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1. Introduction 
 

The mechanical properties of advanced laminated 

composite materials have some advantageous with respect 

to conventional engineering materials such as metals. The 

main advantages of composite material are high strength to 

weight and high modulus to weight ratio of these materials 

which make them favorite materials for use in weight 

sensitive structures with high strength and high stiffness and 

low weight. So the application of laminated composite and 

sandwich structures with laminated faces increased in 

aerospace, automotive, civil and sport industries which 

weigh is very important parameter. Composite and 

sandwich structures usually work in non-isothermal or 

humid environment and so hygrothermal loading must be 

studied for these structures. The coefficient of thermal 

expansion and moisture expansion of core and faces in the 

sandwich structures are different and face and core tend to 

expand (contract) differently due to change in temperature 

and moisture content. So, thermal and hygroscopic stresses 

grow in composite and sandwich structures. Furthermore, 

the out of plane stresses arise at a thin layer at the vicinity 

of edges, and usually complex 3D stress state occurs near 

the edges of these structures which is called boundary layer 

and may results in delamination and transverse cracking at 

the interface of plies such as core-face interface especially 

near the free edges. 

The 2D theories of composite plate and shells are not 

able to predict accurately the 3D stresses in boundary layer 

and many technical methods are employed by the  
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researchers to investigate the transverse stresses and 3D 

stress state analytically and numerically at vicinity of edges 

in composite and sandwich structures. Kant and 

Swaminathan (2000) and Mittelstedt and Becker (2004) 

reviewed various techniques which are employed by the 

researchers to evaluate the interlaminar and transverse 

stresses in composite plates and shells. 

Hayashi (1967) and Puppo and Evensen (1970) 

presented analytical study to predict the interlaminar shear 

stresses in the laminated composite plates. Pagano (1974) 

studied the edge-effect and interlaminar problem of 

composite laminates due to thermal loading. Wang and Choi 

(1982) present an approximate elasticity solution to 

determine the boundary-layer stresses due to hygroscopic 

loading. Wang and Crossman (1977) used a finite element 

method to predict the free-edge stresses in symmetric 

balanced laminates under a uniform thermal load. 

Herakovich (1976) studied the free edge effects in 

composite laminates subjected to thermal loading using the 

finite element method. Farley and Herakovich (1978) 

employed FEM to study the interlaminar stresses for 

mechanical, uniform hygrothermal, and gradient moisture 

loading conditions. In their work, the non-uniform, two-

dimensional hygroscopic gradients are obtained from a 

finite-difference solution of the diffusion equation and the 

numerical results show that hygroscopic-induced stresses 

can be larger than those of resulting from mechanical and 

thermal loading. Wang and Chou (1989) studied the 

transient three-dimensional thermal stresses in elastic, 

angle-ply laminated composites which are subjected to 

changes in the thermal boundary conditions.  

In order to calculate the interlaminar shear stresses, Lu 

and Liu (1992) present a laminate theory which satisfies the 

interlaminar shear stress and the transverse shear 

deformation continuity. They verified the work by Pagano’s 
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elasticity analysis. Morton and Webber (1993a) present an 

analytical method using the principle of minimum 

complementary energy to predict the free-edge stresses due 

to thermal loading. Then they employed a quadratic 

interlaminar stress criterion to predict the interlaminar 

failure at the free edges of laminated composite plate which 

is subjected to mechanical and thermal loads (Morton and 

Webber, 1993b). Yin (1994) used Lekhnitskii’s stress 

functions and principle of complementary virtual work and 

presented an approximate method for analysis of free-edge 

stresses in composite laminates under thermal and 

mechanical loads. Kim and Atluri (1995) studied the edge 

stress in the composite laminates which is subjected to 

combine thermal and mechanical loading conditions using 

the stress based variational method. Davi and Milazzo 

(1997) employed the boundary element method to study the 

free edge stresses and its singularity in composite laminates 

under uniform axial extension. Lee and Kim (1997) studied 

the residual thermal stresses at the interface corner between 

the fiber and the matrix of a two-dimensional unidirectional 

laminate due to cooling from cure temperature down to 

room temperature by boundary element method. 

Cho and Kim (2000) used an iterative approach to study 

the free edge stresses in composite laminates which are 

subjected to combination of mechanical and thermal load. 

Their results satisfied the traction free conditions at the top 

and bottom surfaces. Pantano and Averill (2000) used a 

plate theory and a 3D finite element based on the first-order 

zig-zag approximation for thermal stress analysis of 

composite and sandwich laminates. Patel et al. (2002) used 

a higher order theory to study the response of the laminated 

composite plates under hygrothermal loading. Vaddadi et al. 

(2003) studied the transient hygrothermal stresses in the 

fiber-reinforced composites by a novel heterogeneous 

characterization approach. Tahani and Nosier (2003) studied 

the free edge effect in cross-ply composite plate subjected 

to uniform extension and uniform thermal loading using 

layerwise method. Matsunaga (2004) presented a two-

dimensional global higher-order deformation to study the 

interlaminar stresses and displacements in cross-ply 

composite and sandwich plates subjected to thermal 

loadings. The numerical results are compared with those of 

the published three-dimensional layerwise theory. Naidu 

and Sinha (2005) investigated the large deflection bending 

behavior of composite cylindrical panels in hygrothermal 

environments using a finite element formulation. 
Duong Nguyen and Hung Nguyen (2007) applied the 

metis element method to study the interlaminar stresses and 
delamination of composite laminates under extension and 
bending. Zhu et al. (2007) studied the dynamic interlaminar 
stress in laminated plates in free vibration and thermal load 
based on the thermo-elasto-dynamic differential equations. 
An analytical approach was proposed by Benkhedda et al. 
(2008) to calculate the hygrothermal stresses in laminated 
composite plates in which the change of mechanical 
characteristics because of moisture content and temperature 
change is considered. They considered the distribution of 
the transient in-plane stresses through the laminate 
thickness, whereas the transverse stresses were not taken 
into account in their work. 

Lo et al. (2010) proposed a four-node quadrilateral plate 

element based on the global–local higher order theory 
(GLHOT) to study the response of laminated composite 
plates due to a variation in temperature and moisture 
concentrations. Ahmadi and Aghdam (2010 a, b) present a 
micromechanical model to study the mechanical and 
thermal stresses in composite materials using a meshless 
method. Kim et al. (2010) presented an analysis based on 
the stress function to provide an approximation method of 
3D stresses near the free edge of bonded composite patches. 
Brischetto (2012) analyzed the effects of hygrothermal 
loading in the bending of multilayered composite plates. 
Zenkour (2012) studied a FGM plate under a transverse 
uniform static loading which is exposed to hygrothermal 
conditions. The elastic coefficients, thermal coefficient and 
moisture expansion coefficient of the plate are assumed to 
be exponentially graded in the thickness direction. 

Nath and Kapuria (2013) presented a coupled global-

local theory (GLT) with 11 displacement unknowns and a 

zigzag-local theory (ZLT) with nine unknowns for hybrid 

plate to predict the transverse shear stresses under 

electromechanical loading. Brischetto (2013) proposed a 

refined two-dimensional model in the framework of the 

Carrera's unified formulation by considering both 

equivalent single layer and layerwise multilayer description 

for hygrothermoleastic analysis of composite and sandwich 

shells. Goodsell et al. (2013) developed the earlier works 

for modeling of finite width laminate to consider the 

anticlastic bending. They combined bending and torsion 

moments to yield a deformation state without twisting 

curvature and with transverse curvature due only to the 

laminate Poisson effect which is termed anticlastic bending.  

Zenkour et al. (2014) investigated the effect of 

hygrothermal conditions on the antisymmetric cross-ply 

laminates using a unified shear deformation plate theory. 

The presented plate theory enables the trial and testing of 

different through-the-thickness transverse shear -

deformation distributions. Hang and Kim (2015) applied an 

iterative method to analyze the free edge interlaminar 

stresses of piezo-bonded composite laminates in which 

electric field resulting in pure extension of the whole 

structure. Murugesan and Rajamohan (2015, 2016) 

investigated the combined effects of thermal and 

mechanical loadings on the distribution of interlaminar 

shear stresses in composite laminated composite beams and 

plates using the commercially available software package 

MSC NASTRAN/PATRAN. The validity of the finite 

element analysis is demonstrated by comparing the 

interlaminar shear stresses evaluated using the experimental 

measurement. Ahmadi (2016) studied edge stresses in thick 

composite panel subjected to pure extension using layer-

wise formulation. Goodshell and Pipes (2016) present a 

family of analytic solution for free edge interlaminar stress 

analysis in angle-ply composite laminates subjected to 

uniaxial extension, uniform temperature change and 

anticlastic bending. Padhi and Pandit (2016) used the 

higher-order zig-zag theory and studied the behavior of 

sandwich laminates subjected to thermal loading. Ahmadi 

(2016) and Ahmadi and Najafi (2016) studied the 

interlaminar stresses in closed sandwich and composite 

cylinder subjected to axi-symmetric hygrothermal and 

mechanical loading conditions. Recently, Boukert et al.  
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Fig. 1 Cross section of the sandwich plate, dimensions, yz 

coordinate system and loading 

 

 

(2017) employed the higher order theory to predict the 

hygro-thermo-mechanical properties of thick composite 

plates. Ahmadi (2017) studied the interlaminar stresses in 

long sandwich plate using a Galerkin layerwise formulation. 

Singh and Chakrabarti (2017) developed a C0 FE model 

based on higher order zigzag theory for hygrothermal 

analysis of laminated composite plates which satisfies the 

inter-laminar shear stress continuity at the interfaces. 

The aim of this study is to predict accurately the 

distribution of three-dimensional and edge hygrothermal 

stresses in the core, faces and at the core/face interfaces of 

sandwich plate. A three-dimensional formulation is 

presented in order to obtain an accurate solution to study the 

global and local response of general thick sandwich plate 

which is subjected to uniform and through the thickness 

distributed hygrothermal loading conditions. The governing 

equations of plate are obtained employing the principle of 

minimum total potential energy and solved for free edge 

conditions. The accuracy of the results is examined by 

comparison of the results of present study by prediction of 

finite element formulation. The thermal and hygroscopic 

stresses distribution at the interfaces of layers and in the 

boundary layer region of the sandwich plate is studied for 

various layer stacking and uniform and non-uniform 

thermal and hygroscopic loading. The distribution of the 

stresses for uniform and through the thickness distributed 

hygrothermal loading is compared. To the knowledge of the 

author, this is the first time that such formulation with 

analytical solution is presented for sandwich plate which is 

subjected to hygrothermal loading condition. 

 

 
2. Mathematical modeling 

 
A laminated composite or sandwich plate with free 

edges is considered. The plate is subjected to temperature 

change and (or) moisture content change in which the 

temperature and moisture content change is uniform in the 

length and width of the plate and may have gradient in the 

plate thickness. The length, width and thickness of the plate 

are taken as 2L, 2b and h, respectively. The x, y and z 

coordinates are the length, width and thickness coordinates 

of the plate, respectively, and the coordinate system is 

located in the plate center, and the edges of the plate at 

y=±b and x=±L are free. The yz cross-section of the 

sandwich plate is shown in Fig. 1. The plate is long in the x-

direction and the temperature change and moisture content 

change are uniform in the length and width of the plate, so 

it can be supposed that the strains in the plate do not depend 

on the length coordinate, unless near the edges at x=±L.  

Considering that strains in the plate are independent of 

the x-coordinate, and u1, u2 and u3 are the displacements in 

the x, y and z direction, it can be shown that the 

displacement field of the plate can be expressed as 

(Lekhnitskii 1981) 

1 5 6

2 3

2
3 5 3

( , , ) ( , )

( , , ) ( , )

1
( , , ) ( , )

2

u x y z C xz C x u y z

u x y z C xz v y z

u x y z C x C xy w y z

  

  

   

 
(1) 

The rigid body motion and rigid body rotation of the 

plate are ignored in (1), and C3, C5 and C6 represent the 

global twisting, bending (curvature) and extension of the 

plate due to thermal and hygroscopic loading conditions.  

The layerwise theory (LWT) is employed for 

discretization of the problem to ordinary differential 

equations. Layerwise theory assumes that the plate is made 

of N (arbitrary number) imagined layers which are so-called 

numerical layers and the interface of numerical layers are 

called numerical surface. The displacement functions u(y,z), 

v(y,z) and w(y,z) (see Eq.(1)) on the ith numerical surface are 

shown by Ui(y), Vi(y), and Wi(y), i=1,2,…,N+1, 

respectively. In the layer-wise theory (LWT), the 

displacement functions u(y,z), v(y,z) and w(y,z) are 

interpolated through the thickness of the plate based on 

Ui(y), Vi(y), and Wi(y) and by employing the interpolations 

function k(z) as 

( , ) ( ) ( )

( , ) ( ) ( ) 1,..., 1

( , ) ( ) ( )

k k

k k

k k

u y z U y z

v y z V y z k N

w y z W y z

 

   

 

 (2) 

The interpolation function k(z) which is used in (2) is 

defined in the Appendix, and dummy index means 

summation from 1 to N+1, where N+1 is the number of 

numerical surfaces. By substituting (2) into displacement 

field in (1), and using the strain-displacement relation, the 

infinitesimal strains components can be obtained as 

6 5

3

3

, ,

, ,

, ,

x yz k k k k

y k k xz k k

z k k xy k k

C C z V W

V U C y

W U C z

 

 

 

      

     

     

 (3) 

k
  is derivation of k(z) with respect to z and kU  , 

kV   and kW   are derivation of Uk(y), Vk(y), and Wk(y) with 

respect to y-coordinate. For a plate that is in the static 

equilibrium condition and there are no external forces on it, 

the principle of minimum total potential energy can be 

written as 

0

L b h

ij ij

L b h

U  
  

     (4) 

in and the boundary conditions of the plate are obtained. 

The governing equations of the plate are obtained by 
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substituting the strain components from (3) into (4) as 

,

,

,

0,

0, 1,2,..., 1

0,

k k
xy y x

k k
y y y

k k
y y z

M Q

M Q k N

R N

 

   

 

 (5) 

/2

/2

/2

/2

/2

/2

0

0

( ) 0

b h

x
b h

b h

x
b h

b h

xz xy
b h

dzdy

zdzdy

y z dzdy





 

 

 

 





 

 

 

 

 (6) 

in which Mk
xy, Mk

y, Rk
y, Qk

x, Qk
y, and Nk

z in (5) are defined 

as 

/2

/2

/2

/2

/2

/2

( , ) ( , )

( , ) ( , ) , 1,..., 1

( , ) ( , )

h
k k
xy x xy k xz k

h

h
k k
y y y k yz k

h

h
k k
y z yz k z k

h

M Q dz

M Q dz k N

R N dz

 

 

 







  

    

  







 (7) 

and are called stress resultants in LWT. Furthermore, the 

boundary conditions of the plate for free edge at y=±b are 

obtained from the principle of minimum total potential 

energy (4) as 

( ) 0,

( ) 0, 1, 2,..., 1

( ) 0,

k
y

k
y

k
xy

M y b

R y b k N

M y b

  

    

  

 (8) 

The temperature and moisture content changes are 

uniform in the length and width of the plate and have 

gradient in the plate thickness. The temperature change is 

shown by T(z) and moisture content change is shown by 

M(z). The constitutive law of the kth numerical layer in the 

plate which is subjected to temperature change and moisture 

content change can be written as  

( ) ( )

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
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0 0

0 0 0 0

0 0 0 0

0 0
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( ) ( )

( ) ( )

k k
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y
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z z z
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C C C C

C C C C

C C C C

C C

C C

C C C C

T z M z
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T z M z













  
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  





 

   
   
   
    

   
  
  
  
     

 

 

 



( )

( ) ( )

k

xy xyT z M z

 
 
 
 
 
 
 
 
 

  

 
(9) 

in which (k) are the stiffness matrix of kth numerical 

layer, and for example, x
(k) and x

(k) indicate the coefficient 

of thermal expansion and moisture expansion of kth 

numerical layer in the x-direction, respectively. The 

distribution of temperature and moisture content change in 

the plate thickness can be discretized by the LW 

discretization approach as 

( ) ( )

( ) ( )

k k

k k

T z T z

M z M z

 

 
 (10) 

in which Tk and Mk are the temperature and moisture 

content change of the kth numerical surface, respectively, 

and k(z) is the linear Lagnangian interpolation function 

which is defined in the Appendix. It must be noted that Tk 

and Mk are the known constants through the problem 

solution. 

By substituting the strains from (3) and temperature and 

moisture change from (10) into (9), and substituting the 

subsequent results into (7), the stress resultants are obtained 

in terms of displacement and hygrothermal loading as 

16 6 16 5 66 3 26 36

66 6 6

12 6 12 5 26 3 22 23

26 2 2

13 6 13 5 36 3 23 33

36 3 3

k k k k kj kj
xy j j

kj kj kj
j T j M j

k k k k kj kj
y j j

kj kj kj
j T j M j

k k k k jk kj
z j j

jk jk
j T j

M B C B C B C D V B W

D U D T D M

M B C B C B C D V B W

D U D T D M

N A C A C A C B V A W

B U B T B

    

  

    

  

    

  

45 45 55 55 3

44 44 45 45 3

jk
M j

k kj jk kj k
x j j j

k kj jk kj k
y j j j

M

Q A V B W A U A C y

Q A V B W A U A C y

   

   

 (11) 

44 44 45 45 3
k kj kj kj k
y j j jR B V D W B U B C y     

where the mechanical rigidity matrixes which are appeared 

in (11) are defined as 

1

1

1

( )

1

( )

1

( )

1

i

i

i

i

i

i

N zkj i
pq pq k j

z
i

N zkj i
pq pq k j

z
i

N zkj i
pq pq k j

z
i

A C dz

B C dz

D C dz













   

  

  




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(12) 

1

1

( )

1

( )

1

( , ) ( , )

( , ) ( , )

i

i

i

i

N zk k i
pq pq pq k k

z
i

N zk k i
pq pq pq k k

z
i

A B C dz

A B C z z dz









  

  




 

(13) 

and the matrixes of thermal and hygroscopic effect are 

defined as 

pqC
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1

1

( )

1

( )

1

( , ) ( , )

( , ) ( , )

i

i

i

i

N zkj kj i
pT pT p k j k j

z
i

N zkj kj i
pM pM p k j k j

z
i

B D dz

B D dz













    

    





 (14) 

where {} and {} are defined in (A6) in the Appendix. 

The components of the matrixes in (12), (13) and (14) can 

be found in the Appendix. By substituting the stress 

resultants from (11) into (5) and (6), the governing 

equations of the plate are obtained as 

66 26 36 45 55 45 55 3

26 22 23 44 45 44 45 3

44 45 36 44 23 33

36 45 3 13 5 13

( )

( )

( ) ( )

( )

kj kj kj jk kj kj k
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T j M jC B T B M 

 
(15) 

16 12 13

11 6 11 5 16 3 1 1

16 12 13

11 6 11 5 16 3 1 1

66 26 45 55 45 36

( )
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( )

2 ( ) 0

( )
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b k k k
k k k

b

k k
T k M k

b k k k
k k k

b

k k
T k M k

b k k k k k k
k k k k k k

b

B U B V A W dy

b A C A C A C A T A M

B U B V A W dy

b A C A C A C A T A M

B U B V B W A U A V A W dy

b







   

    

   

    

       








2

16 6 16 5 66 55 3 6 6

1
( ( ) ) 0

3

k k
T k M kA C A C A b A C A T A M      

 

(16) 

where ,pq pqA A  and pqA  are defined in the Appendix. 

The set of 3N+6 ordinary differential equations in (15) and 

(16) must be solved simultaneously to obtain the 3(N+1) 

unknown functions Uk, Vk and Wk and 3 unknown constants 

C3, C5 and C6. 

 
 
3. Solution procedure 
 

For solution of (15), the matrix of variables {} and {} 

is defined as (17), and (15) is written in terms of {} and 

{}. 

   

   

{ } { } { }

{ } { } { }

T
T T T

T
T T T

U V W

U V W





 



 (17) 

where for example {W} is a column matrix defined as 

{W}T={W1, W2, …, WN+1}. Employing {} and {}, the 

governing equations in (15) can be written in the matrix 

form as 

      

        
     

31 3

32 3 5 5 6 6

{ } { }T M

A F C y

B F T F M

F C F C F C

 

 

  

   

  

 (18) 

where the coefficient matrixes in (18) are defined in the 

Appendix and for instance the matrix of temperature change 

and moisture content change are defined as {T}T={T1, T2, 

…, TN+1} and {M}T={M1, M2, …, MN+1}. By differentiating 

the first equation in (18), and substituting from the second 

equation in (18) into it, {} is eliminated and the following 

second order equation is obtained 

        

       31 32 3 5 5 6 6

[ ] { } [ ] { }

( [ ] ) [ ] [ ]

T MC A F T A F M

F A F C A F C A F C

     

  
 (19) 

where (C)=(A)(B). To solve (19), the eigen-values and 

eigen-vectors of (C) are obtained as 

2

2 2 2 2
1 2 3( 1)

[ ][ ] [ ]

diag( , ,..., )N

C U U

   





[Λ ]

[Λ ]
 (20) 

(U) and () are (N+1)×(N+1) matrixes. Using (U) and 

(), equations (19) are decoupled and an analytical 

solution is obtained for {} as 

         

   

       

1 2

1
31 32 3

1
5 5 6 6

( ) ( )

[ ] ( [ ] )

[ ] ( { } { } )T M

U Cosh x K U Sinh x K

C F A F C

B F T F M F C F C

  





 

 

   

 (21) 

in which (Cosh(x)) and (Sinh(x)) are diagonal matrices 

and are defined as 

 

 

1 2 3( 1)

1 2 3( 1)

( )

diag( ( ), ( ),..., ( ))

( )

diag( ( ), ( ),..., ( ))

N

N

Cosh x

Cosh x Cosh x Cosh x

Sinh x

Sinh x Sinh x Sinh x



  



  








 (22) 

and {K1} and {K2} are column matrices which each of them 

has 3N+3 unknown integration constants. By substituting 

{} from (21) into the second equation in (18) and 

integrating with respect to y, {} is obtained as 

        

        

1

1

1 1
2 31 3

Sinh( )

Cosh( ) [ ]

B U x K

B U x K A F C y

 





 

  

 
 (23) 

and the equations in (16) are written in terms of {} and 

{} as 

1 11 6 11 5 16 3

1 1

2 11 6 11 5 16 3

1 1

31 32 16 6 16 5

3
66 55 3 6 6

{ }{ } 2 2 2

2 2 0

{ }{ } 2 2 2

2 2 0

({ }{ } { }{ } ) 2 2

2
(2 ) 2 2 0

3

b

b

k k
T k M k

b

b

k k
T k M k

b

b

k k
T k M k

M dy bA C bA C bA C

bA T bA M

M dy bA C bA C bA C

bA T bA M

M M y dy bA C bA C

bA b A C bA T bA M





 







  

  

  

  

  

    







 
(24) 

where the coefficient matrixes in (24) are defined as 

1 16 12 13

2 16 12 13

31 66 26 36

32 55 45 45

{ } {{ } { } { } }

{ } {{ } { } { } }

{ } { { } { } { } }

{ } {{ } { } { } }

T T T

T T T

T T T

T T T

M B B A

M B B A

M B B A

M A A B





   



 (25) 
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and the free edges conditions of the plate at y=±b in (8) can 

be written in the matrix form in terms of {} and {} as 

1 2 2

12 6 12 5 26 3

2 45 3

3 6 6

16 6 16 5 66 3

[ ]{ ( )} [ ]{ } [ ]{ }

{ } { } { } 0

[ ]{ ( )} { } ( ) 0

[ ]{ ( )} [ ]{ } [ ]{ }

{ } { } { } 0

T M

T M

P b D T D M

B C B C B C

P b B C b

P b D T D M

B C B C B C







  

   

   

  

   

 
(26) 

where (P1), (P2) and (P3) are defined as 

 

 

 

1 26 22 23

2 45 44 44

3 66 26 36

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

P D D B

P B B D

P D D B







 (27) 

Substituting (21) and (23) into (26) and (24) give a set 

of 6(N+1)+3 linear algebraic equation which are solved 

simultaneously to obtained 6(N+1)+3 unknown constants 

include {K1}, {K2}, C3, C5 and C6. 

 

 

4. Out of plane stresses 
 

The out of plane stresses can be obtained by integrating 

the equilibrium equation. For example, the out of plane 

shear stress yz at the nth numerical surface i.e., z=zn can be 

obtained by integrating the equilibrium equation in y 

direction as 

1

1

22 23 26

( ) ( )

( )

n

n

z
y

yz n

z

z

k k k k k k

z

z z dz
y

C V C W C U dz





   



        





 (28) 

by employing the definitions in (13), the above equation can 

be written as 

22 23 26

1

( ) ( )
n

k k k
yz n k k k

k

z z B V A W B U


       (29) 

xz and z can be obtained with the same procedure as  

1

26 36 66

1

( ) ( )

( )

nz
xy

xz n

z

n
k k k

k k k

k

z z dz
y

B V A W B U







   



    





 (30) 

1

44 44 45 45 3

1

( ) ( )

( )

nz
yz

z n

z

n
k k k

k k k

k

z z dz
y

A V B W A U A C







   



     





 (31) 

where 45A  in (31) is defined as 

( )
45 45

1

n
i

i

i

A C t


  (32) 

On the other hand, the constitutive law can be used to 

obtain the stresses in the plies of the sandwich plate through 

the strain components. Because the out of plane strains are 

discontinuous at the numerical surfaces, the continuity of 

the out of plane stresses are not warranted at the interface of 

layers. Integrating the equilibrium equations to obtain the 

out of plane stresses increases the accuracy of the results. 

 
 
Table 1 Mechanical properties of lamina and core 

(Brischetto 2013) 

Material 
E1 

GPa 

E2=E3 

GPa 

G12=G13 

GPa 

G23 

GPa 
12=13 23 

Lamina 138 8.5 4.5 3.2 0.29 0.36 

Core 3 3 1.071 1.071 0.4 0.4 

 

Table 2 Hygrothermal properties of lamina and core 

(Brischetto 2013) 

Material 
1  

1/K 

2=3 

1/K 
1 2=3 

Lamina -0.5×10-6 43×10-6 0 0.4×10-2 

Core 50×10-6 50×10-6 0.28×10-2 0.28×10-2 

 

Table 3 Thermal conductivity and moisture diffusion 

coefficients of lamina and face (Brischetto 2013) 

Material 
k11 

W/mK 

k22=k33 

W/mK 

D11 

m2/s 

D22=D33 

m2/s 

D11 

kg/ms 

D22=D33 

kg/ms 

Lamina 4.2 0.7 4.4×10-3 3.1×10-3 7.04 4.96 

Core 0.18 0.18 
6.66× 

10-11 

6.66× 

10-11 

9.324× 

10-8 

9.324× 

10-8 

 
 

5. Numerical results and discussions 
 

The core of the sandwich plate is made of flexible foam 

and the faces are laminated composite. The mechanical, 

thermal and hygroscopic properties of the lamina and core 

are presented in Tables 1 to 3. The thickness of the core is 

hc and the thickness of the face is hf and the total thickness 

of sandwich plate is h=hc+2hf. The width of the plate is 2b 

and the edges of the plate at y=±b and x=±L are free. The 

plate is imposed to thermal and hygroscopic loading 

conditions. 
 

5.1 Investigation the accuracy of results 
 

The accuracy of present solution is validated with 

predictions of the finite element method (FEM). A 

sandwich plate with cross-ply faces as (0°/90°/core/90°/0°) 

is subjected to a uniform temperature change as T=1°C. 

The thickness of the core is hc=0.4h, the thickness of face is 

hf=0.3h, and the plate width is considered as 2b=3h. A 

three-dimensional finite element model is made in the 

commercial finite element code Ansys using solid46 

element for analysis of the plate. The thickness of the faces  
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Fig. 2 Predictions of LWT and FEM for interlaminar 

thermal stress z at core/face interface, z=(hc+hf)/2, of 

(0°/90°/core/90°/0°) sandwich plate, (T=1°C) 

 

 
Fig. 3 Predictions of LWT and FEM for interlaminar shear 

stress yz at z=(hc+hf)/2 of (0°/90°/core/90°/0°) sandwich 

plate, (T=1°C) 

 

 

and the thickness of core are divided into 20 elements, the 

width of the plate is divided into 100 elements and the 

length are divided into 8 elements, and the uniform 

temperature change as T=1°C is imposed to the nodes.  

Because of the mismatch between the coefficient of 

thermal expansion (CTE) of core, 0° layers and 90° layers 

in the faces, the thermal stresses arise in the laminate when 

the temperature of the plate changes. For example, CTE of 

lamina in the transverse direction is bigger than its CTE in 

the axial (fiber) direction. When the temperature of 

(0°/90°/core/90°/0°) plate increases as T, 0° layer in the 

face wants to expand in the y direction more than 90° layer, 

so shear stress yz arises at the interfaces of 90°/0° interface 

in which, the direction of shear stress yz at the interface on 

the 90° layers is from the center of plate toward the edge, 

and the direction of yz on the 0° layers is from the edge 

toward the plate center. The out of plane stresses arise in 

vicinity of free edges especially near the interface of the 

layers with different thermo-mechanical properties. The 

predictions of LWT and FEM for out of plane normal stress 

z along the width of the plate at z=(hc+hf)/2 is presented in 

Fig. 2. Except exactly at the free edge y=b, very good 

agreement is seen between the predictions of LWT and 

FEM for distribution of z along the interface of layers. 

Exactly at the free edge, the prediction of LWT by Hooke’s 

law is z=-0.4599 MPa, the prediction of LW theory by the  

 
Fig. 4 Prediction of LWT and FEM for distribution of y 

through the thickness of (0°/90°/core/90°/0°) plate near the 

free edge, (T=1°C) 

 

Table 4 Global response of symmetric and un-symmetric 

cross-ply sandwich plate to uniform temperature change 

T=1°C (hf=0.3, hc=0.4, 2b=3h) 

Lamination C6×106 C5×106 (1/mm) 

(90°/90°/core/90°/90°) 4.4473 1.11×10-5 

(90°/90°/core/0°/0°) 21.4510 -59.0644 

(0°/90°/core/0°/90°) 4.6250 3.7737 

(0°/0°/core/0°/0°) 0.2545 -6.27×10-6 

(90°/90°/core/90°/90°) 48.0628 -1.878×10-6 

 

Table 5 Effect of layer stacking on the global response of plates 

to thermal loading (T=1°C, hf=0.3, hc=0.4, 2b=3h) 

Lamination C6×106 C5×106 (1/mm) C3×106 (1/mm) 

(45°/-45°/core/-45°/45°) 6.4587 8.9202×10-6 
-1.0040× 

10-5 

(45°/-45°/core/45°/-45°) 6.9311 2.4043×10-5 -1.3028 

(45°/45°/core/-45°/-45°) 22.7870 
-6.4029× 

10-5 
-55.7552 

 

 

integration method is z=-0.4141 MPa and the prediction of 

FE method is -0.3501 MPa. Due to thermal load as T=1°C, 

the plate expands at the axial direction, and the prediction 

of LWT and FEM for uniform axial strain of the plate is 

C6=4.4473×10-6 and 4.4400×10-6, respectively. 

The predictions of LWT and FEM for out of plane shear 

stress yz along the 90°/0° interface on the top face, 

z=(hc+hf)/2, are presented in Fig. 3. As it is seen in Fig. 3, at 

90°/0° interface in the top face, the direction of yz on 90° 

layer is positive for y>0 and is negative for y<0, which 

means that as expected the direction of shear stress yz on 

90° layer is from the plate center to the free edges. It is 

observed in Fig. 3 that near the free edges, prediction of 

LWT for yz is bigger than the prediction of FEM. Fig. 4 

shows the prediction of LWT and FEM for the in-plane 

normal stress y through the thickness of the plate in the 

vicinity of the edge. In Fig. 4, good agreement is seen 

between the predictions of LWT and FEM for distribution 

of y at the vicinity of free edge. 

Comparison of the predictions of the LWT and FEM for 

out of plane and in-plane stresses shows that predictions of  
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Fig. 5 Out of plane shear stress yz along the width of 

symmetric (45°/-45°/core/-45°/45°) plate (T=1°C) 

 

 
Fig. 6 Out of plane shear stress xz along the width of 

symmetric (45°/-45°/core/-45°/45°) plate (T=1°C) 

 

 

 

LWT are in good agreement with predictions of FEM, 

except for interlaminar stresses z and yz exactly in the 

vicinity of free edges at the interface. Some researchers 

reported singularity of out of plane normal stresses in the 

interface of layers with different mechanical properties at 

the free edges. 

 

5.2 Global deformation response  
 

Due to the mismatch in the thermo-mechanical 

properties of the plies, even uniform temperature change in 

the plate may cause expansion, C3, bending C5, and twisting 

C6 of the plate. C6 is the uniform axial strain of the plate at 

the mid plane, C5 is the curvature of the plate due to 

bending and C3 is the rotation angle per unit length of the 

plate about x-axis due to twisting of the plate. 

The deformation constants C5 and C6 for the plate with 

symmetric and un-symmetric cross-ply lamination which is 

subjected to T=1°C are shown in Table 4. It is observed in 

Table 4 that C5 is vanished for symmetric laminations and is 

not vanished for un-symmetric laminations. It means that 

uniform temperature change causes bending of the 

sandwich plate with un-symmetric lamination. C3 vanishes 

for the cross-ply laminations which are shown in Table 4. 

For further study on the effect of layer staking on the 

deformation of the plate due to uniform temperature 

change, C6, C5 and C3 for symmetric (45°/-°/core/-

°/°) and un-symmetric (45°/-45°/core/45°/-45°) and 

(45°/45°/core/-45°/-45°) sandwich plate which is subjected  

 
Fig. 7 Out of plane normal stress z along the width of 

symmetric (45°/-45°/core/-45°/45°) plate (T=1°C) 

 

 
Fig. 8 Distribution of z in symmetric (45°/-45°/core/-

45°/45°) plate (T=1°C) 

 

 
Fig. 9 Distribution of z in un-symmetric (45°/45°/core/-

45°/-45°) plate (T=1°C) 

 

 

to T=1°C are presented in Table 5. As seen in Table 5, C5 

and C3 vanish in the symmetric (45°/-°/core/-°/°) 

plate. It is seen that C5 vanishes but C3 does not vanish in 

the un-symmetric (45°/-45°/core/45°/-45°) and 

(45°/45°/core/-45°/-45°) plates. 

 
5.3 Uniform thermal loading 
 
Distribution of out of plane and in-plane stresses in the 

sandwich plate which is subjected to uniform temperature 

change is studied in this section. A symmetric (45°/-

45°/core/-45°/45°) sandwich plate in which hf=0.3 mm and  
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Fig. 10 Distribution of xz in symmetric (45°/-45°/core/-

45°/45°) plate (T=1°C) 

 

 
Fig. 11 Distribution of xz in un-symmetric (45°/45°/core/-

45°/-45°) plate (T=1°C) 

 

 

hm=0.4 mm is subjected to T=1°C. The distribution of out 

of plane shear stresses yz, xz and normal stress z at the 

interfaces along the width of the plate is shown in Figs. 5 to 

7, respectively. The shear stresses yz and xz vanish at the 

mid plane of this plate at z=0. Also, the out of plane shear 

stresses vanishes at y=0, and asymmetric distribution is seen 

for the out of plane shear stresses with respect to z and y-

coordinate. z has symmetric distribution. In these figures, 

it is obvious that the out of plane stresses vanish far from 

the edges of the plate and arise near the edges. The shear 

stresses at -45°/45° interfaces are bigger than the core/face 

interfaces. For T=1°C, the maximum of yz is about 0.105 

MPa and the maximum of xz is about 0.6MPa. The 

maximum ofz in compression is about -0.24MPa and its 

maximum in tension is 0.235MPa which are seen at 45°/-

45° interface.  

In order to study the distribution of stresses through the 

thickness and near the edge, the distribution of the stresses 

in the thickness of symmetric (45°/-45°/core/-45°/45°) and 

un-symmetric (45°/45°/core/-45°/-45°) plates is studied in 

the next figures.  

The distribution of the normal stresses z in these 

symmetric and un-symmetric plates is presented in Figs. 8 

and 9, respectively. In the symmetric plate, the maximum of 

z occurs at -45°/45° interfaces and in the un-symmetric 

plate occurs near the core/face interface in the face. In both  

 
Fig. 12 Distribution of xy in symmetric (45°/-45°/core/-

45°/45°) plate (T=1°C) 

 

 
Fig. 13 Distribution of xy in un-symmetric (45°/45°/core/-

45°/-45°) plate (T=1°C) 

 

 
Fig. 14 Distribution of yz in un-symmetric (45°/-45°/core/-

45°/45°) plate, (T=1°C) 

 

 

plates, z is positive in the core and is negative in the face 

and a sharp change is seen at the core/face interface. The 

positive normal stress z at the core of symmetric plate is 

bigger than its maximum at the core of un-symmetric plate, 

and the compressive stress at the faces of un-symmetric 

plate is bigger than in the symmetric plate. 

The distribution of the out of plane shear stress xz in 

these symmetric an un-symmetric sandwich plate is shown 

in Figs. 10 and 11. In the symmetric plate, xz is very small 

in the core and increases in the faces, and its maximum is at 

-45°/45° interfaces. As seen in Figs. 10 and 11, the 

distribution of xz in the un-symmetric plate is completely 

different from symmetric plate.  
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Fig. 15 Distribution of yz in un-symmetric (45°/45°/core/-

45°/-45°) plate, (T=1°C) 

 
 

 
Fig. 16 Distribution of in-plane normal stress y in un-

symmetric (45°/-45°/core/-45°/45°) plate, (T=1°C) 

 

 
Fig. 17 Distribution of in-plane normal stress y in un-

symmetric (45°/45°/core/-45°/-45°) plate, (T=1°C) 

 

 

The distribution of the in-plane shear stress xy through 

the thickness of (45°/-45°/core/-45°/45°) and 

(45°/45°/core/-45°/-45°) plate which is subjected to 

T=1°C is shown in Figs. 12 and 13, respectively. The in-

plane shear stress xy is discontinuous at -45°/45° 

interfacesand at core/face interface and decreases by 

decreasing the distance to the free edge. xy vanishes at free 

edges y=±b. 

The distribution of the out of plane shear stress yz in 

these symmetric and un-symmetric plates is presented in 

Figs. 14 and 15, respectively. The variation of yz at the 

interfaces of physical layers is seen clearly in these figures.  

 
Fig. 18 Distribution of z in un-symmetric (45°/45°/core/-

45°/-45°) plate subjected to hygroscopic load (M=1%) 

 

 
Fig. 19 Distribution of shear stress yz in un-symmetric 

(45°/45°/core/-45°/-45°) plate subjected to hygroscopic load 

(M=1%) 

 

 
Fig. 20 Distribution of xz in un-symmetric (45°/45°/core/-

45°/-45°) plate subjected to hygroscopic load (M=1%) 

 

 

The distribution of in-plane normal stress y in these plates 

is presented in Figs. 16 and 17, respectively. As seen, y 

decreases by decreasing the distance to the free edge.  

 

5.4 Uniform hygroscopic loading  
 

The sandwich plate which is subjected to uniform 

moisture content change is considered and the distribution  
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Fig. 21 Distribution of in-plane stress x in un-symmetric 

(45°/45°/core/-45°/-45°) plate subjected to hygroscopic load 

(M=1%) 

 

 
Fig. 22 Distribution of in-plane normal stress y in un-

symmetric (45°/45°/core/-45°/-45°) plate subjected to 

hygroscopic load (M=1%) 

 

 
Fig. 23 Distribution of in-plane shear stress xy in un-

symmetric (45°/45°/core/-45°/-45°) plate subjected to 

hygroscopic load (M=1%) 

 

 

of in-plane and out of plane stresses is studied. The un-

symmetric (45°/45°/core/-45°/-45°) sandwich plate layer is 

subjected to moisture content change as M=1%. 

Distribution of the z due to hygroscopic load M=1% is 

presented in Fig. 18. It is seen that z is maximum (about -

21Mpa) at the free edge at the faces near the core/face 

interface. The distribution of z is symmetric in the plate 

thickness. The distribution of the shear stresses yz and xz  

 
Fig. 24 Fiber directions effect on the distribution of xz 

through the thickness of (//core/-/-) plate (M=1%) 

 

 
Fig. 25 Fiber directions effect on the distribution of z 

through the thickness of (//core/-/-) plate  (M=1%) 

 

 

through the thickness of the plate is depicted in Figs. 19 and 

20. yz increases sharply near the core/face interface near 

the edge and its maximum is about 4.5 MPa. The 

hygroscopic shear stress yz has asymmetric distribution 

through the thickness of the plate. It is observed in Fig. 20 

that the maximum of xz is about 10.4 MPa at the core/face 

interface. The maximum value of xz at the core/face 

interface is about 2.3 times greater than the yz stress at the 

core/face interface.  

The distribution of x and y and xy in un-symmetric 

(45°/45°/core/-45°/-45°) plate are shown in Figs. 20 to 22, 

respectively. Because the edges of the plate are free at y=±b 

and x=±L, as it is observed in Figs. 21 and 22, at y=0 and at 

y=0.5b (far from the edges of plate), the distribution of y is 

almost the same as distribution of x at y=0 and at y=0.5b. 

The maximum of x and y is about -40MPa, and is 

observed at y=0, at the top and bottom surface of the plate, 

and is about 44 MPa at the core/face interface. As seen in 

Fig. 23, xy in the face changes almost linearly from -40 

MPa at the bottom surface of the plate to about 51 MPa at 

the core/face interface. 

In order to study the effect of plies stacking angles  on 

the distribution of the stresses, xz and z at the free edge 

y=b of (°/°/core/-°/-°) plate for various  is presented 

in Figs. 24 and 25, respectively. It is seen that overlay the 

magnitude of xz at the edge is maximum for =45°. 
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Fig. 26 Steady state temperature gradient in the thickness of 

the plate (Tb=0°C, Tt=1°C)  

 

 

Fig. 27 Interlaminar normal stress at y=b in 

(0°/0°/core/0°/0°) plate, uniform and non-uniform 

temperature change 

 

 
Fig. 28 Distribution of z in (45°/45°/core/-45°/-45°) plate, 

non-uniform temperature change, Tb=0°C and Tt=1°C 

 

 
Fig. 29 Distribution of xz in (45°/45°/core/-45°/-45°) plate, 

non-uniform temperature change, Tb=0°C and Tt=1°C 

 

 
Fig. 30 Distribution of yz in (45°/45°/core/-45°/-45°) plate, 

non-uniform temperature change, Tb=0°C and Tt=1°C 

 

 
Fig. 31 Distribution of y in (45°/45°/core/-45°/-45°) plate, 

non-uniform temperature change, Tb=0°C and Tt=1°C 

 

 
Fig. 32 Distribution of steady state moisture content in the 

thickness of the plate, Mb=0%, Mt=1% 

 

 
Fig. 33 Distribution of z in (45°/45°/core/-45°/-45°) plate, 

non-uniform moisture content change, Mb=0%, Mt=1% 
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Fig. 34 Distribution of xz in (45°/45°/core/-45°/-45°) plate, 

non-uniform moisture content change, Mb=0%, Mt=1% 

 

 
Fig. 35 Distribution of yz in (45°/45°/core/-45°/-45°) plate, 

non-uniform moisture content change, Mb=0%, Mt=1% 

 

 

Fig. 36 Comparison of the distribution of z at y=b in 

(45°/45°/core/-45°/-45°) plate, uniform and non-uniform 

moisture content change 

 
 
5.5 Non-uniform hygrothermal loading 
 
5.5.1 Temperature gradient in the thickness 
The sandwich plate is subjected to steady state 

temperature gradient in the plate thickness, so that bottom 

surface of the plate is subjected to temperature change as 

Tb and the top surface as Tt, and temperature is uniform 

in the length and width of the plate. For temperature 

gradient in the 1D steady state heat transfer in the thickness 

of the sandwich plate which Tb=0°C and Tt=1°C is 

shown in Fig. 26. The thermal conductivities of the core and 

lamina are shown in Table 3. The distribution of z at y=b  
 

 

Fig. 37 Comparison of the distribution of xz at y=b in 

(45°/45°/core/-45°/-45°) plate, uniform and non-uniform 

moisture content change 

 

 

in (0°/0°/core/0°/0°) plate for uniform temperature change 

and non-uniform temperature change are shown in Fig. 26. 

This figure compares the stresses in the plate for T=1°C, 

T=2°C and for non-uniform temperature change as 

Tb=1°C and Tt=2°C. The distribution of z in the 

thickness of (45°/45°/core/-45°/-45°) plate which is 

subjected to non-uniform temperature distribution Tb=0°C 

and Tt=1°C is shown in Fig. 28, and the distribution of xz, 

yz and y are depicted in Figs. 29 to 31, respectively. 

 
5.5.2 Moisture content gradient in the thickness 
The stresses in the sandwich plate due to moisture 

content gradient are studied in next figures. The distribution 

of the steady state moisture content in the (45°/45°/core/-

45°/-45°) sandwich plate which the bottom surface is kept 

at Mb=0 and the top surface is kept at Mt=1% is shown in 

Fig. 32. The hygroscopic properties of the lamina and core 

are given in Table 3. As shown in Table 3, because D33 of 

the lamina is very bigger than of core, the distribution of the 

moisture contents is almost uniform in the top and bottom 

faces and linearly changed in the core. The distribution of 

hygroscopic stresses in (45°/45°/core/-45°/-45°) plate for  

moisture content change as shown in Fig. 32 is shown in 

Figs. 33 to 35. To compare the hygrothermal stresses for 

uniform and non-uniform moisture change, the distribution 

of z and xz at y=b in (45°/45°/core/-45°/-45°) plate which 

is subjected to uniform moisture content change as 

Mb=Mt=1%, and non-uniform distribution Mb=0%, 

Mt=1% and non-uniform distribution Mb=1%, Mt=0% 

are shown in Figs. 36 and 37, respectively. These figures 

compare the stress distribution for 3 kind of moisture 

distribution through the thickness of the plate. 

 

 

6. Conclusions 
 

The 3D hygrothermal stresses and free edge effect in the 

sandwich plate for uniform and through the thickness 

gradient hygrothermal loading are studied. The principle of 

minimum total potential energy is employed to obtain the 

governing equations and the layerwise discretization 

approach is used to obtain the free edge stresses in the 
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sandwich plate subjected to hygrothermal loading. The 

governing equations of the plate are solved for free 

boundary conditions to obtain the three-dimensional 

stresses. The FE modeling is used to verify the results of the 

present solution. The stresses and deformation of the 

symmetric and un-symmetric sandwich plate due to uniform 

and steady state through the thickness temperature and 

moisture gradient is studied and the results are compared. 

Various numerical results are presented and the effects of 

stacking sequence, fiber directions on loading gradient on 

the stress distribution are investigated. 
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Appendix 
 

The interpolation function which is used in (2) is the 

linear Lagrangian interpolation function and are defined as 
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where zk is the thickness coordinate of kth numerical surface 

and tk=zk+1-zk is the thickness of kth numerical layer. Also the 
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and 
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The matrix {} and {} are used in (14) are defined as 
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And the thermal and hygroscopic effect matrix are 

defined in (14) are obtained as 
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and ,pq pqA A and pqA which are used in (16) are defined 

as 
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The matrixes which is used in (18) are defined as 

following 
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where the matrices in (A11) are defined as 
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and (0) and (I) are (N+1)×(N+1) zero and identity matrix 

and 
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and other matrix in (18) are defined as 
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1
44 3

{ } {{0} {0} [ ] ({ } { }) }

{ } {{0} {0} [ ] { } }

{ } {{0} {0} [ ] { } }

{ } {[0] [0] [ ] [ ] }

{ } {[0] [0] [ ] [ ] }

T T T T

TT T T

TT T T

T T
T T

T T
M M

F D A B

F D A

F D A

F D B

F D B











  





 

 

 (A15) 
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