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1. Introduction 
 

The dynamic behavior of concrete arch dam-reservoir 

systems can be thoroughly investigated by the finite 

element approach. Generally, the dynamic analysis may be 

conducted in time or frequency domains. Note that; 

dynamic analysis may be carried out in these domains either 

by direct scheme or modal method. Hence, finding the 

natural frequencies and corresponding mode shapes of the 

arch dam plays an important role in the dynamic analysis. 

To find natural frequencies and mode shapes, it is required 

to solve the eigen-value problem governing the free 

vibration of the dam-reservoir system. 

In usual, the dam is discretized by the solid finite 

elements, and the reservoir is discretized with the help of 

the fluid finite elements. Displacements are the variables in 

the solid, while various choices are available for the 

discretization of the fluid into volume elements. The 

unknown variable could be a vector field of fluid-particle 

displacements (Bathe and Hahn 1979), or a scalar field such 

as the pressure, velocity potential or displacement potential 

(Bouaanani and Lu 2009). The former formulation is named 

Lagrangian method, and the latter is entitled Eulerian 

approach (Zienkiewicz and Bettess 1978). A displacement 

based fluid field can be easily implemented in the common 

finite element codes.  

Additionally, this formulation leads to a symmetric 

vibration problem. Nonetheless, usage of this formulation 

substantially increases the fluid degrees of freedom as 

compared to the scalar field formulations. As a 

consequence, a large number of spurious eigen-modes 

which correspond to rotational fluid motions of zero 
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frequencies emerge. These modes cause difficulties in 

calculating the natural frequencies (Felippa 1985). 

Employing scalar fields automatically satisfy the 

irrotational condition of the fluid motions. As a result, the 

spurious-mode problem is remedied. Moreover, the number 

of required degrees of freedom is minimized. In this 

formulation, the corresponding vibration eigen-problem is 

formally non-symmetric. Extensive research has been 

conducted to symmetrize this eigen-value problem. In what 

follows, the previous corresponding literature is briefly 

reviewed. 

Morand and Ohayon (1979) took advantage of a three-

field mixed variational formulation. In this way, they 

achieved a symmetric form of the aforementioned problem. 

It should be noted that pressure and displacement potential 

were considered as the unknowns in the fluid domain. 

Everstine (1981) presented a symmetric formulation in 

which velocity potential was the primary variable of the 

fluid domain. In this technique, the eigen-problem consisted 

of three matrices even for un-damped systems. 

Consequently, this algorithm was efficient for damped ones. 

Additionally, this approach was not able to compute the 

hydrostatic pressure. Besides, Geradin et al. (1984) used 

displacement potential. As a result, they gained a standard 

eigen-value problem. Afterwards, Olson and Bathe (1985) 

employed hydrostatic pressure and velocity potential as the 

unknown fields of the fluid domain. Consequently, they 

symmetrized the above-cited eigen-problem. Afterwards, 

Felippa (1985) suggested eight symmetrical forms. In 

another work, this researcher employed matrix 

augmentation and static condensation to reach the aforesaid 

eight symmetrical forms (Felippa 1988). Olson and Vandini 

(1989) applied displacement, velocity potential and 

hydrostatic pressure as unknowns in fluid-structure 

problems. At the next stage, they condensed out the 

hydrostatic pressure. In this way, they achieved a symmetric 
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quadratic eigen-value problem. Kayser-Herold and Matthies 

(2005) used the first-order least squares finite element 

method instead of the Galerkin approaches for formulating 

the fluid-structure interaction problem. In this way, they 

achieved symmetric positive definite matrices.  

Sandberg (1995) took advantage of the eigen-vectors of 

each domain for presenting a new symmetric version of the 

originally non-symmetric coupled eigen-problem, which 

employed displacement finite element formulation for the 

solid and either pressure or displacement potential for the 

fluid. This strategy was the advent of developing new 

generation of symmetrizing approaches in which coupled 

modes shapes are not employed. Similarly, Lotfi (2005) 

employed decoupled mode shapes instead of the coupled 

ones in the modal analysis. With the help of this innovative 

procedure, it was not required to solve the non-symmetric 

coupled eigen-problem. In this method, the decoupled mode 

shapes were envisaged as the Ritz vectors. It should be 

reminded that the decoupled eigen-problems are symmetric. 

Afterwards, some researchers compared the capability of 

the decoupled scheme with the coupled one (Samii and 

Lotfi 2007). Then, Aftabi Sani and Lotfi (2010) utilized 

new mode shapes entitled ideal-coupled modes in the modal 

analysis of concrete arch dams. These modes were applied 

in a similar manner to the decoupled modes. Nevertheless, 

they were actually coupled mode shapes of two ideal 

fictitious systems. It is worth emphasizing that the coupled 

eigen-problem of these systems were symmetric. Then, 

Hojati and Lotfi (2011) used semi-infinite fluid elements for 

dynamic analysis of gravity dams, and they proposed a fast 

simple procedure for calculating the impedance matrix of 

these elements. Furthermore, Aftabi Sani and Lotfi (2011) 

suggested a new efficient technique for evaluating the 

earthquake response of concrete arch dams. In this work, 

the dam-reservoir-foundation interaction effects were 

considered. Additionally, Chopra (2012) identified the 

factors which played significant roles in the three-

dimensional analysis of arch dams.    

In this paper, new quadratic-symmetric shapes of the 

corresponding non-symmetric eigen-value problem are 

presented. Authors’ formulation improves the accuracy of 

the ideal-coupled technique. To solve these quadratic eigen-

value problems, a novel eigen-value solution routine is 

developed.  

The remaining text is organized as follows. Section 2 

deals with the governing equation of the dam-reservoir 

system. It should be noted that nodal pressures and 

displacements are considered as the unknowns of the fluid 

and solid domain, respectively. Then, the free vibration 

equations are presented. Afterwards, previously proposed 

forms of the corresponding eigen-value problem are 

mentioned. In section 3, new symmetric quadratic forms of 

this problem are formulated. Section 4 briefly reviews the 

methods which can be used to solve the quadratic eigen-

value problems. In section 5, a novel approach is developed 

for solving the suggested quadratic eigen-value problems. 

Numerical samples corroborate the robustness and 

efficiency of the new approach in section 6. Finally, the 

conclusions are summarized in Section 7. 

2. Governing equations 
 

The dam with a finite reservoir is dicretized by utilizing 

the finite element scheme. The coupled equation of the 

system has the following appearance with displacement and 

pressure degrees of freedom for solid and fluid domains, 

respectively (Aftabi S. and Lotfi 2010) 
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In this equation, the mass, stiffness and damping matrix 

of the dam body are denoted by M, K and C, respectively. 

In addition, G, H and L are the generalized mass, stiffness 

and damping of fluid domain, correspondingly. Moreover, 

B is the interaction matrix. The unknown vectors of the 

problem are the nodal displacements and pressures which 

are stored in vector r and p, respectively. Furthermore, J 

has three columns and number of nodal degrees of freedom 

rows, and it is made of 3×3 identity matrix. Note that; each 

column of this matrix is associated with a unit rigid body 

motion in cross-canyon, stream and vertical direction. 

Moreover, ag
 

is the vector of ground accelerations. By 

performing the Fourier transform, the matrix Eq. (1) can be 

rewritten in the next form 
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In this relation, i is the imaginary unit, and   denotes 

the natural frequency of the system. Recall that, the 

hysteretic damping matrix is employed in the aforesaid 

relationship. This matrix is related to the stiffness matrix as 

follows 

2
d




C K  (3) 

in which βd
 

is the constant hysteretic factor of the dam 

body. It is worth emphasizing that Eq. (2) is the coupled 

equation of a dam with the finite reservoir system in the 

frequency domain.  

 
2.1 Free vibration analysis 
 

The eigen-problem corresponding to Eq. (2) has the 

subsequent shape (Rezaiee-Pajand et al. 2016) 

T

2



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        
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M 0 r 0K B
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 (4) 

Obviously, this equality is analogous to the free 

vibration equation of un-damped systems. It is clear that the 

aforementioned eigen-value problem is linear and 

unsymmetric. For finding the egien-pairs, the above-cited 
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relationship and some variation of it can be employed. 

Although, it is preferred to solve the actual coupled 

equation of the dam-reservoir system, there are several 

more efficient alternatives, which will be introduced in the 

following sub-sections.  

 
2.2 Coupled eigen-problem 
 

The actual coupled mode shapes and natural frequencies 

can be achieved by directly solving the original eigen-value 

problem presented in Eq. (4). These eigen-vectors are very 

appropriate for modal analysis. Generally, usage of these 

mode shapes results in more accurate responses. Due to the 

unsymmetry of the aforesaid equation, standard eigen-value 

solvers cannot be employed for finding the corresponding 

eigen-pairs. Other researchers have concluded that the 

unsymmetrical eigen-solvers are normally very time-

consuming and complicated from computer programming 

point of view (Zienkiewicz and Bettess 1978, Felippa 1985, 

Sandberg 1995, Samii and Lotfi 2007, Aftabi and Lotfi 

2010). It should be added that some methods symmetrize 

this problem by applying simplifying assumptions. In what 

follows, these techniques are introduced.  

 
2.3 Decoupled eigen-problem 
 

By omitting the interaction matrix B, a symmetric 

variation of the original eigen-value problem can be 

achieved. This new shape of the actual problem is referred 

to as the “decoupled” form, and it has the next appearance 

2
  
         
        
         

M 0 K 0 r 0

0 G 0 H p 0
 (5) 

Obviously, this eigen-problem is symmetric. Hence, it is 

possible to solve the current linear problem by applying the 

standard eigen-value solution routines. It is worthwhile to 

highlight that the eigen-vectors obtained from these 

symmetric equations are not the true mode shapes of the 

system. Nevertheless, they can be utilized in modal analysis 

approach named “decoupled modal strategy”. It should be 

remarked that these vectors can be considered as the Ritz 

vectors. As a consequence, it can be demonstrated that the 

usage of all decoupled modes yields exact answers. The 

natural frequencies calculated from the decoupled eigen-

problem are not the eigen-values of the coupled dam-

reservoir system. They are the natural frequencies of the 

dam and reservoir separately (Lotfi 2005, Aftabi  and Lotfi 

2010).  

 
2.4 Ideal-coupled eigen-problem 
 

This eigen-value problem is based on two ideal eigen-

problems which are related to incompressible fluid and 

massless solid cases. The natural frequencies obtained from 

this method are closer to the original coupled eigen-values, 

in comparison to the decoupled ones. Additionally, the 

corresponding mode shapes are more similar to the actual 

ones. Therefore, usage of the ideal coupled eigen-vectors in 

the modal analysis leads to more accurate results, in 

comparison with the decoupled ones. The simplified form 

of the first ideal eigen-problem has the following shape 

(Aftabi  and Lotfi 2010) 

2

a
( ( ) )   M M K r 0  (6) 

in which Ma
 
is referred to as the added mass matrix and has 

the following appearance 

T 1

a


M B H B  (7) 

The pressure vector can be computed by using the next 

equation 

2 1



p H B r  (8) 

It is clear that the size of this eigen-problem is equal to 

the number of the unknown nodal displacements. The 

second ideal eigen-value problem can be expressed as 

below 

2

a
( ( ) )   G G H p 0  (9) 

where Ga is defined as the next form 

1 T

a


G BK B  (10) 

The displacement vector can be calculated by employing 

the following relation 

1 T
r K B p  (11) 

Obviously, the size of the second ideal eigen-value 

problem is equal to the number of unknown nodal pressures 

of the fluid domain.  

It is worthwhile to mention that the elimination of 

matrix Ma and Ga from Eqs. (6) and (9) leads to the 

decoupled eigen-value problem. As a consequence, the 

decoupled form of the actual eigen-problem is a special 

case of the ideal-coupled one.  

The two aforementioned ideal eigen-problems can be 

expressed in the below shape 
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0

 (12) 

Clearly, this eigen-problem is symmetric. Hence, it can 

be solved with the help of standard common methods. It is 

worth emphasizing that the ideal-coupled technique is more 

accurate than the decoupled scheme (Aftabi S. and Lotfi 

2010). 

 
 
3. New quadratic ideal-coupled eigen-problem  

 

Herein, a new alternative for the aforementioned eigen-

problem is introduced. It will be demonstrated that the 

suggested strategy is more accurate than the ideal-coupled 

eigen-problem. In fact, both decoupled and ideal-coupled 

strategy proposed in the previous works can be considered 

as special cases of the current more general procedure. 

Furthermore, authors’ scheme is based on two different 
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quadratic eigen-value problems, which are separately 

discussed in this section.  

Considering the lower partition equation of Eq. (4) and 

solving the pressure vector in terms of the displacement 

vector leads to the succeeding result 

2 2 1
( ) 


 p H G B r  (13) 

It is worthwhile to highlight that Eq. (8) is the 

approximate form of this equality in which G  is omitted. 

Note that; Eq. (8) is one of the key formulas applied in the 

ideal-coupled strategy. Clearly, 
2

( )H G is the 

subtraction of two matrices, which should be inverted in the 

right side of the latter relationship. By utilizing the first-

order approximation of the Taylor series, this matrix 

inversion can be calculated as below (Rezaiee-Pajand and 

Kazemiyan 2014, Rezaiee-Pajand et al. 2014) 

2 1 1 2 1 1
( ) 

   
  H G H H G H  (14) 

Inserting this equation into the Eq. (13) results in the 

next relationship 

 2 1 2 1 1
 
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 p H H G H B r  (15) 

Substituting the latter equality into the upper partition 

equation of Eq. (4) leads to the subsequent result 

 4 T 2

a
( )    QGQ M M K r 0  (16) 

where 

T 1
Q B H  (17) 

Actually, neglecting the first term of Eq. (16) leads to  

Eq. (6) in the ideal-coupled tactic. This fact shows that the 

first form of the ideal-coupled approach is a special case of 

the first quadratic ideal-coupled technique. Obviously, the 

size of this quadratic eigen-problem is equal to the number 

of unknown nodal displacement.  

Subsequently, the second quadratic ideal eigen-problem 

is constructed. For this purpose, the displacement vector is 

solved in terms of the pressure vector by employing the 

upper partition equation of Eq. (4). The achieved 

displacement vector can be expressed as follows 

2 1 T
( )


 r K M B p  (18) 

In fact, Eq. (18) is the exact form of Eq. (11) in which 

M is neglected. Recall that, Eq. (11) plays an important role 

in the ideal-coupled technique. Analogously, (K−ω2M) can 

be inverted by using the first-order approximation of the 

Taylor series as below 

2 1 1 2 1 1
( ) 

   
  K M K K M K  (19) 

Introducing this equation into Eq. (18) leads to the next 

equality 

 1 2 1 1 T


  
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Substitution of the aforesaid relationship into the lower 

partition of Eq. (4) results in the subsequent equation 

  4 T 2

a
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in which 

1
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Obviously, neglecting the first term of Eq. (21) results 

in Eq. (9) which is one of the eigen-problems in ideal-

coupled approach. This fact demonstrates that the second 

form of the ideal-coupled approach is a special case of the 

second quadratic ideal-coupled technique. The size of this 

quadratic eigen-problem is equal to the number of the 

unknown nodal pressures.  

It should be noted that a n×n quadratic eigen-problem 

has 2n eigen-values. Based on the characteristics of the 

coefficient matrices, the eigen-values may be infinite or 

finite (Tisseur and Meerbergen 2001). The finite values 

may be real or complex. It is worthwhile to mention that the 

real values are the approximate natural frequencies of the 

dam-reservoir system, and the other values are fictitious.  

The aforesaid two quadratic ideal-coupled eigen-value 

problems, i.e., Eqs. (16) and (21), can be written totally as 

the following forms 
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or 
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The solution of this combined symmetric eigen-problem 

can be obtained by solving two separate quadratic eigen-

value problems. By neglecting ω4QGQT

 
and ω4SMST

 
terms, this relationship converted into Eq. (12). 

Additionally, the original eigen-problem (Eq. (4)) can be 

transformed into a definite quadratic eigen-problem by 

multiplying the first its line by ω2 (Kostic and Sikalo 2015). 

This nonlinear problem has the subsequent appearance 

T
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This equation is an exact quadratic form of the eigen-

value problem governing the free vibration of the dam-

reservoir system.  

 
 
4. Solving the quadratic eigen-problem 

 

It should be reminded that the common scheme for the 

numerical solution of the standard eigen-problem (SEP), 

and the generalized one (GEP) is to reduce the matrices 
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involved to some simpler forms, which reveal the eigen-

values. Unfortunately, these forms cannot be developed for 

nonlinear eigen-problems. Numerical strategies utilized for 

solving the quadratic eigen-problem (QEP) break into two 

categories: those that solve the quadratic eigen-problem 

directly, and those that work with the linearized forms 

(Afolabi 1987, Tisseur and Meerbergen 2001, Mackey et al. 

2006). The latter technique, computes the simple forms to 

reveal the eigen-values and eigen-vectors directly. In what 

follows, these two types of approaches are briefly 

introduced. Moreover, a novel special-purpose eigen-value 

solution routine is developed for the proposed quadratic 

ideal-coupled formulations, which is presented in section 5.   

 
4.1 Direct methods 
 

It is worthwhile to highlight that most of the numerical 

procedures which deal directly with the quadratic eigen-

problems are the variants of Newton’s methods. These 

strategies calculate one eigen-pair at a time. Their rate of 

convergence is extensively dependent on the closeness of 

the starting guess to the actual solution. In practice, there is 

no guarantee that the technique will converge to the desired 

eigen-value even for a suitable initial guess. Newton’s 

approaches are thoroughly investigated in Refs. (Higham 

and Kim 2001, Tisseur and Meerbergen 2001, Long et al. 

2008).  

 
4.2 Linearization method 
 

The classical and most extensively utilized method to 

solve quadratic eigen-problems is linearization. In this 

process, a n×n quadratic eigen-problem can be transformed 

into a 2n×2n linear eigen-value problem. Consequently, it is 

possible to employ common linear eigen-solvers 

incorporated in commercial and noncommercial software 

packages. The eigen-values of the quadratic eigen-problem 

are similar to its linear form. Furthermore, its eigen-vectors 

can be achieved from the corresponding linear problem. It 

should be mentioned that various linear forms are available 

for a given QEP, based on the characteristics of the 

coefficient matrices. A drawback of this technique is that its 

dimension is twice of the original quadratic eigen-problem.  

Herein, suitable symmetric linear forms of the quadratic 

ideal-coupled eigen-value problems are introduced, based 

on the linear forms presented in Ref. (Mackey et al. 2006). 

Recall that; other linearizations can be employed. The 

suggested linearization of the first quadratic ideal-coupled 

problem has the subsequent shape 
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In this relation, r  includes fictitious entries. The 

dimension of this linear eigen-problem is twice of the 

unknown nodal displacements. Moreover, it is clear that the 

coefficient matrices are symmetric. Furthermore, it is 

recommended that the next linearization should be used for 

the second quadratic ideal-coupled problem 
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p 0G G S M S H

p 0H H

 (27) 

where p  contains fictitious entries. It is worthwhile to 

remark that the dimension of this problem is equal to the 

twice of the unknown nodal pressures. Similarly, the 

coefficient matrices are symmetric. Note that; these linear 

eigen-problems can be easily solved with the help of 

common linear symmetric eigen-value solution routines.  

It is worth emphasizing that the exact quadratic form of 

the original eigen-problem (Eq. (24)) can be linearized in 

similar fashion. The dimension of the achieved eigen-value 

problem equals to the twice of the number of dam-reservoir 

system’s degrees of freedom. As a result, the actual 

quadratic form requires more computational effort in 

comparison to the quadratic ideal-coupled eigen-value 

problems. 

 
 
5. Generalized subspace method 

 

Up to now, various algorithms have been presented for 

estimation of the natural frequencies and mode shapes of 

the linear symmetric eigen-problems. One of the well-

known schemes widely used is named subspace iteration 

technique developed by Bathe (1996). This strategy is 

suitable for the finite element model of the huge structures 

(ADINA 2011). By this way, any arbitrary number of 

structural eigenvalues and eigenvectors can be obtained. 

Herein, this famous tactic is generalized for solving the 

quadratic ideal-coupled problems.  

In each iteration of the suggested approach, a set of 

vectors are obtained. Number of these vectors are less than 

the size of the initial quadratic problem. The main problem 

is projected into the corresponding vector space. In this 

way, a smaller quadratic eigen-value problem is achieved. 

Then, it is linearized in a similar fashion to the previous 

sub-section. Afterwards, the common linear symmetric 

eigen-value solution routines are employed for solving this 

smaller problem. Its eigen-pairs are the approximations of 

the eigen-values and eigen-vectors of the initial quadratic 

eigen-problem. Finally, the eigen-pairs of the projected 

eigen-problem converges to the eigen-values and eigen-

vectors of the initial quadratic one. It is worthwhile to 

mention that the decoupled mode shapes are utilized for 

forming the starting set of vectors, which establish the basis 

of the vector space in the first iteration. In Tables 1 and 2, 

the steps of this algorithm are presented for eigen-problems 

introduced in Eqs. (16) and (21), respectively.  

It should be mentioned that MaxIter  and   denotes 

the maximum allowable iteration and error. Moreover, 

vectors XF and XS
 

finally converge to the pressure and 

displacement mode shapes, respectively.  
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Table 1 The algorithm of the generalized subspace method 

for eigen-problem presented in Eq. (16) 

Initialization 

ndm   Number of desired mode shapes 

Establish ndm  starting vectors and save in 
0

S
X  

Set   and MaxIter  

Calculate the inverse of the stiffness matrix 

Iterations 

Do 1,k MaxIter  

1 1

S a S
( )

k 
 X K M M X  

* T

S S
K X K X  

* T

S S
M X M X  

* T

a S a S
M X M X  

   
*

T T T

S S
QGQ X QGQ X  

Linearize and solve the projected quadratic       

eigen-probem    

 
*

4 T 2 * * *

a S
( )     

 
QGQ M M K E 0  

S S S

k
X X E  

Check for convergence 

1

, for =1,2,...,

k k

i i

k

i

i ndm
 







  

If all required eigen-values are converged,       

the iterations are stopped. 

End 
 

 
 
6. Modeling and the basic parameters 

 

As previously mentioned, finite element method was 

employed for the main part of the analysis technique in the 

present study. Many other works conducted recently in this  

field (Ghaemian and Ghobarah 1998, Sheibany and 

Ghaemian 2006, Mirzabozorg et al. 2010, Aftabi  and 

Lotfi 2011). To reach this goal, a computer program was 

developed according to the theories explained in this article. 

The solid finite elements are applied for modeling the dam, 

and the reservoir is discretized by the fluid finite elements. 

The coupled method, decoupled approach, ideal-coupled 

technique and new quadratic ideal-coupled strategy are the 

available options for the analysis tool. These schemes were 

explained in the previous sections in detail. The eigen-

solver used for the decoupled and ideal-coupled approaches 

is the linear symmetric subspace iteration tactic (Bathe 

1996) which is denoted by SS in the following sections. It 

should be reminded that the true coupled problem is non-

symmetric. As a result, the pseudo symmetric subspace 

iteration scheme (Arjmandi and Lotfi 2011) is applied for 

solving this problem. For brevity, this eigen-solver is 

abbreviated by PS. Moreover, two methods are employed 

for the quadratic eigen-value problems. The first one takes 

advantage of linearization and symmetric subspace iteration 

strategy (Bathe 1996), while the second one applies the 

suggested generalized subspace iteration algorithm. In this 

work, these two eigen-value solution routines are shown by 

Table 2 The algorithm of the generalized subspace method 

for eigen-problem presented in Eq. (21) 

Initialization 

ndm   Number of desired mode shapes 

Establish ndm  starting vectors and save in 
0

F
X   

Set   and MaxIter  

Calculate the inverse of the generalized stiffness matrix 

of the fluid domain 

Iterations 

Do 1,k MaxIter  

1 1

aF F
( )

k 
 X H G G X    

* T

F F
H X H X  

* T

F F
G X G X  

* T

a aF F
G X G X  

   
*

T T T

F F
SMS X SMS X  

Linearize and solve the projected quadratic     eigen-

probem 

 
*

4 T 2 * * *

a F
( )     

 
SMS G G H E 0  

F F F

k
X X E  

Check for convergence 

1

, for =1,2,...,

k k

i i

k

i

i ndm
 







  

If all required eigen-values are converged, the iterations 

are stopped. 

End 
 

 

 

LS and GS, respectively. 

In what follows, the free vibration analysis of Morrow 

Point arch dam is conducted with the help of the aforesaid 

methods. Based on the outcomes, the accuracy and 

consumed time of these schemes are compared. For this 

purpose, error and time indices are defined (Rezaiee-Pajand 

and Kazemiyan 2014, Rezaiee-Pajand et al. 2014). The 

following expressions mathematically demonstrate these 

indices, respectively 

1

1
100

j j
ndm

exact i

i j

j exact

f f
EI

ndm f


 

 
 
 

  (28) 

min100
i

i

T
TI

T
   (29) 

where 
j

i
f  and 

j

exact
f

 
denote the j-th natural frequency of 

the i-th method and the true coupled one, correspondingly. 

Moreover, ndm is the number of computed natural 

frequencies. In addition, the consumed time of the fastest 

technique and the i-th scheme are shown by Tmin and Ti, 

respectively. 

 
6.1 Model 
 

In this study, a symmetric model of Morrow Point arch 
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(a) Coarse mesh (b) Fine mesh 

Fig. 1 Finite element meshes of the dam body 

 

  
(a) Coarse mesh (b) Fine mesh 

Fig. 2 Discretization of the water domain 

 

 

dam on the rigid foundation is studied. The geometry of this 

dam is clearly available. To analyze this structure, two 

meshes are employed. In the first one, 40 isoparametric 20-

node solid finite elements are used. This mesh has been 

widely employed by other researchers, and its high 

accuracy has been proved previously (Hall and Chopra 

1983, Duron and Hall 1988, Noble 2002, Lotfi 2006, Lotfi 

2007). Additionally, a fine mesh is also utilized (Arjmandi 

and Lotfi 2011). In this mesh, 168 isoparametric 20-node 

solid finite elements are applied. Fig. 1 demonstrates these 

meshes of the dam body. 

According to different L/H parameters, various cases 

can be considered for the reservoirs. Herein, three cases are 

assessed. The water domain is considered as a region which 

extends to a specific length. It should be added that H is the 

dam height or the maximum water depth in the reservoir 

which is measured in upstream direction at the dam mid-

crest point, and L denotes the water region length. In the 

first case, it is assumed that L=0.2 H, while L=0.6 H in the 

second case. The third one deals with L-H. For both 

meshes, the water domain with L=0.2 H is shown in Fig. 2.  

 
6.2 Basic parameters 
 

The concrete dam is presumed to be homogeneous with 

isotropic linear behavior, and it has the following main 

properties: 

Elastic modulus (Ed)=27.5 GPa; Poisson’s ratio 0.2  
Unit weight=24.8 kN/m3. 

It should be mentioned that the impounded water is 

considered as inviscid and compressible fluid with a unit 

weight equal to 9.8 kN/m3, and pressure wave velocity 

C=1440 m/s. 

 

6.3 Results 

Table 3 The first five natural frequencies of the dam-

reservoir system with the coarse mesh and L=0.2 H 

according to the true coupled, the first case of the 

decoupled, ideal-coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Coarse mesh) 

Decoupled 

(SS) (Lotfi 

2005) 

Ideal-coupled (SS) 

(Aftabi and Lotfi 2010) 

Quadratic 

ideal-coupled 

(LS-GS) 

(Presented 

method) 

True 

coupled 

system (PS) 

(Aftabi and 

Lotfi 2010) 
Dam 

First ideal case 

(incompressible fluid 

assumption) 

First quadratic 

ideal case 

1 3.75 2.57 2.29 2.19 

2 4.20 2.82 2.76 2.76 

3 6.05 4.15 3.85 3.63 

4 6.71 4.80 4.68 4.65 

5 7.69 5.95 5.54 5.23 

 

Table 4 The first five natural frequencies of the dam-

reservoir system with the fine mesh and L=0.2 H according 

to the true coupled, the first case of the decoupled, ideal-

coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Fine mesh) 

Decoupled 

(SS) (Lotfi 

2005) 

Ideal-coupled (SS) 

Quadratic 

ideal-coupled 

(LS-GS) 

(Presented 

method) 

True 

coupled 

system 

(PS) 

Dam 

First ideal case 

(incompressible fluid 

assumption) 

First quadratic 

ideal case 

1 3.68 2.54 2.28 2.16 

2 4.19 2.75 2.70 2.69 

3 5.93 4.07 3.84 3.60 

4 6.69 4.68 4.59 4.54 

5 7.43 5.70 5.58 5.05 

 

 

In this section, the natural frequencies and mode shapes 

of the dam-reservoir system are computed by employing the 

aforesaid four approaches. The obtained results are 

compared to highlight the robustness and efficiency of 

authors’ schemes. Now, for the coarse and fine meshes with 

L=0.2 H, the first five natural frequencies of the following 

four methods: (1) decoupled, (2) ideal-coupled, (3) 

quadratic ideal-coupled and (4) true coupled are computed. 

Recall that each formulation consists of two eigen-

problems, and consequently, includes two sets of the 

modes, except for the true coupled method. It is worthwhile 

to mention that the set of mode shapes related to the nodal 

displacements can be achieved by solving the first eigen-

value problems, while the corresponding set of mode shapes 

associated with the nodal pressures can be obtained by 

solving the second eigen-value problems. Note that; the 

nodal pressures are the unknowns of fluid elements’ nodes, 

and the nodal displacements are the unknowns of the dam. 

Accordingly, the frequencies of the first eigen-problem are 

presented in Tables 3 and 4, respectively. 

Herein, the frequencies of the second eigen-problems 

are presented in Table 5 and 6, respectively.  
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Table 5 The first five natural frequencies of the dam-

reservoir system with the coarse mesh and L=0.2 H 

according to the true coupled, the second case of the 

decoupled, ideal-coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Coarse mesh) 

Decoupled 

(SS) 

(Lotfi 2005) 

Ideal-coupled 

(SS) (Aftabi and 

Lotfi 2010) 

Quadratic ideal-

coupled (LS-GS) 

(Presented method) 
True coupled 

system  (PS) 

(Aftabi  and 

Lotfi 2010) Reservoir 

Second ideal case 

(massless solid 

assumption) 

First quadratic 

ideal case 

1 3.42 2.32 2.21 2.19 

2 6.59 3.75 3.07 2.76 

3 7.87 4.93 4.11 3.63 

4 10.21 6.53 5.30 4.65 

5 11.73 6.75 5.83 5.23 

 

Table 6 The first five natural frequencies of the dam-

reservoir system with the fine mesh and L=0.2 H according 

to the true coupled, the second case of the decoupled, ideal-

coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Fine mesh) 

Decoupled 

(SS) 

Ideal-coupled 

(SS) 

Quadratic ideal-coupled 

(LS-GS) (Presented 

method) 
True 

coupled 

system 

(PS) Reservoir 

Second ideal case 

(massless solid 

assumption) 

First quadratic 

ideal case 

1 3.42 2.29 2.19 2.16 

2 6.53 3.63 2.99 2.69 

3 7.85 4.87 4.08 3.60 

4 10.05 6.36 5.17 4.54 

5 11.73 6.52 5.64 5.05 

 

 

Based on these outcomes, it is clear that the true coupled 

natural frequencies are smaller than two sets of natural 

frequencies obtained from the decoupled, ideal-coupled or 

quadratic ideal-coupled technique. However, it is obvious 

that the natural frequencies related to the ideal-coupled and 

quadratic ideal-coupled schemes are getting closer to the 

true coupled ones, in comparison to the decoupled method. 

It should be mentioned that the first ideal-coupled strategy 

is a special case of the first quadratic ideal-coupled 

technique.  

The first quadratic form is more accurate than the first 

ideal-coupled approach. Furthermore, the second ideal-

coupled method is a special case of the second quadratic 

ideal-coupled technique. In comparison to the second ideal-

coupled formulation, the second quadratic form leads to the 

natural frequencies closer to the true coupled approach. 

According to the results, it can be concluded that each 

quadratic ideal-coupled strategy has better accuracy than its 

corresponding ideal-coupled scheme. At this stage, the 

aforesaid four algorithms are employed for calculating the 

natural frequencies of the case in which L=0.6 H. For 

brevity, the results of the fine mesh are neglected. The 

obtained results are available in Tables 7 and 8.  

According to the results of Tables 7 and 8, it is observed 

that the true coupled natural frequencies are smaller than 

Table 7 The first five natural frequencies of the dam-

reservoir system with the coarse mesh and L=0.6 H 

according to the true coupled, the first case of the 

decoupled, ideal-coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Fine mesh) 

Decoupled 

(SS) 

Ideal-coupled 

(SS) 

Quadratic ideal-coupled 

(LS-GS) (Presented 

method) 
True 

coupled 

system 

(PS) Dam 

First ideal case 

(incompressible 

fluid assumption) 

First quadratic 

ideal case 

1 3.75 2.94 2.85 2.56 

2 4.20 3.09 2.91 2.91 

3 6.05 4.68 4.22 3.62 

4 6.71 4.93 4.79 4.74 

5 7.69 6.31 6.06 5.77 

 

Table 8 The first five natural frequencies of the dam-

reservoir system with the coarse mesh and L=0.6 H 

according to the true coupled, the second case of the 

decoupled, ideal-coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Fine mesh) 

Decoupled 

(SS) 

Ideal-coupled 

(SS) 

Quadratic ideal-coupled 

(LS-GS) 

(Presented method) 
True 

coupled 

system 

(PS) Reservoir 

Second ideal case 

(massless solid 

assumption) 

First quadratic 

ideal case 

1 3.13 2.71 2.61 2.56 

2 7.00 4.30 3.36 2.91 

3 7.83 5.28 4.21 3.62 

4 9.63 6.86 5.48 4.74 

5 10.53 7.15 6.42 5.77 

 

Table 9 The first five natural frequencies of the dam-

reservoir system with the coarse mesh and L=H according 

to the true coupled, the first case of the decoupled, ideal-

coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Fine mesh) 

Decoupled 

(SS) 

Ideal-coupled 

(SS) 

Quadratic ideal-coupled 

(LS-GS) (Presented 

method) 

True 

coupled 

system 

(PS) 

(Arjmandi 

and Lotfi 

2011) 

Dam 

First ideal case 

(incompressible 

fluid assumption) 

First quadratic 

ideal case 

1 3.75 2.94 2.91 2.68 

2 4.20 3.15 2.98 2.92 

3 6.05 4.75 4.34 3.53 

4 6.71 5.00 4.80 4.75 

5 7.69 6.32 6.08 5.14 

 

 

decoupled, ideal-coupled and quadratic ideal-coupled ones. 

Additionally, the decoupled approach is the least accurate 

method. Moreover, each quadratic ideal-coupled strategy is 

more accurate than its corresponding ideal-coupled scheme.  

Now, the aforesaid four tactics are similarly utilized for 

calculating the natural frequencies of the case in which the 

coarse mesh with L=H is employed. The achieved results  
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Table 10 The first five natural frequencies of the dam-

reservoir system with the coarse mesh and L=H according 

to the true coupled, the second case of the decoupled, ideal-

coupled and quadratic ideal-coupled 

Mode 

Number 

Natural frequencies fi (Hz) (Fine mesh) 

Decoupled 

(SS) 

Ideal-coupled 

(SS) 

Quadratic ideal-coupled 

(LS-GS) 

(Presented method) 

True 

coupled 

system 

(PS) 

(Arjmandi 

and Lotfi 

2011) 

Reservoir 

Second ideal case 

(massless solid 

assumption) 

First quadratic 

ideal case 

1 3.09 2.81 2.72 2.68 

2 6.21 4.33 3.38 2.92 

3 7.08 4.84 4.03 3.53 

4 7.83 6.09 5.37 4.75 

5 8.66 6.89 5.62 5.14 

 

  
(a) True coupled (PS) (b) Decoupled (SS) 

  

(c) Ideal-coupled (SS) 
(d) Quadratic ideal-coupled 

(LS-GS) 

Fig. 3 First pressure mode shape of the coarse model of the 

dam-reservoir system with L=H 

 

 

are listed in Tables 9 and 10. 

Based on the results demonstrated in Tables 9 and 10, it 

is observed that the true coupled natural frequencies are 

smaller than decoupled, ideal-coupled and quadratic ideal-

coupled ones. Additionally, the decoupled algorithm leads 

to the least accurate natural frequencies. Besides, each 

quadratic ideal-coupled strategy is more accurate than its 

corresponding ideal-coupled technique. It is clear that, the 

quadratic ideal-coupled formulation performs more 

accurately than other methods. 

Herein, the first mode shape of the dam-reservoir system 

with L=H is obtained by using the four aforementioned 

approaches. For brevity, the mode shapes of the fine model 

are not presented. It should be added that the mode shapes 

of the fine and coarse model are the same. The achieved 

mode shapes corresponding to the fluid domain are 

demonstrated in Fig. 3.  

It can be observed that the quadratic ideal-coupled mode 

shape is more similar to the true coupled one, although the 

four pressure distributions are analogous. At the next stage, 

  
(a) True coupled (PS) (b) Decoupled (SS) 

  

(c) Ideal-coupled (SS) 
(d) Quadratic ideal-coupled 

(LS-GS) 

Fig. 4 Second pressure mode shape of the coarse model of 

the dam-reservoir system with L=H 

 

  
(a) True coupled (PS) (b) Decoupled (SS) 

  

(c) Ideal-coupled (SS) 
(d) Quadratic ideal-coupled 

(LS-GS) 

Fig.5 First mode shape of the dam 

 

 

the second mode shape of the aforementioned system is 

presented in Fig. 4. It should be reminded that only the fluid 

domain is shown.  

Obviously, the decoupled mode shape is totally different 

from the true coupled mode shape. Additionally, the ideal-

coupled mode shape is not completely the same as the true 

one. It is clear that the quadratic ideal-coupled pressure 

mode shape is the closest mode shape to the actual one, in 

comparison to decoupled and ideal-coupled mode shapes. 

Now, the first mode shape of the dam is presented in 

Fig. 5. 

Clearly, the decoupled mode shape is totally different 

from the true coupled mode shape. Additionally, the ideal-

coupled and quadratic ideal-coupled mode shapes are 

similar to the actual one. In Fig. 6, the second mode shape 

of the dam is shown. 

Based on these figures, the suggested tactic is successful 

in obtaining the second mode shape of the dam.  

For the above-cited dam-reservoir systems, Tables 11 

and 12 illustrate the error and time indices of the decoupled, 

ideal-coupled, quadratic ideal-coupled and true coupled 
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(a) True coupled (PS) (b) Decoupled (SS) 

  

(c) Ideal-coupled (SS) 
(d) Quadratic ideal-

coupled (LS-GS) 

Fig.6 Second mode shape of the dam 

 

Table 11 The error indices of the decoupled, ideal coupled 

and quadratic ideal-coupled methods 

Case 
Decoupled 

(SS) 

Ideal-coupled 

(SS) 

Quadratic Ideal-

coupled (LS-GS) 

Coarse mesh 

with L/H=0.2 
83.70 19.80 6.80 

Fine mesh 

with L/H=0.2 
85.81 19.43 7.56 

Coarse mesh 

with L/H=0.6 
69.76 23.18 9.46 

Coarse mesh 

with L/H=1 
60.79 23.29 10.67 

 

 

approaches, correspondingly.  

Accordingly, it is obvious that the most accurate tactic is 

authors’ technique. Moreover, the error index of the 

decoupled method is higher than those of others in all 

numerical examples. As it was expected, the least accurate 

decoupled strategy is the fastest one. The ideal-coupled 

method is ranked second. The quadratic ideal-coupled with 

GS is much faster than the true coupled with PS. Besides, 

the quadratic ideal-coupled with LS is the slowest one. 

It is worthwhile to remind that the efficiency of a 

numerical method depends on both its consumed time and 

accuracy. Accordingly, the ideal-coupled scheme and 

quadratic ideal-coupled technique with GS perform more 

efficiently in comparison to the others. 

 
 
7. Conclusions 

 

The eigen-problem of the dam-reservoir system is 

generally not symmetric, and it cannot be solved with the 

help of common linear symmetric eigen-value solution 

routines. To overcome this difficulty, quadratic ideal-

coupled scheme is suggested in the present work which 

could be an extension of earlier ones (Lotfi 2005, Aftabi  

and Lotfi 2010). In this tactic, two quadratic eigen-problems 

are required to be solved. Their eigen-pairs can be 

computed with the help of common linear symmetric eigen-

value solution routines if their linearized forms are applied. 

Additionally, a novel efficient algorithm is proposed for 

solving the corresponding quadratic eigen-problems. From 

Table 12 The time indices of the decoupled, ideal coupled 

and quadratic ideal-coupled methods 

Case 
Decoupled 

Ideal-

coupled 

Quadratic Ideal-

coupled 

True 

coupled 

SS SS LS GS PS 

Coarse mesh 

with L/H=0.2 
100 94.13 1.94 36.39 4.04 

Fine mesh 

with L/H=0.2 
100 84.60 2.94 37.10 6.27 

Coarse mesh 

with L/H=0.6 
100 89.43 2.09 33.10 4.52 

Coarse mesh 

with L/H=1 
100 90.67 2.27 33.77 4.36 

 

 

accuracy point of view, this strategy is compared with the 

decoupled and ideal-coupled approaches proposed in the 

previous studies. To reach this goal, the Morrow point 

concrete arch dam with its reservoir is envisaged as an 

example. It should be reminded that two sets of the natural 

frequencies exist for the decoupled, ideal-coupled and 

quadratic ideal-coupled methods. The first set of the 

quadratic ideal-coupled technique is closer to the true 

coupled natural frequencies, in comparison to the first set of 

the decoupled and ideal-coupled tactics. Furthermore, the 

second set of the quadratic ideal-coupled strategy is more 

accurate than the corresponding set of other two schemes. 

In addition, the first two mode shapes achieved from the 

aforesaid three methods are compared. It is observed that 

the quadratic ideal-coupled mode shapes are more 

analogous to the true ones than those of other algorithms. 

Moreover, the quadratic ideal-coupled scheme with the 

suggested eigen-solver algorithm is faster than the true 

coupled one with the pseudo symmetric method. However, 

it requires more time in comparison to the decoupled and 

ideal-coupled techniques.  
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