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1. Introduction 
 

In general, moving load problems deal with severe 

vibrations and instability of the beam-like one-dimensional 

(1-D) structures subjected to moving loads (forces and 

masses), which may involve the interaction of moving loads 

and structural systems. Typical examples of such problems 

are bridges, railroads, guideways, cableways, and pipelines. 

Thus, accurate prediction of the dynamic characteristics and 

responses of such structures has been an important research 

issue for over a century.  

Many analytical solution techniques have been reported 

since Frýba’s monograph (1999). Examples include the 

integral transform method (ITM) (Frýba 1999), assumed 

mode method (Lee 1994, Lee 1996), component mode 

synthesis method (De Salvo et al. 2010), dynamic stiffness 

method (Henchi et al. 1997, Kwon et al. 1998), expanded 

dynamic bending deflection (Dmitriev 1977), Fourier series 

method (Xu and Li 2008, Li and Xu 2009, Tehrani and 

Eipakchi 2012), Galerkin method (Dmitriev 1974, Dmitriev 

1982), generalized moving least square method (Kiani et al. 

2010), least squares regularization method (Asnachinda et 

al. 2008), modal analysis method (Wang 1997, Wang and 

Lin 1998, Hong and Kim 1999, Wang and Sang 1999, 

Ichikawa et al. 2000, Dugush and Eisenberger 2002,  
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Johasson et al. 2013, Szylko-Bigus and Sniady 2015, Kim 

et al. 2017), mode superposition method (Zhu and Law 

1999, Wang et al. 2003, Jiang et al. 2004, Chan and Ashebo 

2006), modified beam vibration functions method (Zheng et 

al. 1998, Cheung et al. 1999), semi-analytic method 

(Martinez-Castro et al. 2006), transfer matrix method (Wu 

and Dai 1987, Ariaei et al. 2011, Ariai et al. 2013), and U-

transformation and mode method (Cai et al. 1988). 

However, analytical solution techniques are often limited to 

simple geometries and boundary conditions. Thus, various 

numerical solution techniques have been developed.  

The finite element method (FEM) is one of the most 

widely used numerical solution techniques by many 

researchers (Tang and Wang 2002, Lou et al. 2012, Lou and 

Au 2013). However, in spite of its wide applicability, FEM 

has an important drawback. The shape functions (or 

interpolation functions) used in FEM are not dependent on 

the vibration frequency. Thus, to improve the solution 

accuracy of FEM, a structural member must be discretized 

into many smaller finite elements that are far smaller than 

the wavelength of the highest vibration mode. In general, 

this results in a finite element model with a huge number of 

degrees of freedom, which requires an excessive 

computation time. 

In contrast to FEM, frequency-dependent dynamic shape 

functions are used in the frequency-domain spectral element 

method (SEM). These shape functions are derived from 

exact free wave solutions that satisfy the governing 

equations of motion in the frequency domain. Thus, SEM 

can provide both exact frequency-domain solutions (natural 

frequencies and modes) and extremely accurate time-

domain solutions (time histories of the dynamic responses). 

This is accomplished by efficiently taking into account as  
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Fig. 1 A multi-span beam subjected to a moving point force 
 

 

many high-frequency wave modes as required by using the 

fast Fourier transform (FFT) algorithm. Furthermore, due to 

the use of exactly formulated dynamic shape functions, 

SEM is shear locking-free and a uniform structural member 

without any geometrical and material discontinuities or 

external forces can be represented by a single finite element 

(one-element model), regardless of its dimensions. This can 

drastically reduce the problem size and thus the 

computation time (Lee 2009, Krawczuk et al. 2003). 

Despite the advantages, only a few researchers have 

applied SEM to moving load problems. Azizi et al. (2012) 

and Sarvestan et al. (2015) applied SEM to the dynamics of 

continuous beams and bridges subjected to a moving load. 

They discretized a uniform beam into multiple segments 

and applied a one-element model to the segment on which a 

moving load is located. The one-element model commonly 

in the standard FEM approximately represents a moving 

load located in a segment as effective nodal forces and 

moments acting on the two end-nodes of the finite segment. 

Thus, they could not fully benefit from the advantages of 

SEM. 

Recently, Song et al. (2016) applied SEM to the 

vibration of a single-span Timoshenko beam subjected to a 

moving point force. They obtained very accurate solutions 

by representing the moving point force as a series of 

stationary point forces in the frequency domain and 

applying a two-element model to the entire span of the 

Timoshenko beam subjected to each stationary point force. 

To the best of our knowledge, however, SEM has not been 

applied to the multi-span beams subjected to moving loads. 

Thus, we propose a spectral element analysis method for 

the vibrations of multi-span beams subjected to a moving 

point force as an extension of our previous work for single-

span beams subjected to a moving point force (Song et al. 

2016). Based on discrete Fourier transform (DFT) theory, 

the point force moving on a multi-span beam is transformed 

into the frequency domain as a series of stationary point 

forces acting on the multi-span beam simultaneously. The 

vibration responses are then obtained in the frequency and 

time domains by superposing all individual vibration 

responses excited by each stationary point force. To obtain 

an individual vibration response excited by a stationary 

point force, the span where the stationary point force is 

located is represented by a two-element model, where the 

stationary point force is located at the junction for two finite 

elements. The high accuracy and computational efficiency 

of the proposed method are verified by comparison with 

exact solutions and FEM results. 
 

 

2. Problem statement 
 

A multi-span beam subjected to a moving point force is  

 

Fig. 2 Spectral element model: (a) nodal DOFs, and (b) 

nodal forces and moments 

 

 

shown in Fig. 1. The point moving force has a constant 

magnitude P and moves at a constant velocity v. The multi-

span beam has a length L and it consists of s spans, where lk 

(k = 1,2,3, …, s) denotes the length of the kth span. In Fig. 

1, x is the global coordinate with an origin at the left-most 

end of the multi-span beam and x  is the local coordinate 

with an origin at the left end of a span. The distance from x 

= 0 to the right-end of the kth span is defined by 

1

k

k e

e

L l


 (k = 1, 2, 3,…, s) (1) 

 

 

3. Spectral element model of a uniform span  
 

Based on Timoshenko beam theory, the forced 

vibrations of a uniform span can be represented by the 

equations of motion (Lee 2009) 

( ) ( , )

( ) 0

GA w Aw f x t

EI GA w I

  

    

    

    
 (2) 

where w(x,t) and θ(x,t) are the transverse displacement and 

the slope due to bending, respectively, and f(x,t) is the 

external force applied on the span. E is the Young’s 

modulus, G is the shear modulus, ρ is the mass density, A is 

the cross-sectional area, I is the area moment of inertia, and 

κ is the shear correction factor of the span. One prime (') 

and two primes (″) denote the first and the second 

derivatives with respect to x, and two dots (¨) denote the 

second derivatives with respect to t. 

Using DFT theory (Newland 1993), Eq. (2) can be 

transformed to the frequency domain as follows (Lee 2009) 

2

2

( ) ( , )

( ) 0

GA W AW F x

EI GA W I

    

     

    

    
 (3) 

where W(x,ω), Θ(x,ω), and F(x,ω) are the Fourier 

components of the transverse displacement w(x,t), slope 

θ(x,t), and external force f(x,t) at discrete frequency ω. 

Following the spectral element formulation procedure 

described in Chapter 3 of Lee (2009), the frequency-domain 

spectral element model for a span of length l can be 

formulated from Eq. (3) in the following form 

( , ) ( )l S d f  (4) 
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Fig. 3 A series of stationary point forces in the frequency 

domain when T = TA 

 

 

Fig. 4 A multi-span beam subjected to a stationary point 

force Fn acting on the kth span, where the numbers in 

parentheses denote the node numbers 

 

 

Fig. 5 Nodal DOFs, forces, and moments for the mth span 

 

 

where S(,l) is the symmetric frequency-dependent 4-by-4 

spectral element matrix (or the exact dynamic stiffness 

matrix). Its components are provided in Appendix A. d and f 

are the Fourier components of the nodal degrees of freedom 

(DOFs) and the nodal forces and moments, respectively 

T
1 1 2 2

T
1 1 2 2

{ }

{ }

W W

Q M Q M

 



d

f
 (5) 

The nodal DOFs (Wi and i, where i = 1, 2) and the 

nodal forces and moments (Qi and Mi, where i = 1, 2) are 

shown in Fig. 2. Once the nodal DOFs d are obtained for 

the whole multi-span beam, the displacement fields in a 

span can be obtained from 

( , ) ( , ; ) , ( , ) ( , ; )wW x x l x x l     N d N d  (6) 

where Nw(x,ω;l) and Nθ(x,ω;l) are 1-by-4 frequency-

dependent dynamic shape functions that are already 

available (Lee 2009). 

 

 

4. Spectral element analysis for a multi-span beam 
under a moving point force  
 

4.1 Frequency-domain representation of a moving 
point force 
 

By using the Dirac delta function, a point force of 

constant magnitude P that moves at a constant velocity v 

can be represented by 

)(),( vtxPtxf    (7) 

The moving point force can be transformed in the 

frequency domain as follow by applying DFT to Eq. (7) 

with respect to t and applying a discrete representation of a 

continuous function of x to the DFT result (Song et al. 

2016) 

1

0

( , ) ( )
N

n n

n

F x F x x 




   (8) 

where 

( 0,1,..., 2, 1)
nx

i
v

nF Pe n N N


     (9) 

and 

n n

vnT
x vt vn t

N
     (10) 

where t = T/N is the time step, T is the time window (or 

sampling time), and N is the number of spectral components 

(or sampling number) up to the Nyquist frequency 

(Newland 1993). 

Eq. (8) means that the time history of a moving point 

force given by Eq. (7) can be transformed to the frequency 

domain as a series of stationary point forces. Fig. 3 shows 

the series of stationary point forces distributed on a multi-

span beam for a time window T chosen to be equal to the 

traveling time TA = L/v (i.e., T = TA). The frequency-domain 

representations of a moving point force for other cases, i.e., 

when T < TA and when T > TA, can be obtained from the 

literature (Song et al. 2016). 

Assuming that the nth stationary point force Fn is 

located on the kth span, as shown in Fig. 3, the location of 

Fn is x = xn = vnT/N (see Eq. (10)). The kth span is located 

in Lk-1  x  Lk, where Lk is defined by Eq. (1). Thus, the 

span number k where Fn is located can be determined to 

satisfy the following condition 

1k k

vnT
L L

N
    (11) 

If all spans of a multi-span beam have an equal length l, 

the span number k where Fn is located can be determined 

from Eq. (11) as follows 

Integer part of 1
vnT

k
Nl

 
  
 

(n = 0, 1, 2, …, N1) (12) 

 

4.2 General procedures of spectral element vibration 
analysis  
 

Once the moving point force is transformed to the 

frequency domain, the vibration analysis is conducted based 

on the superposition principle as follows: 

(1) In the first step, the frequency-domain vibration 

responses W(n)(x,ω) and Θ(n)(x,ω) of the multi-span beam 

due to stationary point force Fn are obtained using SEM. 

(2) In the second step, once the frequency-domain 

vibration responses are obtained for all stationary point  
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Fig. 6 Two-element model of the kth span subjected to a 

stationary point force Fn 

 

 

forces, the total frequency-domain vibration responses are 

obtained using the superposition principle as follows 

1 1
( ) ( )

0 0

( , ) ( , ), ( , ) ( , )
N N

n n

n n

W x W x x x     
 

 

    (13) 

(3) In the last step, the time-domain vibration responses 

are obtained from Eq. (13) using the inverse fast Fourier 

transform (IFFT) algorithm (Newland 1993) as follows 

( , ) [ ( , )], ( , ) [ ( , )]w x t IFFT W x x t IFFT x      (14) 

Based on the general procedure of spectral element 

vibration analysis, it suffices to focus the discussion on the 

first step where the frequency-domain vibration responses 

are obtained for stationary point force Fn (n = 0, 1, 2, …, 

N1). In the following, the subscripts (n) are omitted for the 

brevity. 

 

4.3 Dynamic responses to a stationary point force Fn 
 

4.3.1 Assembly of spectral element equations  
We assume that stationary point force Fn is located on 

the kth span of a multi-span beam as shown in Fig. 4. A 

benefit of SEM is that a uniform beam can be represented 

by a single spectral element, regardless of its length and 

with guaranteed exactness of the solutions. Thus, all spans 

except for the kth span can be represented by spectral 

element equations as follows 

( ) ( )m m m S d f (m = 1, 2, 3,…, k–1, k+1,…, s) (15) 

where Sm() is the spectral element matrix for the mth span 

( ) ( , )m ml l  S S  (16) 

S(,l) is provided in Appendix A. As shown in Fig. 5, dm 

is the nodal DOFs vector, and fm is the nodal forces vector 

T
1 1

T
1 1

{ }

{ }

m m m m m

m m m m m

W W

Q M Q M

  

 





d

f
 (17) 

The kth span is subjected to Fn and can be represented 

by a two-element model, as shown in Fig. 6. The kth span is 

divided into two elements such that Fn is located at the joint 

node p where the left element kL and the right element kR 

are connected. The length of the left element is denoted by 

Lkl , and the length of the right element is 
Rkl . The spectral 

element equations for the left and right elements are as 

follows 

( ) ( )

( ) ( )

L L L

R R R

k k k

k k k

 

 





S d f

S d f

 
(18) 

where 

( ) ( , ), ( ) ( , )
L L R Rk k k kl l l l      S S S S  (19) 

and 

T

T
1 1

T1
2

T1
1 12

{ }

{ }

{ 0}

{ 0 }

L

R

L

R

k k k p p

k p p k k

k k k n

k n k k

W W

W W

Q M F

F Q M

 

  

 





 

 

d

d

f

f

 (20) 

A total of s+1 spectral element equations based on Eqs. 

(15) and (18) can be assembled using the technique 

commonly used in the standard finite element method to 

obtain an assembled global system equation in the 

following form 

( ) ( )g g g S d f  (21) 

where Sg() is the global dynamic stiffness matrix, dg is the 

global nodal DOFs vector, and fg is the nodal forces vector 

1 1

1 1

2 2

2 2

1 1

1 1

1 1

1 1

,
0

k k

k k

p n

g g

p

k k

k k

s s

s s

s s

s s

W Q

M

W Q

M

W Q

M

W F

W Q

M

W Q

M

W Q

M















 

 

 

 

   
   
   
   
   
   
   
   
   
   
   

   
    
   
   
   
   
   
   
   
   
   
   
   
   

d f

 

(22) 

where Qr and Mr (r = 1, 2, 3, …, s+1) represent the reaction 

forces and moments at the interim supports and boundaries 

at x = 0 and L. 

 

4.3.2 Imposition of boundary conditions 
The components of Eq. (22) can be rearranged to define 

new vectors as follows 

ˆ ˆ,

L L

B B

g R g R

p p

p p

   
         

          
         

   

d f
d f

d d f f
d f

d f

 
(23) 

where 

T

1 1 2 2

T

1 1 1 1

T

T

1 1 2 2

T

1 1 1 1

T

{ }

{ }

{ }

{ }

{ }

{ 0}

L k k

R k k s s s s

p p p

L k k

R k k s s s s

p n

W W W

W W W

W

Q M Q M Q M

Q M Q M Q M

F

  

  



   

   











 

d

d

d

f

f

f

 
(24) 
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Table 1 Boundary matrices d

iB and f

iB for various boundary 

conditions 

Boundary conditions 
d

iB  
f

iB  

Simply supported  2 2a b L0 0   2 2c d U0 0  

Clamped  2 e0   2 2 2c d I0 0  

Free  2 2 2a b I0 0   2 e0  

Note: (1) a = s1+2f1, b = s1+2c1, c = s2+2f2, d = s2+2c2, and e 

= length of vector 
Bd , where s1, f1, and c1 are the numbers 

of simply supported, free, and clamped nodes before the ith 

node, and s2, f2, and c2 are the numbers after the ith node, 

respectively, (2) L = {0 1}T, U = {1 0}T 
 

 

and 

,
L L

B p

R R

   
    
   

d f
d f

d f
 (25) 

The global nodal DOFs vector dg and the global nodal 

forces vector fg can be related to newly-defined vectors ˆ
gd  

and ˆ
gf  as follows 

ˆ ˆ,g g g g d Rd f Rf  (26) 

where R is the transformation matrix defined by 

2

2

2( 1)

k

s k 

 
 

  
 
 

I

R I

I

0 0

0 0

0 0

 
(27) 

where 0 denotes a zero matrix, and I denotes an identity 

matrix, with subscripts indicating the dimensions of identity 

matrices. The transformation matrix R satisfies 

T R R I  (28) 

By imposing geometric boundary conditions on the 

interim supports and two boundaries at   x = 0 and x = L, 

the original nodal DOFs vector dB can be related to the 

reduced nodal DOFs vector Bd  as follows 

d

B Bd B d  (29) 

Similarly, by imposing natural boundary conditions, the 

original nodal forces vector fB can be related to the reduced 

nodal forces vector Bf  as follows 

f

B Bf B f  (30) 

The matrices Bd and Bf in Eqs. (29) and (30) are defined 

by 

1 1

2 2

1 1

,

d f

d f

d fd f

i i

d f

s s

d f

s s 

   
   
   
   
   

    
   
   
   
   
   

B B

B B

B BB B

B B

B B

 

(31) 

where d

iB and f

iB are the boundary matrices for the ith 

node and are given in Table 1 for various boundary 

conditions. The matrices Bd and Bf satisfy the following 

relations (Song et al. 2016) 

T T( ) , ( )d f f d B B B B0 0  (32) 

By using Eqs. (29) and (30), Eq. (23) can be written in the 

following forms 

ˆ ˆ,d f

g g g g d B d f B f  (33) 

where 

,
B B

g g

p p

      
    
      

d f
d f

d f
 (34) 

and 

2 2

,
d f

d f
   

    
   

B 0 B 0
B B

0 I 0 I
 (35) 

Substituting Eq. (33) into Eq. (26) gives 

,d f

g g g g d RB d f RB f  (36) 

By substituting Eq. (36) into Eq. (21), multiplying both 

sides of the result by T T( )d
B R , and using Eqs. (28) and 

(36), the original assembled global system equation, Eq. 

(21), can be reduced to the following form 

g g gS d f  (37) 

where 

T T( )d d

g gS B R S RB  (38) 

and 

g

p

  
  
  

0
f

f
 (39) 

 

4.3.3 Computation of vibration responses 
The global nodal DOF vector dg can be obtained by first 

solving Eq. (37) for 
gd  and then substituting the result into 

Eq. (36) 

1( )d

g g g

d RB S f  (40) 

To compute the frequency-domain vibration responses 

in the mth span, we consider two cases where (a) m = 1, 2, 

3, …, k–1, k+1, …, s and (b) m = k. 

(a) m = 1, 2, 3, …, k-1, k+1,…, s  

The nodal DOFs vector dm defined by Eq. (17) for the 

mth span can be related to the global nodal DOFs vector dg 

as follows 

m m gd T d  (41) 

where 

4 2 4 4 2( )m q s q  
   T I0 0  (42) 
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Fig. 7 Three examples of two-span beams subjected to a 

moving point force P 

 

 

where q = m–1 if m < k and q = m if m > k. Once dm is 

computed from Eq. (41), the frequency-domain vibration 

responses in the mth span can be computed from  

 1

( , ) ( , ; )

( , ) ( , ; )

m w m m

m m

m m m

W x x l l
L x L

x x l l

 

  


 
 

 

N d

N d
 (43) 

where Nw(x,ω;l) and Nθ(x,ω;l) are one-by-four dynamic 

shape functions defined in the previous study (Lee 2009).  

(b) m = k  

The kth span is represented by two elements, kL and kR, 

as shown in Fig. 6. The nodal DOFs for these two elements 

are represented by 
Lkd  and 

Rkd , which are defined by Eq. 

(20). The nodal DOFs vectors 
Lkd  and 

Rkd can be related to 

the global nodal DOFs vector dg as follows 

L L

R R

k k g

k k g





d T d

d T d
 (44) 

where 

4 2( 1) 4 4 2( 1)

4 2 4 4 2( )

L

R

k k s k

k k s k

    

  

   

   

T I

T I

0 0

0 0
 (45) 

The frequency-domain vibration responses in the kth 

span can be computed from 

1 1

1

1 1

1

( , ; ) ( )
( , )

( , ; ) ( )

( , ; ) ( )
( , )

( , ; ) ( )

L L L

R R L

L L L

R R L

w k k k k k

k

w k k k k k

k k k k k

k

k k k k k

x l l L x L l
W x

x l l L l x L

x l l L x L l
x

x l l L l x L











 



 



 



   
 

   

   
 

   

N d

N d

N d

N d

 (46) 

Based on Eqs. (43) and (46), the frequency-domain 

vibration responses at an arbitrary position x are 

( )

1

( )

1

( , ) ( , ) ( )

( , ) ( , ) ( )

s
n

m m

m

s
n

m m

m

W x W x H x

x x H x

 

   












 (47) 

 

Fig. 8 Two examples of five-span beams subjected to a 

moving point force P 

 

 

where 

1( ) ( ) ( )m m mH x h x L h x L     (48) 

where h(x) is the Heaviside step function (Kreyszig 1972). 

0 ( 0)
( )

1 ( 0)

x
h x

x


 


 (49) 

As mentioned in Section 4.2, the frequency-domain 

vibration analysis is repeated N times to obtain W(n)(x,ω) 

and Θ(n)(x,ω) for all stationary point forces Fn, where n = 0, 

1, 2, …, N–1. Next, the total frequency-domain vibration 

responses are obtained from Eq. (13), based on the 

superposition principle. Finally, the time-domain vibration 

responses can be obtained from these total frequency-

domain vibration responses by using the IFFT algorithm 

(Newland 1993). 

 

 

5. Numerical results and discussion 
 

For numerical studies, we consider three two-span 

beams shown in Fig. 7: a simple-simple-simple (S-S-S) 

supported beam, a clamped-simple-simple (C-S-S) 

supported beam, and a clamped-simple-clamped (C-S-C) 

supported beam. We also consider two five-span beams 

shown in Fig. 8: a simple-simple-simple-simple-simple-

simple (S-S-S-S-S-S) support-ed beam and a clamped-

simple-simple-simple-simple-clamped (C-S-S-S-S-C) 

supported beam. The geometric and material properties of 

each span of the example multi-span beams are as follows: 

length l = 4.352 m, cross-sectional area A = 1.31×10-3 m2, 

the area moment of inertia I = 5.71×10-7 m4, Young’s 

modulus E = 2.02×1011 N/m2, shear modulus G = 7.7×1010 

N/m2, mass density ρ = 15,267 kg/m3, and shear correction 

factor κ = 0.7. We assume that all example multi-span 

beams are subjected to a moving point force with constant 

magnitude P = 1 kN and constant speed v = 20, 50, or 80 

m/s. 

To evaluate the proposed method, the natural 

frequencies and vibration responses of the S-S-S two-span 

beam and S-S-S-S-S-S five-span beam obtained by SEM 

are first compared with results obtained by standard FEM. 

All FEM results were obtained using the finite element 

mass and stiffness matrices for a Timoshenko beam model  
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Fig. 9 Comparison of the short-term early-phase vibration 

responses of an S-S-S two-span beam obtained by the 

proposed SEM and by FEM (Wu et al. 2000) for v = 20 m/s 

 

Table 2 Natural frequencies (Hz) of an S-S-S two-span 

beam obtained by the proposed SEM and by FEM (Petyt 

2010) 

Mode number 
FEM SEM 

n=20 n=50 n=100 n=300 n=2 

1 6.295 6.295 6.295 6.295 6.295 

2 9.826 9.826 9.826 9.826 9.826 

3 25.14 25.14 25.14 25.14 25.14 

4 31.78 31.77 31.77 31.77 31.77 

5 56.46 56.42 56.41 56.41 56.41 

10 172.0 170.9 170.8 170.8 170.8 

15 402.9 391.1 390.2 390.0 390.0 

Note: n = total number of finite elements used in the 

analysis 

 

 

Fig. 10 Comparison of the short-term early-phase vibration 

responses of an S-S-S-S-S-S five span beam obtained by the 

proposed SEM and by FEM (Wu et al. 2000) for v = 20 m/s 
 

 

introduced by Petyt (2010). Tables 2 and 3 compare the 

natural frequencies of the S-S-S two-span beam and S-S-S-

S-S-S five-span beam obtained by SEM and FEM. For the 

FEM results, the total number of equal-length finite 

elements used in the analysis is increased until the first four 

converges. However, the SEM results are obtained using 

only two finite elements for the S-S-S two-span beam and 

only five finite elements for the S-S-S-S-S-S five-span 

beam. That is, only a single finite element is used for each 

span of the multi-span beam examples. The tables show that 

the FEM results converge to the SEM results as the total  

Table 3 Natural frequencies (Hz) of an S-S-S-S-S-S five-

span beam obtained by the proposed SEM and by FEM 

(Petyt 2010) 

Mode number 
FEM SEM 

n=20 n=50 n=100 n=200 n=5 

1 6.297 6.295 6.295 6.295 6.295 

2 6.985 6.983 6.983 6.983 6.983 

3 8.733 8.728 8.728 8.728 8.728 

4 11.00 10.99 10.99 10.99 10.99 

5 13.20 13.19 13.19 13.19 13.19 

10 37.77 37.45 37.43 37.43 37.43 

15 75.90 74.17 74.08 74.07 74.07 

Note: n = total number of finite elements used in the 

analysis 
 

 
Fig. 11 Comparison of the long-term vibration responses of 

the S-S-S two-span Timoshenko beam obtained by the 

modal analysis method (MAM) (Wang 1997), FEM (Wu et 

al. 2000) and the present SEM for v = 20 m/s 
 

 

number of finite element increases.  

Fig. 9 compares the short-term transverse vibration 

responses in the early phase at x = 0.25L of the S-S-S two- 

span obtained by SEM and FEM, where L = 2l. Similarly, 

Fig. 10 compares the short-term early-phase responses at x 

= 0.1L for the S-S-S-S-S-S five-span beam, where L = 5l. 

The FEM-based vibration responses were obtained using 

the finite element analysis technique introduced by Wu et 

al. (2000) for moving load problems. For the results in Figs. 

9 and 10, it is assumed that the speed of the moving point 

force is v = 20 m/s. It is clear from the figures that the short-

term early-phase responses obtained by FEM converge to 

the results by the SEM as the total number of finite 

elements increases. The computation times (CPU times on a 

desktop PC with an Intel core i7-3770 CPU) required to 

obtain the short-term early-phase responses of the S-S-S 

two-span are about 19 seconds for the present SEM and 74 

seconds for the FEM using 800 elements. 

Exact analytical solutions are very rare for multi-span 

beams subjected to moving loads. Wang (1997) presented a 

modal analysis method (MAM) to obtain analytical solutions 

for the multi-span Timoshenko beams subjected to a moving 

force. The MAM by Wang (1997) was applied to the S-S-S 

two-span Timoshenko beam to obtain long-term transverse 

vibration responses for v = 20 m/s. In Fig. 11, the present  

Zoom-In 

 

Zoom-In 

Zoom-In 
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SEM results are compared with the analytical solutions by 

MAM and the FEM results obtained using 800 elements. In 

Fig. 11, TA = L/v denotes the time required for the moving 

point force to travel from the left end (x = 0) to the right end 

(x = L) of the beam. Fig. 11 shows that the SEM results are 

almost identical to the analytical solutions by MAM and the 

FEM results. Overall, the results show that the proposed  

 

 

 

 

SEM is very accurate and efficient. 

The effects of the boundary conditions and the moving 

speed (v) of a point force on the transverse vibration 

responses are numerically investigated by using the present 

SEM for three two-span beam examples (see Fig. 7) and 

two boundary conditions at x = 0 and L, where L = 2l for the 

two-span beams and L = 5l for the five-span beams. 

 

Fig. 12 Effects of boundary conditions on the long-term vibration responses at x = 0.25L and 0.75L of a two-span beam (L 

= 2l) for v = 20 m/s 

 

Fig. 13 Effects of boundary conditions on the long-term vibration responses at x = 0.25L and 0.75L of a five-span beam (L 

= 5l) for v = 20 m/s 

 

Fig. 14 Effects of moving speed (v) on the long-term vibration responses at x = 0.25L and 0.75L of the S-S-S, C-S-S, and 

C-S-C two-span beams (L = 2l) 
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Fig. 16 Time-dependent deformed shapes of the S-S-S two-

span beam subjected to a moving point force for v = 20, 50, 

and 80 m/s 

 

 

Fig. 12 compares the long-term transverse vibration 

responses at x = 0.25L and 0.75L for the two-span beams 

using v = 20 m/s. Similarly, Fig. 13 compares the responses 

at x = 0.25L and 0.75L of for the five-span beams using v = 

20 m/s. The figures show that the vibration responses are 

strongly dependent on the boundary conditions and the 

maximum magnitudes of the transverse vibration responses 

become smaller as more boundaries are clamped, which is 

physically natural. 

Figs. 14 and 15 show the effects of the speed (v) of the 

moving point force on the long-term transverse vibration 

responses are strongly dependent on the speed of the 

moving point force and the vibration responses at v = 50 

m/s seem larger than those at v = 20 and 80 m/s, especially 

when all boundaries and internal supports are simply  

 

 
Fig. 17 Time-dependent deformed shapes of the C-S-S two-

span beam subjected to a moving point force for v = 20, 50, 

and 80 m/s 
 

 
Fig. 18 Time-dependent deformed shapes of the C-S-C two-

span beam subjected to a moving point force for v = 20, 50, 

and 80 m/s 

 

Fig. 15 Effects of moving speed (v) on the long-term vibration responses at x = 0.25L and 0.75L of the S-S-S, C-S-S, and 

C-S-C two-span beams (L = 2l) 

(a) when v = 20 m/s 

(b) when v = 50 m/s 

(c) when v = 80 

 

(a) when v = 20 m/s 

(b) when v = 50 m/s 

(c) when v = 80 

m/s 

(c) v = 80 m/s 

(a) v = 20 m/s 

(b) v = 50 m/s 
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supported. This occurs because v= 50 m/s is closest to the 

critical moving speed (vcr = 54.79 m/s) where resonance 

vibrations can occur for a single-span simply supported 

beam of length l (Frýba 1999). 

Fig. 16 compares the deformed shapes of the S-S-S two-

span beam at t = 0, 0.2TA, 0.4TA, 0.6TA, 0.8TA, and TA for 

speeds v = 20, 50, and 80 m/s. Figs. 17 and 18 compares the 

deformed shapes for the C-S-S and C-S-C two-span beams,  

respectively. TA = 2l/v denotes the time required for the 

moving point force to travel from the left end (x = 0) to the 

right end (x = 2l). The figures show that the deformed 

shapes strongly dependent on the speed of the moving point 

force and the boundary conditions. As observed from Fig.  

 

 

 

14, the magnitudes of the deformed shapes seem to be 

largest when the speed is near the critical speed, especially 

for the case of the S-S-S two-span beam. The S-S-S two-

span beam is geometrically symmetric with respect to the 

mid-point (x = l). However, in contrast to the static 

problems, the deformed shapes are not symmetric when the 

moving point force passes two points that are at equidistant 

from both ends of the beam (i.e., at t = 0 and TA, at 0.2TA 

and 0.8TA, or at 0.4TA and 0.6TA). This is due to the 

convolution of the casual effect of the moving point force. 

Lastly, Fig. 19 compares the deformed shapes for the S-

S-S-S-S-S five-span beam at t = 0, 0.1TA, 0.3TA, 0.5TA, 

0.7TA, 0.9TA, and TA for different speeds of the moving 

 

Fig. 19 Time-dependent deformed shapes of the S-S-S-S-S-S five-span beam subjected to a moving point force for v = 20, 

50, and 80 m/s 

 

Fig. 20 Time-dependent deformed shapes of the C-S-S-S-S-C five-span beam subjected to a moving point force for v = 20, 

50, and 80 m/s 

(a) v = 20 m/s 

(b) v = 50 m/s 

(c) v = 80 m/s 

(a) v = 20 m/s 

(b) v = 50 m/s 

(c) v = 80 m/s 
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point force. Fig. 20 compares the deformed shapes for the 

C-S-S-S-S-C five-span beams. TA = 5l/v denotes the time 

required for the moving point force to travel from the left 

end (x = 0) to the right end (x = 5l) of the beams. The results 

in these cases are very similar to those observed from Figs. 

16, 17 and 18. 

 

 

6. Conclusions 
 

This study has presented a two-element model-based 

frequency domain spectral element analysis method for the 

vibrations of a multi-span beam subjected to a moving point 

force as an extension of the previous work for a single-span 

beam. A time-domain moving point force is transformed 

into the frequency domain as a series of stationary point 

forces acting on a multi-span beam simultaneously. The 

vibration responses in both the frequency domain and time 

domain are obtained by superposing all individual vibration 

responses due to each stationary point force. To obtain the 

individual vibration responses to a specific stationary point 

force, the span where the stationary point force is located is 

represented by a two-element model, while all other spans 

are represented by one-element models. The followings 

were investigated through numerical studies: 

(1) The high accuracy and computational efficiency of 

the proposed method was verified by comparing it with 

exact ITM solutions and FEM. 

(2) The vibration responses are strongly dependent on 

the boundary conditions and the speed of the moving point 

force. 

(3) In general, the vibration responses are large when 

the speed of the moving point force is near the critical speed 

for a simply supported single-span beam. 

(4) In contrast to static problems, the deformed shapes 

are not symmetric with respect to the mid-point of a multi-

span beam at the times when a moving point force passes 

two points that are at equidistant from both ends of the 

beam due to the convolution of the casual effect. 
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Appendix A: Components of the spectral element matrix 

S(ω,l) 

 

The components of the 4-by-4 spectral element matrix 

S(ω,l) are given by (Lee 2009) 
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where 
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(A2) 

where 1i    is the imaginary unit, and k1, k2, k3 and k4 

are the wavenumbers defined in (Lee 2009). 
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