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1. Introduction 
 

In steel construction, beam-to-column connections, Fig. 

1, can be considered as rigid or pinned, according to the fact 

that the joint allows transmission of bending moment in the 

first case while this is not permitted in the second. In fact, a 

node is considered as perfectly rigid when it presents a 

sufficient rotational stiffness and can equilibrate all types of 

internal forces inside the connected elements. On the other 

hand, a node is perfectly pinned when it does not allow any 

transmission of bending moment from the beam to the 

column: the connection in this case has no rotational 

stiffness, but it should be able to transmit the axial and 

shear forces. 

This field of research is increasingly treated, but few 

researchers are interested in the dynamic behavior of 

structures with semi-rigid nodes. 

Ihaddoudène et al. (2017) developed a mechanical 

model taken into account the effect of beam-column joint 

flexibility on the elastic buckling load of plane steel frames. 

The model consists in the development of comprehensive 

approach taking into account, simultaneously, the effects of 

the joint rigidity, the elastic buckling load, and this for both 

sway and non-sway frames. Numerical results are obtained 

for frames with various characteristics and support 

conditions. Akbar and Min (2017) proposed a new method, 

for the seismic design of steel frame structures, based on a 

simplified analytical semi-rigid frame model, assuming that 

the structural plastic deformation is concentrated within the  
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Fig. 1 Beam-column connections: (a) pinned connection; 

(b) rigid connection; (c) semi-rigid connection 

 

 

semi-rigid connections while beams and columns remain 

elastic. A finite element model is presented by Halil et al. 

(2017), that takes into account the presence of semi-rigid 

connections, and by implementing an accurate shear 

correction coefficient for I-shaped steel sections to 

represent shear deformation and rotary inertia in order to 

calculate consistent stiffness and mass matrices. 

Bouafia et al. (2017) carried out a detailed numerical 

study to examine the effects of nonlocal parameter, aspect 

ratio and various material compositions on the static and 

dynamic responses of the functionally graded nanobeam. 

The nonlocal elastic behavior is described by a differential 

constitutive model, which enables the model to become 

effective in the analysis and design of nanostructures. 

Furthermore, Zemri et al. (2015) presented a nonlocal shear 

deformation beam theory for bending, buckling and 

vibration of functionally graded (FG) nanobeams using the 

nonlocal differential constitutive relations. Analytical 

solutions are presented for a simply supported FG 

nanobeam, and the obtained results compare well with those 

predicted by the nonlocal Timoshenko beam theory. 

In the Eurocode 3 Standard (2005), the classification of 
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nodes of steel structures is established with the aim to detail 

the limits of the initial rotational stiffness, from which a 

node can be considered as pinned, rigid or semi-rigid. 

According to this code, a node is considered as rigid, if its 

initial rotational stiffness is equal or higher 

than  25 EsIb Lb⁄   in the case of unbraced frames, and 

8 EsIb Lb⁄  in the case of braced frames. In the same way, a 

node is supposed to be nominally pinned if its initial 

rotational stiffness does not exceed 0,5 EsIb Lb⁄  for both 

braced and unbraced frames. Finally, nodes with an initial 

rotational stiffness between these two limits are classified as 

semi-rigid nodes and their behavior must be considered in 

the global analysis of structures. 

Where Es, Lb, and Ib are, respectively, the Young's 

modulus of the beam, its length and its moment of inertia. 

In this paper, a numerical approach is developed to 

evaluate the natural angular frequencies of steel portal 

frames, with semi-rigid nodes, using the finite element 

software ANSYS, where the semi-rigid nodes are 

assimilated to linear elastic rotational springs between 

beams and columns, fig. 3. In a second step, an analytical 

study is carried out to calculate the same parameter. Then, 

the comparison between the results of the numerical 

approach and the analytical study allows to the first one to 

be validated. 

Thereafter, a study of a multi-storey steel portal frame is 

numerically carried out with the aim to analyze the 

classification of nodes as defined by the EC3 (2005). The 

study focuses on a steel portal frame with semi-rigid 

connections, and consists in varying the stiffness of the 

beams, for the same type of columns, to determine its 

natural angular frequency as a function of the fixity factor 

of nodes. The results are discussed respecting the 

classification of nodes established by the EC3 (2005). In the 

same way, similar study is carried out by varying the 

stiffness of the columns in order to analyze the same 

parameters as previously, for the same types of beams. 

According to the obtained results, new limits for the 

classification of nodes are proposed. The novelty of this 

paper is showing the fact that these limits consider not only 

the rotational stiffness of beams, but also the stiffness of 

columns. A formula taking into account the stiffness of 

columns and the rotational stiffness of beams is proposed. 

At the end, a practical example is presented to lead in the 

application of this method. 
 

 

2. Numerical approach of steel portal frames with 
semi-rigid nodes 
 

For the numerical approach, a simple portal frame is 

modeled, Fig. 2, with fixed end base columns and semi-

rigid beam-column connections, in order to study a modal 

analysis of this portal frame and calculate its angular 

frequencies. The numerical simulation is performed by the 

finite element software ANSYS Structural 11.0, where the 

semi-rigid nodes are modeled by linear elastic rotational 

springs which have different values of the fixity factor. The 

characteristics of those springs can be calculated using the 

component method proposed by the EC3 (2005). 

By means of the finite element software ANSYS, the 

semi-rigid parameter consists in modeling nodes as springs 

elements, without length, that connect the beam to each 

adjacent column. Those springs are represented by a fixity 

factor rj, that defines the rotational rigidity of nodes relating 

to that of the attached element. For a pinned connection, the 

fixity factor is equal to zero (rj = 0), and for a fully rigid 

connection, it is equal to the unity (rj = 1). Then, a semi-

rigid connection is represented by fixity factors between 

zero and the unity (0 < rj <1). 

The sample, Fig. 2, is a steel portal frame with 4 m of 

span and 4 m of height. The two columns are made of HEA 

260 hot rolled profiles and the beam is an IPE 360. The 

geometrical characteristics of these rolled sections are 

provided in the Euro-norms (1963). 

 

 

 

Fig. 2 Semi-rigid portal frame modeled by ANSYS 

 

 

For all configurations of the studied portal frame, the 

same type of node at both ends of the beam is considered (ri 

= rj). The results are given in Table 1: 

 

 

Table 1 Angular frequencies variation of the portal frame, 

numerically estimated 

ri= rj 0,6 0,7 0,8 0,9 1 

ωi (rad/s) ANSYS 118,38 120,42 122,54 123,76 124,74 

 

 

In the aim to validate this numerical study, an analytical 

one is developed and allows calculating the frequencies of a 

portal frame with semi-rigid nodes. The analytical results 

will confirm those of the numerical one. 

 

 

3. Analytical study of plane structures with semi-
rigid nodes 
 

According to Díaz (2011), two approaches exist to 
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introduce semi-rigid nodes in the analysis of structures. The 

first approach is to introduce additional elements that 

represent directly the beam-column connection. These are 

considered as elements with two nodes connecting the 

beams to the columns. In the second approach, the member 

with semi-rigid nodes is connected in each end to a spring 

with zero length, the beam with the two springs are 

considered as a single element called “hybrid”, Fig. 3. 

 

 

 

Fig. 3 Modeling of a hybrid finite element with semi-rigid 

nodes 

 

 

Several researchers have adopted the first approach, 

Urbonas and Daniunas (2006), Temesgen (2011), Del Savio 

(2009), Piluso (2012), Bayo (2012), by developing 

mechanical models which represent the beam-column 

connection. While others, Chan and Chui (2000), Sokor 

(2002), Ihaddoudène (2009), Chin-Long (2009), Kartal 

(2010), have adopted the second approach by changing the 

boundary conditions of the assembled element. 

This work is compared with the second approach, which 

consists in representing the structural elements with semi-

rigid nodes as finite elements, as given by Monforton and 

Wu (2003). A “fixity factor” called rj is used, taking into 

account the effect of semi-rigidity of the beam, which is 

given by the following formula (2003) 

rj =
1  

1 +
3EsIb

RjLb
 
               (j = 1, 2) (1) 

Where Rj represents the stiffness of the spring, and EsIb 

/Lb is the flexural rigidity of the beam. The fixity factor rj 

varies between 0 and 1 (0 < rj <1), where 0 represents a 

pinned node and 1 a fully rigid one. 

The introduction of the fixity factor in the analysis of a 

structure is made by considering the element with semi-

rigid nodes, as a rigid finite element having an elementary 

stiffness matrix [Ke], Clough and Penzien (1976). 

Thereafter, the correction stiffness matrix [C] given by Xi 

(2003), must be applied to have the rigidity matrix of the 

semi-rigid beam. 

Therefore, the corrected stiffness matrix of a beam with 

semi-rigid nodes [Ke(SR)] is given by 

 

(2) 

Where Ab is the section of the beam. 

 

3.1 Dynamic analysis of semi-rigid steel frames 

In this paper, the angular frequencies of a free system 

are calculated, i.e., the system is not subjected to an external 

excitation force. The dynamic equilibrium equation of a 

system in free vibration is written as follows 

[KG] − ω
2 × [MG] = 0 (3) 

where ω is the angular frequency of the system, [KG] its 

global stiffness matrix and [MG] its global mass matrix. 

Those global matrices are obtained after assembling the 

elementary matrices [Ke] and [Me] given by Clough and 

Penzien (1976). 

We consider a portal frame with two columns having a 

cross section Ac, a length Lc, a moment of inertia Ic, and a 

beam with a cross section Ab, a length Lb and a moment of 

inertia Ib. The Young's modulus of the steel is Es and its 

density ρ. The solution of the Eq. (3) is given by the 

resolution of its determinant, which is done after applying 

the boundary conditions. 

For the case of a fixed support, the boundary conditions 

are: u = v = θ = 0, the solution is 

Det

(

 
 
 

D11 D12 D13 D14 D15 D16
D21 D22 D23 D24 D25 D26
D31 D32 D33 D34 D35 D36
D41 D42 D43 D44 D45 D46
D51 D52 D53 D54 D55 D56
D61 D62 D63 D64 D65 D66)

 
 
 
= 0 (4) 

The components of the determinant (4) are given as 

follows 

 

 

(5) 
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Substituting Ac, Lc, Ic, Ab, Lb, Ib, ρ and Es in the equation 

of the determinant, an equation in terms of ri, rj and ω is 

obtained. By varying ri and rj from 0 to 1, the angular 

frequencies ω are then obtained for each value of fixity 

factors of nodes. 

 

 
4. Validation of the numerical approach 

 
In order to validate the numerical approach, the same 

example modeled previously in paragraph 2 is considered, 

Fig. 4. 

 

 

 

 

The comparison between the angular frequencies of the 

portal frame analytically calculated with those numerically 

estimated, are given in Table 2. 

 

 

Table 2 Numerical and analytical results of the portal frame 

angular frequencies 

ri= rj 0,6 0,7 0,8 0,9 1 

ωi (rad/s) ANSYS 118,38 120,42 122,54 123,76 124,74 

ωi (rad/s) analytical 114,42 117,58 120,33 122,74 124,88 

 

 

The numerical approach results tend towards those 

analytically calculated the fact that the difference between 

values is about 2%. The numerical model can be used for 

other configurations of portal frames. 

5. Numerical study of a frame with semi-rigid nodes 
 

After validating the obtained results with the software 

ANSYS, the same model is used in order to discuss the 

validity of the classification of joints defined by the EC3 

(2005) on a multi-storey steel frame. In its part 1-8, 

Eurocode 3 (2005), presents a joint classification according 

to their rotational stiffness and allows a joint to be classified 

as pinned, semi-rigid or rigid. 

A node is defined as pinned if its initial rotational 

stiffness does not exceed  0,5 EsIb Lb⁄ . By replacing this 

limit in Eq. (1) a value of fixity factor ri ≤ 0,15 is obtained. 

By the same way, for an unbraced frame, a rigid joint is 

defined if its initial rotational stiffness is higher 

than 25 EsIb Lb⁄ . By replacing this limit in Eq. (1) a value 

of fixity factor ri ≥ 0,9 is obtained. Joints having initial 

rotational stiffness between these two limits are classified as 

semi-rigid. 

The case studied in this paragraph is a steel portal frame 

with one span of 4 m and three storeys of 4 m height, Fig. 5. 

The columns are made of HEA300 and beams are designed 

using IPE cross-sections. 

 

 

 

 

The same type of node in both ends of beams is 

considered (ri=rj), for all configurations of the studied portal 

frame. 

 

 

Table 3 angular frequencies variation numerically estimated 

of the portal steel frame in Fig. 5 

 Pinned joints according to EC3 Semi-rigid joints according to EC3 

rigid joints 

according 

to EC3 

ri= rj 0 0,05 0,1 0,15 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

ωi (rad/s) IPE300 13,5 32,3 33,9 34,6 34,9 35,2 35,4 35,5 35,6 35,6 35,7 35,7 35,7 

ωi (rad/s) IPE330 13,2 33,7 35,8 36,7 37,1 37,6 37,9 38,0 38,1 38,2 38,3 38,3 38,3 

ωi (rad/s) IPE360 12,8 34,7 37,3 38,4 39,0 39,6 40,0 40,2 40,3 40,4 40,5 40,6 40,6 

ωi (rad/s) IPE400 12,5 35,4 38,6 40,0 40,8 41,6 42,0 42,3 42,5 42,6 42,7 42,8 42,8 

ωi (rad/s) IPE450 12,1 35,8 39,6 41,2 42,2 43,2 43,7 44,1 44,3 44,5 44,6 44,7 44,8 

ωi (rad/s) IPE500 11,6 35,7 39,9 41,8 42,8 44,0 44,7 45,1 45,4 45,6 45,7 45,8 45,9 

 

Fig. 4 Example of semi-rigid portal frame 

 

Fig. 5 Investigated semi-rigid portal frame 
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In order to develop numerical results, it has been 

decided to vary the rigidity of beams and calculate the 

corresponding angular frequencies. The results are given in 

Table 3. 

In graphical format, the natural angular frequencies of 

steel portal frames with semi-rigid nodes according to the 

fixity factor of nodes ri, for each value of the rigidity of the 

beam, are given in Fig. 6. 

 

 

 

 

5.1 Discussion of the results according to the 
classification of EC3 (2005) 

 

According to the classification of joints adopted by the 

EC3 (2005), the results obtained in this study are discussed: 

If 0 < ri ≤ 0,15 : According to the EC3 (2005), the nodes of 

which the fixity factors are in this interval are considered 

nominally pinned. According to the results of this study, a 

significant increase is observed in natural angular 

frequencies values between the case of pinned nodes ri= 0 

and the case of nodes that have a fixity factor ri = 0,15. By 

considering the example of the steel frame with IPE 360 

beams, the natural angular frequencies show a significant 

increase between the case of pinned nodes ri=0 

(ωi=12,8rad/s) and the case of nodes with ri=0,15 

(ωi=38,4rad/s). 

If 0,15 < ri ≤ 0,9 : According to the EC3 (2005), the 

nodes of which the fixity factor are in this interval are 

considered as semi-rigid. Depending on the results, a slight 

increase can be noted in natural angular frequencies values 

in this case. By considering the example of the steel frame 

with IPE360 beams, the values of natural angular 

frequencies experienced a small variation between the case 

of nodes with ri=0,15 (ωi=38,4rad/s) and the case of nodes 

with ri=0,9 (ωi=40,6rad/s). 

If 0,9 < ri ≤ 1 : According to the EC3 (2005), the nodes 

of which the fixity factors are in this interval are considered 

as rigid. According to the results, no variation of natural 

angular frequencies is underlined in this case. It has been 

found that the values of natural angular frequencies of the 

portal frame remain constant. By considering the example 

of the steel frame with IPE 360 beams, the natural angular 

frequencies have the same value between the case of nodes 

with ri=0,9 (ωi=40,6rad/s) and the case of nodes with ri=1 

(ωi=40,6rad/s). 

5.2 Calculation of the natural angular frequencies 

depending on the stiffness of columns 
 

In order to confirm the previous results, it has been 

managed to vary the stiffness of columns and track changes 

in natural angular frequencies depending on the fixity factor 

of nodes ri, for each type of beam. The columns considered 

are made of HEA400 and HEA500 cross-sections. In 

graphical form, the results are given as follows: 
 

 

 

 

By changing the stiffness of the columns, it is shown 

that the graphs ωi = f(ri) keep the same shape for different 

beams stiffness. 
 

5.3 Classification of nodes and proposition of new 
limits 

 

According to this study, the classification of joints in 

function of their rotational stiffness, as adopted by the EC3 

(2005), has an influence on the dynamic response of steel 

portal frames. In addition, it has been shown that for all the 

studied cases, this rigidity does not affect in the same way 

the values of angular frequencies of the portal frames. For 

this reason, new limits for the classification of nodes are 

proposed: 

When 0 < ri < 0,05 : the values of angular frequencies of 

portal frames increase two times, or even three times. In this 

interval, the values of angular frequencies are very sensitive 

to the value of the nodes fixity factors. 

When 0,05 ≤ ri ≤ 0,6 to 0,9 : The upper limit of this 

interval is variable because the values of the angular 

frequencies are comparable with those of the rigid node in 

some cases, and very different in other cases (see Table 3). 

By considering the example of the portal frame with  
 

 
 

 

Fig. 6 Angular frequencies variation versus the fixity factor 

(column HEA 300) 

 

Fig. 7 Angular frequencies variation according to the fixity 

factor (column HEA 400 left, HEA 500 right) 

 

Fig. 8 Limits of the nodes semi-rigidity interval under 

consideration of the beams flexural stiffness (column HEA 

300) 
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columns and beams made respectively of HEA300 and 

IPE300 cross-sections, the value of the angular frequency 

changes by 10% compared to the value of rigid nodes 

(between ri = 0,05 and ri = 1), while for the case of beams 

made of IPE 360, it changes by more than 20% compared to 

the value of the rigid nodes (between ri = 0,05 and ri = 1). 

This variation is due to the fact that the node semi-rigidity 

depends on the beam flexural stiffness, but it is linear. 

When 0,6 to 0,9 < ri ≤ 1 : depending on the value of the 

obtained natural angular frequency, portal frames with 

nodes having a coefficient ri in this interval can be 

considered as rigid. The value of the natural frequency is 

the same as that given by ri = 1. 

The limit between the interval 0,05 ≤ ri ≤ 0,6 to 0,9 and 

the interval 0,6 to 0,9 < ri < 1 is given by a straight line 

between the two types of frames, and clearly not by a 

discrete value (ri=0,9) as defined in the EC3 (2005). 

 

5.4 Straight line of the semi-rigid interval 
 

The limits of the semi-rigid interval are defined by a 

straight line, which varies with the flexural stiffness of 

beams, differentiating the rigid behavior of nodes and the 

semi-rigid interval. In the case of columns made of 

HEA300, the line is expressed by the following relationship 

ωi = 35,5 ri + 14,3 (6) 

This equation defines the limit between the case of rigid 

nodes and the case of semi-rigid ones. 

In the case of other types of columns which are the 

subject of this study, straight line giving the limit of the 

semi-rigidity of nodes according to the flexural stiffness of 

columns is given as follows.  

The straight line defining the limit of the interval of 

semi-rigid nodes, is a function of the flexural stiffness of 

columns, its equation is given as follows 

ωi = A ri + B (7) 

In the graphs of Figs. 6-7, it may be remarked that in 

addition to the stiffness of beams, the stiffness of columns 

has an influence on the values of angular frequencies of 

portal frames with semi-rigid nodes. In order to take into 

account this stiffness, the variation of the coefficients A and 

B of the Eq. (8) is plotted as a function of the columns 

stiffness. 

 

 

This variation of the coefficients A and B can be 

approximated by 

A = 9 × 10−7 ×
Es × Ic
Lc

+ 27,46      ;         B

= −3 × 10−7 ×
Es × Ic
Lc

+ 16,8 
(8) 

Then, the straight line defining the relationship between 

the angular frequency ωi of the portal frame and the fixity 

factor ri of its nodes may be defined by 

ωi = (9 × 10
−7 ×

Es × Ic
Lc

+ 27,46) ri

+ (−3 × 10−7 ×
Es × Ic
Lc

+ 16,8) 
(9) 

By replacing Young modulus Es=2,1x1011 N/m², the 

column inertia by Ic=18263,5 cm4, and the column length 

by Lc=4m, the same equation is obtained that defines the 

limit of nodes semi-rigidity in the case of a portal frame 

having columns with an inertia comparable to that of 

HEA300 and beams with inertias between that of the 

IPE300 and IPE500. For intermediate values, linear 

interpolation may be used. 

 

5.5 Definition of the interval that takes into account 
flexional stiffness of columns 

 

To obtain the value of the coefficient that takes into 

account the flexural stiffness of the columns and calculate 

the corresponding angular frequency, the following steps 

have been followed: 

1- Calculate the equation of the straight line of the semi-

rigid interval, 

2- Draw this line in the corresponding graph (fig. 6 or 

7). 

Thereafter the value of ωi can be calculated from the 

considered graph, by projection. 

 

5.6 Practical example 
 

By considering the example of a portal frame with 

beams made of IPE360 for a length of 4 m, and columns 

made of HEA340 cross-section, with Ic = 27690 cm4, and 

height to 4 m. By using the Eq. (9), the limit of the semi-

rigid interval can be given as follows: 

 

Fig. 9 Limits of the nodes semi-rigidity interval under 

consideration of the beams flexural stiffness (column HEA 

400 left, HEA 500 right) 

 

Fig. 10 Variation of coefficients A and B as a function of 

columns stiffness 
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The equation of the straight line of the semi-rigid 

interval is given by 

ωi = 40,54 ri + 12,44 (10) 

The corresponding graph is that of the Fig. 9. 

It has been found that the ri values below 0,78 define the 

semi-rigid interval, i.e. all nodes with ri ≥ 0,78 can be 

considered as rigid nodes. 

• If a fixity factor ri=0,9 is expected for this portal 

frame: 

Its nodes are considered as rigid according to the EC3 

(2005), while according to this study it is considered as 

semi-rigid. The correction of the natural angular frequency 

is about 9%. 

• In a second step, if the fixity factor ri = 0,15 is 

considered: 

The nodes of the portal frame are considered as pinned 

according to the EC3 (2005), while according to this study 

they are considered as semi-rigid. The correction of the 

natural angular frequency is about 49%. 

 

 

6. Conclusions 
 

A large number of tests allow to the numerical 

developed program to give very close results with the 

analytical approach. This approach shows the efficiency of 

the numerical simulation used in this study. 

Based on the analytical and numerical results, the 

introduction of semi-rigidity through the fixity factor has a 

significant influence on the dynamic response of structures. 

The proposed method can estimate the angular frequency 

more accurately, as well as the dynamic response. 

The limit between semi-rigid nodes and rigid ones can 

be defined rather by a straight line, and not by one fixed 

value EC3 (2005). 

The exploitation of the results allows verifying that for 

steel portal frames, not only the flexural stiffness of beams 

has an important role in the dynamic behavior of the 

structure, but also the rigidity of columns influences it. This 

influence is taken into account through an equation in 

which the rigidity of columns appears clearly. 

The method described can be used for profiles whose 

rigidity is in the interval of profiles considered in the 

present study. For other types of profiles, linear 

interpolation or extrapolation can be used. 

An important development can be made in the future, 

for three dimensional structures which will permit to extend 

similar formulations for several structural configurations. 

Furthermore, experimental tests should be done to confirm 

the results already found and consolidate the efficiency of 

the proposed method. 

Other studies can be made to discuss the possibility to 

use a non-homogenous material instead of isotropic 

material in this type of structures. The possibility to use 

functionally graded materials (Ait Amar Meziane et al. 

2014, Mahi et al. 2015, and Bennoun et al. 2016) and may 

also be considered. 
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