiffness ds, 

which is used to consider the aggregate interlock of 

concrete.  

For the tensile-shear failure, the original interface spring 

matrix Eq. (8) is replaced by 
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The method proposed by Wang et al. (2002) is adopted 

to consider the contribution of aggregate interlock, 
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where εt is the tensile strain of concrete corresponding to 

the tensile strength ft. 

 

 

3. Reinforcement model 
 

Reinforcement is modelled as a series of bar element that 

can be freely positioned in the structural domain and 

irrespective of the mesh geometry of concrete. The bond-

slip characteristics between reinforcing steel and concrete 

are also considered by introducing special linkage elements 

that are placed along the reinforcement-concrete interface,  

 

 

as shown in Fig. 7(a). Considering that the bar element 

model has been widely used in numerical simulations, the 

emphasis of this section is put on the linkage elements. 

 

3.1 Discrete modeling of reinforcement 
 

Reinforcement is represented by a series of regular bar 

elements. Each node of a bar element has three translation 

freedoms (us, vs, ws) and are attached to the concrete rigid 

blocks through zero-length link elements. Assuming small 

displacements occur, the displacements uc at the point P2(x2, 

y2, z2) located on block 2 in Fig. 7(a) is determined by Eq. 

(1). Thus, the relative displacements (or slippages) between 

concrete and steel bars are expressed by, 
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 Tsu ssszyxggg wvuwvu   (23) 

   
   
    
























1-000100

01-00010

001-0001

22

22

22

xxyy

xxzz

yyzz

gg

gg

gg

sN
 

(24) 

where s  , 1n  , 2n   are the relative displacements (or 

slippages) between concrete and steel bars. 

To obtain the local displacement δs, it is necessary to use 

an appropriate coordinate transformation matrix T. That is 

  ss δTδ  21 nns   (25) 

With the bar local system established in Fig. 7(b), T is 

given by 
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After applying the principle of stationary potential 

energy, the element local stiffness matrix for the linkage 

element can be written as follows, 

ss
TT

ss TNDTNK   (27) 

where, 

 

Fig. 7 Linkage element between concrete and reinforcement: (a) linkage element; (b) corresponding local ststem 
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Fig. 8 Material model for reinforcement: (a) stress-strain 

relation for reinforcing steel; (b) idealization of bond stress-

slip relationship 
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ks, kn are the tangential and normal spring stiffnesses of the 

linkage element, respectively; llink is the computational 

length of the linkage element, as shown in Fig. 7(a); Ssurface 

is the surface area of a steel bar; ρslip is the slip coefficient 

between concrete and steel bars. kn is set to a large value 

since the relative displacements normal to the steel bar 

direction are not expected. 
 

3.2 Material model for reinforcement 
 

Material stress-strain relation for steel reinforcing bars is 

idealized as a bilinear curve as shown in Fig. 8(a). The 

secant modulus of reinforcement Es is determined by the 

function of reinforcement strain, 
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where σs and εs are the axial stress and axial strain of the 

steel bars, respectively; Es0 is the initial elastic modulus of 

reinforcement; fy and εy are the yield tensile strength and 

strain of steel bars, respectively; fu and εu are the ultimate 

tensile strength and strain of the steel bars, respectively. 

The bond-slip interaction between concrete and steel 

bars strongly affects the crack condition and the stress in the 

reinforcement. The spring ks in Eq. (28), parallel to the 

reinforcing bar, is defined to take account of the bond-slip 

interaction, and the slip coefficient ρslip can be represented 

as function of slippages between concrete and steel bars, 

sslipslip    (30) 

where δs represents the slippage (parallel to the reinforcing 

bar) between concrete and steel bars; τslip is the bond stress. 

As shown in Fig. 8(b), the bond stress-slip relation 

adopted in this paper shows the nonlinear behavior up to 

peak strength (Gedik et al. 2011, Serhat and Metin 2015), 

which is defined by Eq. (31), and after the peak strength the 

curve proposed by Committee Euro-international Du Beton 

(1990) is assumed. That is 

 

Fig. 9 Natural coordinate system adopted in simplex 

integration: (a) the area coordinate system for triangles; (b) 

the volume coordinate system for tetrahedron 
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where db is diameter of the steel bar. 

 

 

4. Numerical integration of 3-D RBSM 
 

The numerical integration is needed when deriving 

elment stiffness matrixes of cocnrete and reinforcement. 

Considering that the integral domains in 3-D RBSM are 

usually complex polyhedrons or polygons, an efficient and 

accurate numerical integral method based on simplex 

integration method (Shi, 1994) is proposed. The simplex 

integration formulas are valid only when the integral region 

is a simplex, so complex integral domains need to be 

divided into simplexes. After that, applying simplex 

integration formula to each unit simplex, and then 

superposing the results. 
 

4.1 Simplex integration method 
 

The surface integral over a spatial triangle can be carried 

out according to the following equation, 

1234321 2
)!2(

!!!

0

A
cba

cba
dxdyLLL

rS

cba


  

(32) 

where rS0
 is the integral domain; Li(i=1,2,3) are area 

coordinates of the triangle as shown in Fig. 9(a); A1234 is the 

area of the triangle. 

The correspondence between the area coordinates Li and 

the global coordinates (x, y, z) are given by the following 

equations, 


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(33) 

where xi, yi, zi (i=1,2,3) are vertex coordinates of the 

triangle in global coordinate system. 

The volume integration over a spatial tetrahedron can be 

carried out according to the following equation, 
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where Ωe is the integral domain; Li(i=1,2,3,4) are volume 

coordinates of the tetrahedrons as shown in Fig. 9(b); V1234 

is the volume of the integral domain. 

The correspondence between volume coordinate Li and 

global coordinate (x, y, z) are as follows, 


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 (35) 

where xi, yi, zi (i=1,2,3,4) are vertex coordinates of the 

tetrahedron in global system. 

 

4.2 Vertex sorting method for the rigid blocks 
 

Ensuring the vertexes of each surface are stored in 

sequence is very important for numerical integration in 3-D 

RBSM. İn this section, an efficient vertex soring method is  

 

 

 

 

proposed. 

As shown in Fig. 10, the initial storage order of the 

surface vertexes is i, j, k, l, m, while the actual vertex order 

is shown in Fig. 10.  

Assuming the storage order of vertex i is 1, and 

selecting the outer normal vector n


 as the reference vector 

of the surface, the storage order of vertex j can be 

determined by the method shown in Fig. 10. It is easy to 

find out that the direction of vector jn


 and mn


 are 

consistent with that of the reference vector n


, which 

indicates that there are two vertexes between vertex i and 

j , so that the storage order of vertex j is 4. 

The storage order of vertex k can be determined from 

Fig. 11, and its order is 3. 

The same method can also be applied to determine storage 

orders of other vertexes on the surface, and the final storage 

order of the surface vertexes is i, m, k, j, l.  

 

Fig. 10 Determination of the storage order of vertex j: (a) Relative position of vertex j and k; (b) Relative position of 

vertex j and l; (c) Relative position of vertex j and m 

 

Fig. 11 Determination of the storage order of vertex k: (a) Relative position of vertex k and j; (b) Relative position of 

vertex k and l; (c) Relative position of vertex k and m 

 

Fig. 12 The integral domain divided into simplexes: (a) the vertexes of each surface of a rigid block are stored in 

clockwise order; (b) surface I is divided into several trangles; (c) the rigid block is divided into several tetrahedrons 

according to the surface I 
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4.3 The simplex integration over a complex-shape 

region 
 

By applying the sorting method, vertexes of each 

surface are stored in clockwise order, as shown in Fig. 

12(a). For surface integration, a surface can be divided into 

several triangles, as shown in Fig. 12(b), and the point Rp is 

defined by, 
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(36) 

where msurface is the number of vertex composing the surface 

and xi, yi, zi are their coordinates.  

For volume integration, a rigid block will be divided 

into several tetrahedrons according to the surfaces, as 

shown in Fig. 12(c), and the point Rv is defined by Eq. (4). 

Finally, the surface and volume integration for 3-D 

RBSM can be conducted by applying simplex integration 

formula to each unit simplex (triangles for surface 

integrations and tetrahedrons for volume integrations), and 

then superposing the results. 
 

4.4 Centroids of rigid blocks 
 

The degrees of freedom of rigid body spring models are 

defined at the centroid of blocks, but not at the 

computational point Rv. İn order to determine the centroid, a 

block will be divided into several tetrahedrons by the 

method described in Fig. 12. For each tetrahedron, the 

centroid can be determined by, 
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(37) 

 

 

Fig. 14 The deflection of the cantilever T-shape beam 

 

Table 1 Comparison between analytic solution and 

numerical solution 

Item 

Load condition 1 Load condition 2 

RBSM solution 
Analytic 

solution 
Error RBSM solution 

Analytic 

solution 
Error 

vmax (mm) -1.081 -1.086 0.46% -0.901 -0.905 0.44% 

θmax (rad) 0.119 0.121 1.65% 0.110 0.113 2.65% 

σmax (MP

a) 
0.263 0.264 0.38% 0.198 0.198 0.00% 

*vmax, θmax: The maximum displacements; σmax: The 

maximum normal stress value 

 

 

where x1i, y1i, z1i, …, x4i, y4i, z4i are the vertex coordinates of 

tetrahedron i. 

The volume of each tetrahedron is 

iii

iii

iii

iii

i

zyx

zyx

zyx

zyx

V

444

333

222

111

1

1

1

1

det
6

1


 
(38) 

The centroid coordinates of the block can be determined 

by, 
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Fig. 13 A elastic cantilever T-shape beam under two different load conditions 
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Table 2 Parameters of concrete and reinforcement 

ft/MPa fc/MPa Ec0/GPa λ0 λf c/MPa φ fy/MPa fu /MPa Es0/GPa εu Gf /(N/m) 

2.64 49.4 32.5 0.20 0.36 5.1 62.5° 360.2 568.1 200 0.075 100 

 

 

where n is the number of tetrahedrons composing the block. 
 

 

5. Presentation of studied cases 
 

5.1 Case 1 
 

To verify the accuracy of the proposed method, an 

elastic cantilever T-shape beam under different load 

conditions is studied, as shown in Fig. 13. The comparison  

 

 

 

 

between the analytic solution and numerical solution is 

shown in Table 1. The deflection of the beam is presented in 

Fig. 14. 

It is noticeable that the overall error of the proposed 

method is less than 2.65%, and the stress error is less than 

1%. 

 

5.2 Case 2 
 

In order to indentify the performance of the proposed 

method in direct-shear failure, numerical results of the 

proposed method must be compared with the actual 

experimental data. Based on the experimental results of the 

reinforcement concrete specimen (as shown in Fig. 15)  

 

Fig. 15 Geometry details and reinforcement arrangement of the Z-shape component (mm) 

 

Fig. 16 Result comparison of the 3-D RBSM and the experiment: (a) discrete model of the Z-shape component; (b) 

crack patterns predicted by the proposed RBSM; (c) crack patterns obtained the experimental test 

 

Fig. 17 Geometry Details and reinforcement arrangement of the test beam (mm) 
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Fig. 19 The load-deflection curves of the test beam 

 

 

under push-off test program (Zhang 2009), a 3-D rigid body 

spring model is developed for the experimental specimen, 

as shown in Fig. 16(a). The steel bars are modeled by a 

series of regular bar elements and the bonding properties 

between the concrete and the reinforcing steel are 

introduced by special linkage elements proposed in this 

paper. The boundary conditions are achieved by restraining 

the DOFs of the corresponding blocks. The material 

properties of the concrete and reinforcement adopted in the 

model are listed in Table 2. The step-by-step search method 

is adopted to approach the ultimate bearing capacity of the 

beam. When the load reaches 320.75 kN, shear cracks at the 

notches fully developed, and steel bars yielded. The cracks 

patterns predicted by the proposed method and the push-off 

test are shown in Figs. 16(b)-(c).  

The comparison result of Figs. 16(b)-(c) shows that the 

crack distributions and the ultimate load Pu of the test 

specimen predicted by the proposed method are in good 

agreement with the experimental results. 

 
5.3 Case 3 
 

To further check the performance of the proposed model 

in a bending-shear failure process analysis, an RC simple-

supported beam under two points of load is adopted herein 

and corresponding experiment is conducted in our 

laboratory. The test beam has a cross section of 200 mm by 

120 mm with a clear span of 2000 mm, and the 

arrangements of steel bars are shown in Fig. 17. A stepped 

loading mode is adopted, and when the experimental load 

reaches 10 kN, vertical cracks appear at the bottom of the  

 

Table 3 Material properties adopted in numerical models 

ft /MPa fc/MPa Ec0/GPa λ0 λf c/MPa φ fy/MPa fu/MPa Es0/GPa εu Gf/(N/m) 

2.2 23.4 31.5 0.20 0.42 4.5 62.5° 235 355 20 0.075 100 

 

 

beam. After that, vertical cracks continue developing. When 

the load reaches 40 kN, obvious diagonal cracks appear in 

the bending shear regions. When the load exceeds 55 kN, 

the beam fails and the crack pattern is shown in Fig. 18(a). 

During the loading process, the vertical deflection is 

measured using the dial gauge at the mid-span where the 

maximum deflection is predicted, and the load–deflection 

curve is shown in Fig. 19. 

A 3D rigid body spring model based on Voronoi 

diagram is developed for the experimental beam, as shown 

in Fig. 20. By using the Voronoi diagram, the concrete 

material is partitioned into a collection of rigid blocks with 

random geometry. Reinforcement is modeled by a series of 

regular bar elements and the bonding properties between the 

concrete and the reinforcing steel are introduced by special 

linkage elements proposed in this paper. The boundary 

conditions can be achieved by restraining the DOFs of the 

corresponding blocks. The material properties of the 

concrete and reinforcement adopted in the model are listed 

in Table 3. The step-by-step search method is adopted to 

approach the ultimate bearing capacity of the beam. When 

the load reaches 8 kN, vertical cracks appear at the bottom 

of the beam. When the load reaches 35 kN, obvious 

diagonal cracks appear in the bending shear regions. The 

final convergence load is 56.5 kN, and the crack patterns 

are shown in Fig. 18(b). The load-deflection curve is shown 

in Fig. 19. 

For comparison, a finite element model (FEM) is 

developed for the test beam using the ABAQUS program, 

which has been widely used in both engineering and 

academic areas to predict complicated behavior of RC 

structures with high credibility (Demir and Husem 2015). In 

the present work, eight-node solid elements (C3D8R) are 

used to model the concrete, and internal reinforcement is 

modeled by 3-D truss elements (T3D2). The FEM model 

consists of 2115 nodes, 1986 concrete elements and 546 

reinforcement elements, as shown in Fig. 21. The plastic 

damage constitutive model is adopted to simulate the 

nonlinear behavior of concrete under compression and 

tension, and steel bars are assumed to be a bilinear elastic 

material model as shown in Fig. 7(a). The bond-slip effect 

between the concrete and internal reinforcement is modeled 

by spring elements. Basic material properties for the  

 

Fig. 18 Crack distribution obtained by different methods: (a) experiment; (b) the 3-D rigid body spring method 
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concrete and steel reinforcement are listed in Table 3. The 

load-deflection response of the test beam predicted by the 

finite element model is plotted with the RBSM and 

experimental results in Fig. 19, and the field output of scalar 

stiffness degradation is shown in Fig. 22.  

The ultimate loads and load-deflection curves of the test 

beam from the proposed method, experiment and FEM are 

close to each other as shown in Fig. 19.  

The comparison results of Figs. 18(a)-(b) shows that the 

crack characteristics of the test beam, such as location, 

height and development trend, predicted by the proposed 

method are in good agreement with the experimental results. 

The crack distribution can be roughly predicted from the 

field output of scalar stiffness degradation of the finite 

element model (As shown in Fig. 23), but there is a certain 

deviation from the experimental results. 
 

 

6. Conclusions 
 

This paper has presented a practical, computationlly 

efficient method for simulating the failure process of 

reinforced concrete structures. In the proposed model, 

concrete, reinforcing steels, and their interfaces are 

represented as discrete entities. Concrete is partitioned into 

a collection of rigid blocks, and a uniform distribution of 

normal and tangential springs along their boundaries is 

defined to reflect the material properties of concrete. 

Reinforcing material is explicitly modeled by a regular bar 

element and special linkage element. Integral calculation on 

complex-shape region is a key problem of three -

dimensional RBSM, and an efficient and accurate integral 

method is proposed in this paper. The applicability and 

effectiveness of the proposed method is firstly confirmed by  

 

 

 

 

the elastic analysis of a cantilever T-shape beam, and then it 

was applied to analyze the failure processes of a Z-type 

component under direct shear loading and a RC beam under 

two-point loading. The following conclusions are led 

through this research: 

• The proposed 3-D RBSM can successfully predict the 

load-deformation response, ultimate strengths, failure 

mechanisms, and cracking patterns of reinforced concrete 

components. Crack initiation and propagation of concrete 

are presented realistically. That is, the proposed method can 

simulate cracking behavior realistically; 

• Mesh construction in the proposed method is greatly 

facilitated. Random geometry models based on the Voronoi 

diagram greatly reduce mesh bias on potential crack 

directions, and crack trajectories need not to be anticipated; 

• An accurate numerical integral method is proposed in 

this paper to carry out the integration on complex 3-D 

domain, and numerical results prove that the method is 

feasible and efficient; 

• The proposed method provides with a simple 

framework for automatically introducing reinforcing 

material. Reinforcing steel can be freely positioned in the 

structural domain and irrespective of the mesh geometry of 

concrete. Since model preprocessing efforts are greatly 

reduced, the approach can be applied as a practical means 

for integrating analyses and design process in reinforced 

concrete structures. 
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