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A new quasi-3D HSDT for buckling and vibration of FG plate
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Abstract. A new quasi-3D higher shear deformation theory (quasi-3D HSDT) for functionally graded plates is proposed in
this article. The theory considers both shear deformation and thickness-stretching influences by a hyperbolic distribution of all
displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower surfaces of the plate
without using any shear correction factor. The highlight of the proposed theory is that it uses undetermined integral terms in
displacement field and involves a smaller number of variables and governing equations than the conventional quasi-3D theories,
but its solutions compare well with 3D and quasi-3D solutions. Equations of motion are obtained from the Hamilton principle.
Analytical solutions for buckling and dynamic problems are deduced for simply supported plates. Numerical results are

presented to prove the accuracy of the proposed theory.
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1. Introduction

Functionally graded materials (FGMs) are considered as
a new class of heterogeneous composite material in which
the properties vary gradually over one or more directions.
This material is fabricated from mixing two or more
materials by considering certain volume ratio. Material
characteristics of FGM vary within the material size
depending on a function. Such material has been proposed,
developed and successfully employed in industrial
applications since 1980s (Koizumi 1993). Conventional
composites structures such as fiber reinforced plastic (FRP)
suffer from discontinuity of material characteristics at the
interface of the plies and constituents. Hence the stress
fields in these regions induce interface problems and
thermal stress concentrations under high temperature
environments. Furthermore, large plastic deformation of the
interface may trigger the initiation and propagation of
cracks in the material (Vel and Batra 2004). These problems
can be reduced by gradually varying the volume fraction of
constituent materials and tailoring the material for the
desired application. Since its developments in the 1980s,
FGMs are alternative materials widely utilized in aerospace,
nuclear reactor, energy sources, biomechanical, optical,
civil, automotive, electronic, chemical, mechanical, and
shipbuilding industries

(Koizumi 1993, Larbi Chaht et al. 2015, Akbas 2015,
Arefi 2015a, b, Arefi and Allam 2015, Mahmoud et al.
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2015, Zemri et al. 2015, Bousahla et al. 2016, Boukhari et
al. 2016, Turan et al. 2016, El-Hassar et al. 2016, Ahouel et
al. 2016, Benferhat et al. 2016, Celebi et al. 2016, Darabi
and \Vosoughi 2016, Ebrahimi and Shafiei 2016,
Mohammadimehr et al. 2016, Mouaici et al. 2016, Trinh et
al. 2016, Turan et al. 2016, Mouffoki et al. 2017).

Large applications of functionally graded (FG)
structures have encouraged the development of various
plate theories to study accurately their bending, stability and
vibration behaviors. They are generally followed: classical
plate theory (CPT) neglecting the transverse shear
deformation influences (Feldman and Aboudi 1997,
Javaheri and Eslami 2002, Mahdavian 2009, Mohammadi et
al. 2010, Chen et al. 2006, Baferani et al. 2011, Arani and
Kolahchi 2016, Bilouei et al. 2016, Zamanian et al. 2017),
first-shear deformation theory (FSDT) with linear
distribution of displacements (Mohammadi et al. 2010,
Chen et al. 2006, Baferani et al. 2011, Praveen and Reddy
1998, Croce and Venini 2004, Efraim and Eisenberger 2007,
Zhao et al. 2009a, b, Hosseini-Hashemi et al. 2011a, Naderi
and Saidi 2010, Meksi et al. 2015, Adda Bedia et al. 2015,
Bellifa et al. 2016, Bouderba et al. 2016, Kolahchi et al.
2016a, b, Hadji et al. 2016, Ebrahimi and Jafari 2016,
Madani et al. 2016), higher-order shear deformation theory
(HSDT) with nonlinear variations of displacements within
the plate thickness such as third-order shear deformation
plate theory (TSDT), sinusoidal shear deformation plate
theory (SSDT), hyperbolic shear deformable plate theory
(HDT), zigzag theories (Reddy 2000, Jha et al. 2013, Reddy
2011, Talha and Singh 2010, Tounsi et al. 2013, Bouderba
et al. 2013, Ait Amar Meziane et al. 2014, Attia et al. 2015,
Meradjah et al. 2015, Merazi et al. 2015, Bakora and
Tounsi 2015, Mahi et al. 2015, Bouguenina et al. 2015, Ait
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Fig. 1 Geometry of a functionally graded plate

Yahia et al. 2015, Bennai et al. 2015, Ait Atmane et al.
2015, Nguyen et al. 2015, Taibi et al. 2015, Zenkour 2006,
Matsunaga 2008, Thai and Choi 2012, Kolahchi and Moniri
Bidgoli 2016, Baseri et al. 2016, Chikh et al. 2016, Barati
and Shahverdi 2016, Bourada et al. 2016, Merdaci et al.
2016, Raminnea et al. 2016, Saidi et al. 2016, Hebali et al.
2016, Javed et al. 2016, Barka et al. 2016, Becheri et al.
2016, Laoufi et al. 2016, Ebrahimi and Habibi, 2016,
Beldjelili et al. 2016, El-Haina et al. 2017, Khetir et al.
2017, Klouche et al. 2017, Kolahchi et al. 2017a, b,
Kolahchi, 2017, Besseghier et al. 2017, Chikh et al. 2017,
Bellifa et al. 2017, Meksi et al. 2017, Zidi et al. 2017,
Sekkal et al. 2017) and quasi-3D theories taking into
consideration normal stretching influence (Carrera et al.
2008, Wu and Chiu 2011, Reddy 2011, Talha and Singh
2010, Neves et al. 2012a, b, Mantari and Soares 2012,
2013, Chen et al. 2009, Jha et al. 2013, Hebali et al. 2014,
Hamidi et al. 2015, Akavci and Tanrikulu 2015, Pradyumna
and Bandyopadhyay 2008, Bessaim et al. 2013, Fekrar et
al. 2014, Kar et al. 2015, Swaminathan and Naveenkumar,
2014, Belabed et al. 2014, Bousahla et al. 2014, Bourada et
al. 2015, Bounouara et al. 2016, Houari et al. 2016,
Ghorbanpour Arani et al. 2016, Bennoun et al. 2016,
Draiche et al. 2016, Benbakhti et al. 2016, Benchohra et al.
2017, Bouafia et al. 2017, Benahmed et al. 2017, Rahmani
et al. 2017, Ait Atmane et al. 2017). However practically,
some of these theories are computational costs because of
number of additional variables included to the model
(Pradyumna and Bandyopadhyay 2008, Jha et al. 2013,
Neves et al. 2012a, b, Reddy 2011, Talha and Singh 2010).
As a consequence, a simple quasi-3D HSDT proposed in
this work is necessary.

This work aims to develop a simple quasi-3D HSDT for
free vibration and buckling analysis of FG plates. By
making a further assumption to the existing quasi-3D
HSDT, the proposed theory contains only four unknowns
and its governing equations is therefore reduced. Hamilton’s
principle is employed to determine equations of motion and
Navier-type analytical solutions for simply-supported plates
are compared with the existing solutions to check the
validity of the proposed simple theory. The material
properties are continuously changed within the plate
thickness by the power-law form. Numerical results are
found to examine the influences of the gradient index and
side-to-thickness ratio on the critical buckling load and
natural frequencies.

2. Theoretical formulation

Consider a FG plate as presented in Fig. 1 with a
thickness h, length a and width b.

The material properties change across the thickness with
a power law distribution, which is presented below (Zidi et
al. 2014, 2017, Belkorissat et al. 2015, Fahsi et al. 2017)

P(Z) = (Pc - Pm )\/c + Pm (1)

Where P, and Py, are the Young’s moduli (E), Poisson’s
ratio (v) and mass density (p) of ceramic and metal
materials located at the upper and lower surfaces,
respectively. The volume fraction of ceramic material V; is
expressed as follows

)

22+hjp
2h

v.o -
Where p is the material index, which is positive.
2.1 Kinematics and strains

The displacement field satisfying the conditions of
transverse shear stresses (and hence strains) vanishing at a
point (x, y, £h/2) on the top and bottom surfaces of the
plate, is expressed as follows

Yz =U(x 0254 TR0y ()

V(X,Y,2,8) =vy(X, y,t) - zag’;u k, f (z)j@(x, y,H)dy  (3b)

w(x, Y, z,t) =wp(x,¥,8) +9(2)0 (x,,1) (3c)

The coefficients k; and k, depends on the geometry. It
can be seen that the kinematic in Eq. (3) introduces only
four unknowns (uo, Vo, Wo and 6) with considering the
thickness stretching effect.

In this work, the present quasi-3D HSDT is obtained by

setting
f(z)=- 3”Zsechz(lj +3—”htanh (Zj
2 2 2 h

2 df
)=——
9(2) 15 dz
The strain-displacement expressions, based on this

formulation, are given as follows

(4)

&y &y K, ks
e, p=1¢€) p+zky b+ F(2)Ik;
yxy 7/>(<)y k:y k;y
0 : ®)
{7 ﬂ}: f'(z){7 {:}+ g(z){7 }
}/XZ }/XZ }/XZ
£,=9')e

Where
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Yy _ 0° Wy
630 OX k b é?(z
X v X 2w
T e [R[] T | ®
}/Oy P kxy 2
X uo é}vo 0 VVO
7+7 —
oy o oxoy
kS k.0
ky t= k,0 (6b)
s 0 0
ks, klajedx+k2&19dy
00
0 k,| @ dy 1 -
}/XZ kl.[e dX }/XZ %
OX
And
: dg(2)
== 6d
9'(2) & (6d)

The integrals presented in the above equations shall be
resolved by a Navier type method and can be expressed as
follows:

2 2
Qjedx:A'a‘g, O lody-p22,
oy oxoy OX Oxoy 0
;
j@dx:A'%, fﬁdyzB'%
OX oy

where the coefficients A’ and B’ are considered
according to the type of solution employed, in this case via
Navier method. Therefore, A’, V', k; and k; are expressed as
follows

, . 1
N=—p Be—mk=—ablo=f" @

Where o and S are defined in expression (25).
The linear constitutive relations are given below

Oy _Cu C, C; O 0 0 || &

Oy C, Cp Cp O 0 0 || &
o, | C, Cy C, O 0 0 |le, ©
X 0 0 0 C, O 0 ||7y

T
T 0 0 0 0 C55 0 Vxa
] 10 0 0 0 0 C.llr

Where Cj are the three-dimensional elastic constants
defined by

~ _~ _ (@-v)E(»
Cu=Cn=Ca = @) (102)
C,=C;= vE(2) (10b)

2T 1201+ v)’

__E@®@
2+’

In consideration of different 10m height wind speed v10
and the power law exponent index a results shown in Table
2, the representative upstream typhoon wind fields at
different directions used as the input data for training ANN
model are determined, which is shown in Tables 1-2.

C,u=Cyx = (10c)

2.1 Equations of motion

Hamilton’s principle is herein employed to determine
the equations of motion

0=[(5U +5V -5K)dt (1)

Where 6U is the variation of strain energy; 6V is the
variation of the external work done by external load applied
to the plate; and oK is the variation of kinetic energy.

The variation of strain energy of the plate is expressed
by

0,0 &+0,0&,+0,0 &,+7,0 7,

5U=j dv
\

_+z'y15 Vo T720 Vx

N, & &l +N, 5 el +N, 5 &
+Ny, & 7y + M Sk +MD 5k (12)
+My S ky +M; Sk +M> Sk (dA
+M; 5 ki, +Q5, 8 7, +S5,5 7,
Q. 7 +8, 6 7

Il
O —

Where A is the top surface and the stress resultants N,
M, S and Q are defined by

h/2

(NoMOME)= [ (Lz, f)odz,(i=xy,xy), (13a)

-h/2

h/2

N, = [ g'(z)0,0z (13b)
h/2

(S;Z,S;Z)= J. g(sz'Tyz)dzl (13C)
—h/2
h/2

(Q:Z’Q;Z): _[ f,(sz’Tyz)dZ (13d)

-h/2

The variation of work done by in-plane loads is given
by:

5V =~ NowdA (14)
A
With

. 2 2 2
N=|NeT W o O W, o O W (15)
OX Yoxoy 7 oy
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Where (N?, NS, ny) are in-plane applied loads.

The variation of kinetic energy of the plate can be

written as

SK=[[us u+vsv+wsw] p(z) dv
\

= j{ 1, [UgBUq + VBV, + VSV |

1, 085w 6W5 65w 6W05V
ox  OX oy oy

om0 020 s,
ox  OXx
+(k, B')(v @+%5 H
o oy
+Jf‘(\iv05 0+05W, ) (16)

OW, 00 W, OW, 00 W,
+,| — +—
ox  OX oy oy

o252 ar[957]

J{(klA,)[awM 0,000, }

oX OXx oOx OX
Hi B)[aw 25 0 aeaa‘wj
o oy oy oy
+K3'65 0} dA
Where dot-superscript convention indicates the
differentiation with respect to the time variable t; p(z) is the

mass density given by Eq. (1); and (l;, J;, K;,) are mass
inertias expressed by

(lg,13,1,) =

h/2

J- (1, 7,7 )p(Z)dZ (17a)
“hr2

h/2

(92,958, 9,, K, K ) = _[ (f.0.2.1%,0%)p(2)dz (17b)
-h/2

By substituting Egs. (12), (14) and (16) into Eq. (11),
the following equations of motion can be obtained

N . B}
supg: M Moy Mo gy 90
OX oy OX OX
oN oN J z]
SVy: —2+—L=1N,— aW +k,B"J,— o6
OX oy
2 ’M, M, 2
SW,: 0 sz Y4 +Nfa—\2/
OX oxoy oy° OX
+2ny§;"y Nggy"z"ﬂowo 1 [2”#23)
X

—1,VA0, + J, kAa‘g szae Jo
ox’ oy°

2 %S
50: —klA‘aa—S;X——sz' ayzy
X
0%S
~(kA+k, BY)— a; +k1A'a§” +k, B’
X X

2 2
+g(0)(N°a TaNg S o'w N°a
ox oxoy Y oy

2w 2|
OX oy

Kz((klA) er (k,B')’ Zyej

+J2[k1A'aW° kB‘aWOJ 3, — K39
ox? oy*

R,
oy

)

(18)

Substituting Eq. (5) into Eq. (9) and the subsequent

N A B B ||e
MPt=B D D° |k’ t+¢&°
MS BS DS HS kS

Ql [F* x*[f°
S X A yl
N, = L& +&))+ L7 (k} +k;)
+R(k; +k;) + R,
In which

N={N,,N,,N }t
= MMM

{ y’7 } k? {kf’kxk/)'kb

ke = ks ke,

x 1Ny
A11 A12 0 Bll Blz
A=|A, Ap 0 B=|B, By
0 0 A 0 0
Dll D12 0
D=|D, D, 0
0 0 Dg
B, B, 0 Di D
=|B; By, 0 |,D°=|D;, D,
0 0 Bg 0 0
Hiy Hp 0

H®=|Hj; Hz; 0 |
0 0 Hg

L
L+,
R

M® ={MP,MP,M? I,

f

results into Eqg. (13), the stress resultants are obtained in
terms of strains as following compact form

(19a)

(19b)

(19c)

(20a)

(20b)

(20c)

(20d)
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Q=fau.Quf s=tsusif o =bhanl.

. (20e)
7=k
Fs_{F; 0},Xs_{xg 0}
0 F; 0 X;
44 S 44 (ZOf)
AS _|: 5 0
0 ALl
L 1
a z
L 1
R (] E  e@d (209)
z 1—
R® 9@
14
and stiffness components are given as
Ail Bll Dl]. B].Sl Dlsl H 151
ALZ BlZ DlZ BlsZ D].SZ H 152
Abﬁ BGB D66 Bgﬁ D;(S H ;6
1-v (21a)
14
=[AD)(L2.2%,f(2)2f(2), F2(2))] v pdz
! 1-2v
2v
(AZZ' BZZ’ D22' BZSZ' D;Z' HZSZ)
S s s (21b)
= (Au' By1, Dy, By, Dy, H11)
<F4Z’ XL, A:4) =
"?E(2) (21c)
f'@F, ' .9° d
1 S [T T @), g°@)az
(FssS’ XSSS’ ASSS): (F4S4’ X:zu Aja) (21d)

By substituting Eq. (19) into Eq. (18), the equations of
motion can be expressed in terms of displacements (ug, Vo,
Wy, 6) and the appropriate equations take the form

Auduuo + A\ee dzzuo +(A12 + Abe )dlZVO
- Budluwo - ( BlZ +2 Bee ) d122W0

+(Bgs (kA'+k, B")+BSk, B') d,,0 (22a)
+BSk A" d,,0+Ld,0 = I,t, -1, d,W,
+J, A'kd,é,

Azz dzzvo + Aee d11V0 +(A12 + Aee) dlZUO
_Bzz d222Wo _(Bl2 + 2866) d112W0

+(B3s (K A+k, B')+ Bk, A') dy,,0 (22b)
+B5k, B'd,,,0+ Ld,0 = ¥, — I, d,W,
+J,B'k,d,@,

By, 01U +( By, + 2B ) dyy0U,

+(By, +2Bg ) dyy,Vy + By, A,V

—Dy, 0y, Wy — 2( Dy, + 2Dgg ) dyy0 W,

-D,, d,,,W, + Dk, A'd,,,,0

+( (D, +2D5 ) (kA'+k,B")) dyy50 (220)
+ D5,k,B'd,,,,0 + L*(d,0 +d,,0) + N°d,,w

+2NJ d,w+Nod,w

= oWy + 1 (dytiy +d, Vg ) — 1, (W +d W)

+J, (kA" 0 +k, B' d,,6)+ 376,

—k, A" B} gyl — Bk, B+ By (K,A+k,B")) oty
~(B3k A By, (K A+ k,B")) d1,V, B3k, B dyyyV,
+D5k A'dyyyy W, +(( D, + 2D35) (K A+ K,B") ) dypoWy
+D5K, B'd,pW, — H (kA" dyyp0
—H3, (k,B")?d,,y,0
~(2Hy ki kA B (A ;B Hi; ) dyif
+((kA) Py + 2k A'X 5 + Ay ) dy 0
+((k,B)?Fsy +2k,B' X, + Ay, ), 0
~2R(k,A'd,,0+k,B"d,,0) - L(d,u, +d,v,)
+L°(dy,w, +d,,w,) - R*6
+g(0)(NJdy,w+ 2N d,,w+ Nd,,w)
=3, (k A'd,ti; +k, B'd,V,)

+J, (kK Ady, W +k, B'd,, v, )

(22¢)

K, ((klA')Z dy 0+ (k, B dzzé)+ I, + K6,
Where dj, djj and di, are the following differential
operators
2 3
ij :L’di'l 267'
booxox, T oxox,0x,
64
dijlm T Ao Av Ao AG !
OX,0X;0%,OX,,

5 (23)
di=—.,@,j,I,m=12).
OX;

3. Close-form solutions

The Navier solution method is utilized to deduce the
analytical solutions for which the displacement variables
are written as product of arbitrary parameters and known
trigonometric functions to respect the equations of motion
and boundary conditions.

Ug U,..e"" cos(a x)sin( S y)

Vo | & | Ve sin(a x)cos(By)

wy [~ 2.2 W e"" sin( i (24)
0 m=1 n=1 mn o X)Sln(ﬂ y)

0 X " sin(a x)sin( B y)
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Where w is the frequency of free vibration of the plate,
Ji =—1 the imaginary unit.
With
a=mzla and f=nzlb (25)
Considering that the plate is subjected to in-plane
compressive forces of form: N° =-N,, NS =—7N,,

Ny =0,y= N‘y’/Nf (here y are non-dimensional load

parameter). Substituting Eq. (24) into Eq. (22),
following equation is obtained
S11 SlZ Sl3 S14
S 12 S S 23 S 24
Sz Sy St S5, +9(0)n
S Su Sut+9(0)n 844+[g(0)]277 (26)
mll O m13 ml4 Umn 0
_a)2 O m 22 m23 m24 V — 0
m13 m23 m33 m34 Wmn 0
my, m, my; m,|)|X 0
Where
Sy = A’ + A%, S, =ap (A, + As)
Sy =—a| Bya’ + (B, +2By) 4’ |
S, =a| (k,B'B}, +(k,A'+k,B) Bg,) 5°
+A'Bia’ - L |
Sp= A’ + Ay’ Sy =—P[ BB + (B, +2By)c’ |
20 = B (KA'B, +(k,A'+k,B") By, )a”
+k,B'B3," - L |
S, = D" +2(D,, + 2D )’ + D,,5*
=k A'D}a" —2D}k,B'a’ (27)
—2Dg, (k, A+ k,B )’ B2 —k,B' D5, B*
+2(a” + 7)

n=-No(a®+15°)
=—al, m,=kAa, my,=1,
=-p 1, m,=kB £,
m, =1,+1,(a*+ %)
My, =—J,(k A'a® +k, B' %)+ 3]

=K, (kA &+ (K, B 57 |+ K

Eqg. (26) is a general form for buckling and dynamic
analysis of FG plates under in-plane loads. The critical
buckling loads (N.) can be determined from the stability
problem [S;|=0 while the free vibration problem is achieved
by omitting in-plane loads.

m, = Iov m

Table 1 Material properties of metal and ceramic
Mass density Poisson’s

Young’s modulus

Matériel

(GPa) kg/m?) ratio
Aluminum (Al) 70 2.702 0.3
Zirconia (ZrO,) 151 3.000 0.3
Alumina (Al,05) 380 3.800 0.3

Table 2 Comparison of the non-dimensional fundamental
frequency (3) of Al/ZrO, square plates

ah

Theory

Material index

0 01 02 05 1 2 5 10

3D (Uymaz and
Aydogdu 2007)
Proposed

1.25891.22961.20491.14841.09131.03440.97770.9507
1.26711.23831.21351.15711.09991.04250.98410.9581

3D (Uymaz and
Aydogdu 2007)
Proposed

1.77481.72621.68811.60311.47641.46281.41061.3711
1.78301.73691.69831.61491.53921.47631.41761.3787

10

3D (Uymaz and
Aydogdu 2007)
Proposed

1.93391.87881.83571.7406 1.65831.5958 1.5491 1.5066
1.93881.88611.84241.7504 1.67081.61091.55751.5140

20

3D (Uymaz and
Aydogdu 2007)
Proposed

1.95701.92611.87881.78321.69991.64011.59371.5491
1.98541.93031.88491.79021.71011.65201.60121.5561

50

3D (Uymaz and
Aydogdu 2007)
Proposed

1.99741.93901.89201.7944 1.7117 1.65221.6062 1.5620
1.99901.94321.89731.80171.72151.66421.61431.5687

100

3D (Uymaz and
Aydogdu 2007)
Proposed

1.99741.94161.89201.79721.7117 1.65521.6062 1.5652
2.00091.94501.89901.80341.72321.66601.61621.5706

4. Numerical results and discussion

In this section, natural frequencies and critical buckling
loads of simply supported FG plates are provided and
compared with existing solutions to check the accuracy of
the proposed new quasi-3D HSDT. FG plates made of two
material combinations of metal and ceramic: Al/ZrO, and
Al/ALL,O; are considered. Their material properties are
presented in Table 1.

For convenience,
parameters are employed

5: pc O=wh pc

- a)ab 120-v2)p, —
¢ eril 28
p= Zh\  E T EN° (28)

q Ncr a2

. D11 - Blzl/All

the following non-dimensional

4.1 Results of free vibration analysis

Table 2 shows the comparison of the fundamental
frequency of Al/ZrO, square plates obtained from the
proposed quasi-3D HSDT and 3D plate model Uymaz and
Aydogdu (2007).

It can be seen that the computed results agree very well
with 3D solution.
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Table 3 Comparison of the first three non-dimensional
frequencies (@) of Al/Al, O3 square plates

Material index
a/h Mode Theory
(m,n) 01 02 05 1 2
Quasi-3D
(Matsunaga 2008) 0.2121 0.1819 0.1640 0.1383 0.1306
TSDT (Hosseini-
1(1,1) Heshemietal 2011) 0.2113 0.1807 0.1631 0.1378 0.1301
FSDT (Hosseini-
Hashemi et al. 2011) 0.2112 0.1805 0.1631 0.1397 0.1324
Present 0.2130 0.1834 0.1665 0.1411 0.1321
Quasi-3D
(Matsunaga 2008) 0.4658 0.4040 0.3644 0.3000 0.2790
TSDT (Hosseini-
5 2(12) Hashemietal. 2011) 0.4623 0.3989 0.3607 0.2980 0.2771
FSDT (Hosseini-
Hashemi et al, 2011) 0.4618 0.3978 0.3604 0.3049 0.2856
Present 0.4682 0.4064 0.3692 0.3052 0.2818
Quasi-3D
(Matsunaga 2008) 0.6688 0.5803 0.5254 0.4284 0.3948
TSDT (Hosseini-
3(2:2) Hashemi etal. 2011) 0.6676 0.5779 0.5245 0.4405 0.4097
FSDT (Hosseini-
Hashemi et al. 2011) 0.6791 0.5924 0.5387 0.4388 0.4019
Present 0.0578 0.0492 0.0443 0.0381 0.0364
Quasi-3D
(Matsunaga 2008) 0.0577 0.0490 0.0442 0.0381 0.0364
TSDT (Hosseini-
1(1,1) Heshemietal. 2011) 0.0577 0.0490 0.0442 0.0382 0.0366
FSDT (Hosseini-

Hashemi et al. 2011) 0.0579 0.0495 0.0450 0.0390 0.0369

Present 0.1381 0.1180 0.1063 0.0905 0.0859
Quasi-3D
(Matsunaga 2008) 0.1377 0.1174 0.1059 0.0903 0.0856
TSDT (Hosseini-
10 2(1,2) Hashemietal 2011) 0.1376 0.1173 0.1059 0.0911 0.0867
FSDT (Hosseini-

Hashemi et al. 2011) 0.1385 0.1189 0.1080 0.0924 0.0869

Present 0.2113 0.1807 0.1631 0.1378 0.1301
Quasi-3D
(Matsunaga 2008) 0.2112 0.1805 0.1631 0.1397 0.1324
TSDT (Hosseini-
3(2.2) Hashemietal. 2011) 0.2130 0.1834 0.1665 0.1411 0.1321
FSDT (Hosseini-

Hashemi et al. 2011) 0.0148 0.0125 0.0113 0.0098 0.0094

Present 0.0148 0.0125 0.0113 0.0098 0.0094
Quasi-3D
(Matsunaga 2008) 0.0148 0.0126 0.0115 0.0100 0.0095
TSDT (Hosseini-
20 1(1,1) Hashemi etal, 2011) 0.2121 0.1819 0.1640 0.1383 0.1306
FSDT (Hosseini-

Hashemi et al. 2011) 0.2113 0.1807 0.1631 0.1378 0.1301

Present 0.2112 0.1805 0.1631 0.1397 0.1324

Table 3 presents effects of the material index and
thickness ratio on non-dimensional frequency of FG plate.

The results are compared with solutions of FSDT
Hosseini-Hashemi et al. (2011b), TSDT Hosseini-Hashemi
et al. (2011b), and quasi-3D Matsunaga (2008).

It is shown that the computed results are again found
more close in many cases to 3D-quasi plate model than
TSDT and FSDT.

In Table 4, non-dimensional fundamental frequencies of
simply supported plate are calculated for four different

Table 4 Non-dimensional natural frequencies (
Q= th) of Al/Al,O; functionally graded plates

b h Theory

faa P Jinetal. (2014) Mantari (2015) Present

0 0.1135 0.1137 0.1138

1 0.0870 0.0883 0.0884

10 2 0.0789 0.0806 0.0807

5 0.0741 0.0756 0.0756

0 0.4169 0.4183 0.4185

1 5 1 0.3222 0.3271 0.3272

2 0.2905 0.2965 0.2966

5 0.2676 0.2726 0.2727

0 1.8470 1.8543 1.8589

’ 1 1.4687 1.4803 1.4836

2 1.3095 1.3224 1.3255

5 1.1450 1.1565 1.1577

0 0.0719 0.0719 0.0719

10 1 0.0550 0.0558 0.0558

2 0.0499 0.0510 0.0510

5 0.0471 0.0480 0.0480

0 0.2713 0.2721 0.2722

9 5 1 0.2088 0.2121 0.2121

2 0.1888 0.1928 0.1929

5 0.1754 0.1789 0.1789

0 0.9570 1.3075 1.3101

9 1 0.7937 1.0371 1.0390

2 0.7149 0.9297 0.9315

5 0.6168 0.8248 0.8253

material indexes and compared with the novel 3D exact
solution proposed by Jin et al. (2014) and quasi-3D Mantari
(2015).

The results obtained present good accuracy

Fig. 2 presents the variation of natural frequencies in
terms of the material index and thickness ratio.

It can be observed from these results that the natural
frequencies diminish with the increase of the material
index. It is due to the fact that a higher value of p
corresponds to lower value of volume fraction of the
ceramic phase, and thus makes the plates become the softer
ones (Nguyen 2015). Fig. 2(b) demonstrates that with an
increase of the thickness ratio, the shear deformation
influence becomes very effective in a relatively large region
(b/h=30).

4.2 Results of buckling analysis

The buckling responses of Al/AlI,O; plates are
investigated by considering three types of in-plane loads:
uniaxial compression (y=0), biaxial compressions (y=1) and
axial compression and tension (y=—1). The computed results
are given in Table 5. It can be seen that the results of
present work again agree well with previous solutions
HSDT Nguyen (2015) and HSDT Thai and Choi (2012).

Fig. 3 presents the critical buckling loads of rectangular
plates with respect to the material index.
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Fig. 2 Effect of the material index p and thickness ratio a/h

T T
15 20 25
a/h

30 35

45 50

on the natural frequency (@ ) of Al/Al,O5 square plates

Table 5 Comparison of the critical buckling load (N, ) of

Al/ALLO; plates

Material index

ya/balh Theory

0o 05 1 2 5 10

HSDT (Thai and
Choi o0z 67203 44235 34164 26451 21484 19213
5 HSD;O(l'\;g’“ye” 67417 44343 34257 26503 21459 1.9260
Present 67005 44728 34983 27347 22076 19459

HSDT (Thai and
Choio0zy - 74053 48206 37ILL 28897 24165 21596
0.5 10 HSD;O(l'\éE)’”ye” 74115 48225 37137 28911 24155 21911
Present 74126 48904 38221 30168 25090 22374

HSDT (Thai and
Choi o0y | 75993 49315 37000 20682 24044 22690
20 HSDgo(leg’“ye” 76000 49307 37937 29585 24942 22695
. Preent 76109 50028 39108 30068 25963 23230

HSDT (Thai and
Chois0rzy - 160211 106254 82245 63432 S053L 44807
5 HSD;O(;\‘S%“W”' 161003 106670 82507 63631 50459 44981
Present 159193 107065 83828 65148 51526 45077

HSDT (Thai and
Choio0rzy - 185785 121220 0331 72631 60353 54528
110 HSD;O(lNS‘-;’“ye” 186030 121317 93496 72687 60316 54587
Present 185846 122037 96083 75667 62535 55625

HSDT (Thai and
Chois0rz) - 103628 125668 06675 75371 63M8 57668
20 HSDgo(l'\éE)’“ye” 193503 125652 96702 75386 63437 57689
Present 193800 127494 99658 78860 66008 59020

Table 5 Continued

HSDT (Thai and
Choiooi, | 53762 3538 2731 21161 17187 15370
5 HSDgo(l'\g“ye” 53934 35475 27406 21202 17167 15408
Present 53604 35783 27987 21878 17661 15568

HSDT (Thai and
Choio0i, | 59243 38565 20680 23117 19332 17517
0510 HSDgo(l'\g“ye” 59000 38580 29710 23129 19324 17529
Present 59301 39123 30577 24134 20072 17899

HSDT (Thai and
Choio0i, | GOT94 30452 30344 23665 19955 18152
20 HSDgo(l'\g“ye” 60807 39445 30350 23668 19953 18156
. Present 60887 40022 31287 24774 20770 18584

HSDT (Thai and
ootz 80105 5327 41122 31716 25265 22403
5 HSD;O(l'\é?“ye“ 80501 53335 41209 31815 25230 22491
Present 79507 53533 41914 32574 25763 22539

HSDT (Thai and
oot 02893 BOGIS 46696 36315 30177 27264
110 HSD;O(l'\é?“ye“ 93015 60650 46748 36344 30158 27293
Present 92023 614687 48042 3783 31268 278123

HSDT (Thai and
Choidoi, | 06764 62834 48337 3768 31724 2883
20 HSD;O(l'\é?“ye“ 06796 62826 48351 37693 31718 28844
Present 96004 63747 49829 39430 33004 29510

HSDT (Thai and
5 M oizois, | B9604 58980 45551 35268 28646 25617
HSDgo(l'\g“ye” 89890 59124 45676 35337 28612 25679
Present 89339 59637 46645 36463 29435 25946

HSDT (Thai and
10 s 98738 64275 4Bl 38520 32219 2919
-10.5 HSDgo(l'\g’“ye” 08820 64299 49516 38548 32206 29214
Present 98835 65206 50062 40224 33453 33453

HSDT (Thai and
20 a0ty 101324 65753 50574 30442 33250 30253
HSDgo(l'\g’“ye” 101345 65742 50583 39447 33255 3.0260
Present 101478 66704 52145 41201 34617 30974

HSDT (Thai and
5 M o zot2) . 262058 177704 138486 105589 79560 68970
HSDgo(l'\g’“ye” 264999 17.0424 139872 106421 79571 6.9626
Presenf 257567 176913 139068 106372 7.9346 68033

HSDT (Thai and
10 a0ty 358416 235520 182206 141073 114583 102468
HSDgo(l'\g”ye” 359559 236497 182704 141349 114447 102717
Presenf 357357 238550 186579 145850 11.7741 103784

HSDT (Thai and
20 M0tz - 394851 257100 107025 154115 128878 116778
HSDgo(l'\g”ye” 395280 257197 19,8065 154190 12.8824 11.6857
Presenf 395339 260822 203846 16,0896 133813 11.9329

& Critical buckling occurs at (m; n)=(2,1)

It is seen from this figure that they diminish with the
increase of the material index, and increase with the
thickness ratio up to the point b/h=30 from which the
curves become flatter.
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Fig. 3 Effect of the material index p and thickness ratio a/h
on the critical buckling load (N, ) of Al/Al,O; rectangular
plates (a/b = 0.5)

Fig. 4 shows the lowest load-frequency curves for both
homogeneous and FG rectangular plates (a/b=0:5).

It can be observed that all fundamental frequencies
decrease as in-plane loads vary from tension to

compression. In compression region ( N¢ >0 ), the
fundamental frequencies are the largest for the plates under
uniaxial compression and tension (y=—1) and the smallest
for ones under biaxial compressive force (y=1). However,
this order is varied in tension region. It is from load-
frequency curves that the critical buckling forces can be
obtained indirectly by vibration investigation through load-
frequency curves, which corresponds to zero natural
frequencies.

5. Conclusions

A new quasi-3D HSDT is proposed for free vibration
and buckling analysis of FG plates in this work. The theory
considers hyperbolic variation of transverse shear stress,
and respects the traction-free boundary conditions on the
upper and lower surfaces of the plate without employing
shear correction factor. The proposed plate model contains
only four unknowns and equations of motion are obtained
from Hamilton’s principle. Navier-type solutions are
determined for simply-supported plates and compared with
the existing solutions to check the validity of the proposed
theory. The computed results are in well agreement with
different HSDTs and quasi-3D plate models. The proposed

(a) p=0

=R

T T T T T
-2 0 2 4 6 8 10

Nr:r

(b) p=10

T T T T T T
-0,5 0,0 0,5 1,0 15 2,0 25 3,0

No
Fig. 4 Influence of in-plane loads on the non-dimensional
fundamental frequency of AIl/Al,O; rectangular plates
(a/b=0.5, a/h=10)

model is found to be appropriate, simple and efficient in
investigating vibration and stability problem of FG plates.
In addition, it is found that the proposed quasi-3D HSDT,
provides results with good accuracy compared with the
CPT, FSDT and other HSDTs with higher number of
unknowns Consequently, the authors suggest to consider
this theory because of its simplicity.
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