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1. Introduction 
 

In contrast to the conventional elastic structures, the 

configuration of the suspension cables of cable-suspended 

bridges under dead loads has also to be determined. 

Structural behavior of cable-suspended bridges with 

specified configuration is affected by the mechanical 

properties of the suspension cables and the bridge deck 

apart from the cable-deck interaction. The relevant available 

literature dealing with these aspects critically evaluated by 

the authors elsewhere (Kumar et al. 2016, 2017) is 

summarized here. Adopting Lagrangian kinematical 

description, the constitutive relations for elastic sagging 

cables are stated in terms of their local axial tension and 

elastic extension. The elastic suspension cables are rendered 

nonlinear because of their nonlinear stress-strain relations 

and their finite elastic displacements under forces 

transferred through the suspenders. Also, the presence of the 

self-weight introduces nonlinearity in the nodal force-

displacement relations of the cable catenary segments 

between the suspenders. Discrete formulations are based 

upon tangent elastic and geometric stiffness matrices (Rega 

2004, Antman 2005, Lacarbonara 2013). 

Linear modal frequencies and the mode shapes of a 
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single shallow elastic planer cable are known to depend 

upon a geometric- elastic parameter depending upon the 

sag/span ratio, axial elastic stiffness and tensile forces in it. 

The lowest frequency pertains to the first symmetric mode 

at lower values of the above parameter, while it pertains to 

the first anti-symmetric mode at higher values of the 

parameter. The crossover point corresponding to the critical 

value of the parameter implies the equality of these 

symmetric and anti-symmetric modal frequencies (Irvine 

and Caughey 1974). 

Modern theories of cable-suspended bridges attempt to 

incorporate the effect of spatial and flexural-torsional 

behavior, axial and shear deformations, and rotatory inertia 

of the deck as well as the elasticity of the suspenders. 

Complex cable-deck interaction models are developed to 

establish the incremental constitutive equations and second-

order nonlinear differential equations of motion of the 

structure. These equations are then used to determine its 

dead load configuration as well as its static and dynamic 

response (Kim and Lee 2001, Santos and Paulo 2011, 

Lacarbonara 2013, Coarita and Flores 2015). Spatial 

catenary cable element have been used for nonlinear 

analysis of cable-supported structures (Vu et al. 2012). 

Substantial temperature variation experienced by the space-

deployed cable-beam structures are shown to introduce 

mechanical vibrations (Deng et al. 2015). Methodology for 

economic evaluation of the cable-supported structures is 

also investigated (Sun et al. 2016). 

Recently, the authors have proposed a new theory of 

single weightless sagging planer elasto-flexible cables with 

linear stress-strain relations and undergoing small elastic 

displacements when subjected to point loads. Obviously, 
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none of the above-mentioned causes of nonlinearity of 

cables are present. Still, the cables exhibit peculiar 

configurational nonlinearity associated with the dependence 

of their natural state upon the applied nodal forces. These 

structures lack unique natural state configuration and their 

elastic displacements are defined in reference to their 

instantaneous natural state obtained by proportional 

unloading from the equilibrium state. These structures are 

shown to belong to the class of homogeneous mechanical 

systems. Their configuration-defining nodal coordinates and 

nodal elastic displacements are functions homogeneous of 

order zero and unity of the equilibrated forces. Rate-type 

constitutive equations and third order nonlinear differential 

equations of motion are derived. New energy and contra-

gradient principles are also deduced (Menon 2009, Kumar 

et al. 2016).  

A simple structure consisting of a simply-supported 

linear elastic beam suspended from two parallel sagging 

cables has been investigated by the authors to model the 

cable-suspended bridges (Kumar et al. 2017). Dead load 

configuration of the structure with vertical suspenders is 

established by using the Beam on Elasto-Flexible Support 

(BEFS) Model. Compatibility condition between the 

vertical elastic nodal displacements of the beam under load 

increments and the total configurational and elastic nodal 

displacements of the cable is satisfied. The rate-type 

constitutive equations and third order nonlinear differential 

equations of motion are derived for the cable-suspended 

beam capable of undergoing small flexural and torsional 

displacements and vibrations. Typical static and dynamic 

response predicted for the 4-DOF structure reveals the 

significance of the configurational response of the 

suspension cable. 

It is well-known that dead load of the cable-suspended 

bridges is resisted mainly by the cables. Simply-supported 

deck beam suspended from the suspension cables is 

subjected to small positive flexural moments at all the 

points. During vibrations, the flexural moments are 

expected to exhibit periodic variations resulting in change 

of sense of nodal flexural moments. Flexural-torsional deck 

vibrations are found to be coupled with vibrations of the 

suspension cables (Lepidi and Gattulli 2014). Generally, the 

geometrical and reinforcement details of sections of fully 

cracked concrete beams, e.g. T-beams and box-girders, are 

asymmetrical about the horizontal axis of flexure. Thus, 

their flexural rigidity depends upon the sense of the applied 

flexural moment. Flexural rigidity distribution of such 

concrete beams is determined by finding the location of the 

point of contra-flexure on the beam. Despite the 

nonlinearity associated with sliding of their point of contra-

flexure, their tangent stiffness matrices are shown by 

Benipal to play the role of secant stiffness matrices (Benipal 

1992, 1994). Effect of bilinearity ratio and damping on the 

vibration response of SDOF cracked concrete beams 

supporting a point mass has been investigated (Pandey and 

Benipal 2006, 2011). 

The objective of the present paper is to investigate the 

flexural behavior of cable-suspended nonlinear elastic 

concrete beams. The stiffness matrix of the nonlinear elastic 

cracked concrete beam is established for different cases  

 

Fig. 1 Cable-suspended concrete beam 

 

 

defined by senses of the two nodal moments. Thereafter, the 

methodology developed earlier by the authors (Kumar et al. 

2017), for steel beam with constant stiffness matrix is 

followed. The same dead load configuration is adopted. 

Rate-type constitutive equations and third order differential 

equations on motion are derived for this 2-DOF structure 

undergoing flexural displacements. Static analysis confirms 

the change in the sense of the nodal moments with variation 

of nodal loads. Different aspects of typical dynamic 

response to harmonic loading are explored. The relevance 

of the paper for the design of cable-suspended bridges with 

concrete decks is discussed. 

 

 

2. Theoretical formulation 
 

The derivation of the governing third order nonlinear 

differential equation of motion for cable-suspended linear 

elastic beams is presented elsewhere by the authors (Kumar 

et al. 2017). Theoretical formulation also valid for the 

cable-suspended nonlinear elastic cracked concrete beams is 

presented here. Consider a simply supported concrete beam 

AD supported at two sections, B and C, on its span from a 

cable by two vertical suspenders as shown in Fig. 1 

Nodal vertical loads applied at points B and C are 

resisted by the combined action of the beam and the cable 

arranged in parallel. The dead load configuration is 

determined by BEFS Model. The third order differential 

equation of motion of the cable-suspended beam is stated 

below in terms of its vertical displacements (𝑣) as 

FvKvCvM    (1) 

The tangent stiffness matrix (𝐾 = 𝑘𝑐 + 𝑘𝑑)  of the 

structure is obtained as the sum of tangent stiffness matrices 

𝑘𝑐  and 𝑘𝑑  of cable and the beam respectively. The 

constant damping matrix (𝐶 = 𝑎0 𝑀 + 𝑎1 𝐾0) is determined 

from the mass matrix (𝑀) and the initial stiffness matrix 

(𝐾0). The above equation of motion requires following 

nodal load-displacements relation in rate form as 

vKvkvkFQF dcd
   (2) 
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The following dynamic equilibrium condition have also 

to be satisfied at all instants 

vkvCvMtFtQ d )()(  (3) 

For specified nodal initial displacements 𝑣(0) = 𝑣̅ and 

velocities 𝑣̇(0), the required nodal initial accelerations are 

determined as follows 

 FvCFMv   )0()0(1   (4) 

In Eq. (4), 𝐹̅ represents the force corresponding to the 

initial nodal displacements 𝑣̅  via equations of static 

equilibrium. The compatibility condition expressed as 

(𝑥 − 𝑥0) + 𝑢 = 𝑣 and in the rate form as 𝑥̇ + 𝑢̇ = 𝑣̇ has 

also to be satisfied. Here, 𝑥0 and 𝑥 represent the nodal 

coordinates defining the natural state configuration of the 

cable under dead loads and the current loads respectively. 

The tangent stiffness matrix 𝑘𝑐 of the cable is evaluated as 

follows from the constitutive equations for the cable stated 

in the rate form (Kumar et al. 2017) as 

QDx      Qfu    

QNQfDvux   )(      vkQ c
   

(5) 

The tangent flexibility matrix for the cracked concrete 

beam is obtained here by following the procedure 

developed earlier (Benipal 1992). The nodal forces acting 

downwards and the flexural moments causing tension at the 

bottom of the beam are considered positive. Depending 

upon the relative magnitudes of the nodal forces (𝐹𝑑1 , 

𝐹𝑑2) acting on the concrete beam and sense of introducing 

nodal moments (𝑀𝐵, 𝑀𝐶)  following four elastically-

distinct cases are identified: 

Case (I)    𝑀𝐵 ≥ 0 and 𝑀𝐶 ≥ 0 

If 𝐹𝑑1 ≥ 0:    
𝐹𝑑2

𝐹𝑑1
≥ − (

𝑎

𝑎+𝑏
)   

If 𝐹𝑑1 < 0:      
𝐹𝑑2

𝐹𝑑1
≥ − (

𝑏+𝑐

𝑐
)     

Case (II)   𝑀𝐵 ≥ 0 and 𝑀𝐶 < 0 

If 𝐹𝑑1 ≥ 0:    − (
𝑏+𝑐

𝑐
) <

𝐹𝑑2

𝐹𝑑1
< − (

𝑎

𝑎+𝑏
) 

If 𝐹𝑑1 < 0:   Impossible     

Case (III)  𝑀𝐵 < 0 and 𝑀𝐶 ≥ 0 

If 𝐹𝑑1 > 0:   Impossible  

If 𝐹𝑑1 < 0:   − (
𝑎

𝑎+𝑏
) <

𝐹𝑑2

𝐹𝑑1
< − (

𝑏+𝑐

𝑐
)   

Case (IV)  𝑀𝐵 < 0 and 𝑀𝐶 < 0 

If 𝐹𝑑1 ≥ 0:   
𝐹𝑑2

𝐹𝑑1
≥ − (

𝑎

𝑎+𝑏
), 

If 𝐹𝑑1 < 0:   
𝐹𝑑2

𝐹𝑑1
≥ − (

𝑏+𝑐

𝑐
)     

It can be observed that the case (II) does not arise when 

the nodal force 𝐹𝑑1 is negative, while case (III) arises only 

when 𝐹𝑑1 is negative. The bilinear cracked concrete beams 

generally possess two values of flexural rigidity due to 

asymmetry in section geometry and different reinforcement 

details. Which of these two values of flexural rigidity will 

be operational at a section depends upon the sense of the 

flexural moment acting at that section. Here, 𝐸𝐼1 and 𝐸𝐼2 

represent the flexural rigidity values of the prismatic 

concrete beam under positive and negative flexural 

moments. Bilinearity ratio (𝑟) is defined as 𝐸𝐼2 = 𝑟 𝐸𝐼1. 

In case (I) flexural rigidity is 𝐸𝐼1 and in case (IV) flexural 

rigidity is 𝐸𝐼2 remains same at all sections of the beam. 

However, the sense of both the nodal moments are different 

in the case (II) and case (III) and the point of contraflexure 

lies in the segment BC. The beam possesses different 

flexural rigidity on both sides of the point of contraflexure. 

Its location is determined by the ratio of the nodal forces. 

Shifting of the point of contraflexure with variation of nodal 

forces results in change in the stiffness thus rendering it 

nonlinear. In contrast, the beam exhibits linear elastic 

behavior in load case (I) and case (IV). 

The cracked concrete beams are shown to belong to the 

class of First Order Homogeneous Mechanical (FOHM) 

Systems as their nodal displacements are functions 

homogeneous of order unity of the nodal forces and vice-

versa. Also, the location of the point of contraflexure as 

well as tangent flexibility matrix coefficients in cases II and 

III are zero order functions homogeneous of the nodal 

forces. In linear cases (I) and (IV), the flexibility matrix is 

independent of the loads. In all the cases mentioned, the 

complementary energy is second order homogeneous 

function of the nodal forces. The linear elastic systems also 

belong to the class of FOHM Systems. For developing the 

constitutive equations for the 2-DOF determinate concrete 

beam in all these cases, expression for the complementary 

energy (𝛺)  is formulated in each case. Application of 

Castigliano theorem yields the nodal force-displacement 

relations for these conservative mechanical systems. Then, 

the coefficients of the symmetric tangent flexibility matrix 

(𝑓𝑑𝑖𝑗) are obtained as 

),( 21 dd FF  
diFv  /  

djidij FvF  /  

jdijdi vkF      1
 dijdij fk  

(6) 

The constitutive equations can also be stated in the 

incremental and the rate form. For these FOHM Systems, 

the tangent flexibility and stiffness matrices also play the 

role of secant flexibility and stiffness matrices respectively 

for relating the total nodal forces and the displacements 

(Benipal 1992, 1994). This is the justification for using the 

same stiffness matrix for stating the equation of motion (Eq. 

(1)), rate-type constitutive equation (Eq. (3)) and the 

equilibrium equation (Eq. (4)) of the structure. In the earlier 

investigation (Kumar et al. 2017), the beam was assumed to 

be linear elastic and so the same stiffness matrix 𝑘𝑑 could 

be used to represent both its tangent and secant stiffness 

matrices. Such is not the case with general nonlinear 

structures. However, the tangent and the secant stiffness 

matrices are same for the first order homogeneous cracked 

concrete beams. 

 

 

3. Static analysis 
 

The predictions of the static and dynamic behaviour 

presented here pertain to a structure with particular 

numerical details with bilinearity ratio (𝑟) equals 0.2. To 

recapitulate, the nodal forces (𝐹) applied on the cable-

suspended structure introduce suspender forces  (𝑄) 

transferred to the suspension cable and the nodal forces 
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(a) Suspender forces 

 
(b) Beam forces 

Fig. 2 Variation of suspender and beam forces with non-

proportional loading 

 

 

(𝐹𝑑)  being resisted by the suspended beam. Here, 

proportional loading implies variations of applied nodal 

forces while maintaining their relative magnitudes as for the 

applied dead loads. In contrast, non-proportional loading is 

achieved by keeping the applied nodal force 𝐹1 constant as 

under dead load case while varying the nodal force 𝐹2. It 

should be noted that the cable-suspended structure 

possesses unique natural passive state. In the absence of all 

the loads, the internal forces and elastic displacements of 

the cable, beam and suspenders are zero. Static analysis 

shows that, under proportional loading, the suspender forces 

as well as beam forces vary linearly. Both the suspender 

forces increase with loading, while the beam force 𝐹𝑑1 

decreases and 𝐹𝑑2  increases. From Fig. 2, these 

conclusions hold for non-proportional loading as well. In 

this case, both the beam nodal forces can attain negative 

values, though not simultaneously, even under positive 

applied nodal forces. The beam nodal force 𝐹𝑑1 is negative 

even under dead loads (𝐹1 = 6000 kN, 𝐹2 = 10000 kN). 

When a beam force is negative, the corresponding 

suspender force has absolute magnitude higher than the 

applied nodal force. 

It has been verified, though not shown here, that both 

the nodal displacements and the nodal moments in the 

suspended beam increase linearly with proportional loading.  

 
(a) Displacements 

 
(b) Moments 

Fig. 3 Effect of bilinearity ratio with non-proportional 

loading 

 

 

However, such is not the case under non-proportional 

loading as depicted in Fig. 3. Here, both the displacement 

and the moment at the second node increase nonlinearly as 

the force 𝐹2  applied at that node increases, while the 

displacement and moment at the other node decrease in a 

nonlinear manner. For a certain range ( 0.71 − 1.10) ×
104 kN of the load 𝐹2 near dead load, the concrete beam 

continues to be in case (I). An increase in its magnitude 

beyond its upper limit takes the beam to case (III), while 

case (II) obtains when 𝐹2 decreases below its lower limit. 

Thus, negative nodal moments can be introduced in the 

cable-suspended simply supported beam even by positive 

nodal loads introducing positive nodal displacements. 

It can also be observed from Fig. 3 that the sense of the 

nodal moments in the beam is determined only by the 

applied nodal loads and it is not affected by the bilinearity 

ratio of the beam. Also, negative moments at any node 

implies negative reaction at the adjacent support of the 

beam. However, the sense of the nodal displacements does 

depend upon the bilinearity ratio. Since the flexibility 

matrices of the beam and so of the structure differ from case 

to case and vary with loads on the nonlinear cases (II) and 

(III), the nodal displacements are observed to vary 

nonlinearly with 𝐹2 but without any abrupt changes. Even 

negative displacements are introduced at nodes B and C 

respectively at very high and very low magnitudes of force 

𝐹2. 
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(a) Displacements 

 
(b) Moments 

Fig. 4 Effect of bilinearity ratio with non-proportional 

loading 

 

 

Cable nodes Q and R are located at the top ends of the 

suspenders at beam nodes B and C respectively. The total 

vertical nodal displacements of the cable equal those of the 

beam. However, under general loading in addition to dead 

load, the suspension cable experiences configurational 
(𝑥𝑒) , elastic (𝑢𝑒)  and total nodal displacements (𝑣𝑒) 

from the equilibrium state of the structure under dead loads. 

It can be observed from Fig. 4(a) that the total cable 

displacement at Q decreases with 𝐹2 , even though its 

elastic component increases. The negative total nodal 

displacements (𝑣𝑒)  at Q result when the negative 

configurational displacements (𝑥𝑒)  dominate the always 

positive elastic displacement (𝑢𝑒), of the cable from the 

equilibrium state. Thus, the suspenders remain in tension 

even for negative total nodal displacements. The decrease in 

the total vertical displacement at node Q is caused by the 

dominant configurational component which decreases with 

𝐹2 . In contrast, Fig. 4(b) shows that displacement 

components as well as total displacement at cable node R 

increase with 𝐹2. It should be remembered that proportional 

load variations from the dead load do not cause any 

configurational displacements at cable nodes and so, the 

vertical nodal elastic displacements of the cable and the 

beam are equal. 

The tensile forces 𝑇1, 𝑇2 and 𝑇3 respectively in the 

cable segments PQ, QR and RS have been predicted to 

increase monotonically but linearly with proportional and  

 

Fig. 5 Variation of flexural moment with general 

proportional loading 
 

 

nonlinearly with non-proportional loading. As discussed 

above, the internal forces and displacements do vary 

linearly upon proportional loading but only when the nodal 

load ratio (𝑝 = 𝐹2 𝐹1⁄ ) equals that (1.67) for dead load for 

which the configuration is determined. However, the cable-

suspended structures exhibit nonlinear response under 

general proportional loading with different constant load 

ratios.  

For example, the nodal moments 𝑀𝐵 and 𝑀𝐶  in the 

cable-suspended concrete beams are shown in Fig. 5 to vary 

nonlinearly with loading with load ratio of 0.75. 

Specifically, the nodal moment 𝑀𝐶  registers non-

monotonic variation. The negative moment first decreases 

to attain minimum magnitude before it starts to increase and 

change sense at sufficiently higher loads. 

 

 

3. Linear modal frequencies and crossover 
phenomenon 

 

The stiffness matrix, and so the linear modal 

frequencies, of the cable-suspended concrete beam in static 

equilibrium depends upon the applied loads. As applied 

loads are increased proportional to the dead loads, the 

suspender forces and so the cable stiffness increases. The 

stiffness of the concrete beam remaining same, proportional 

loading results in higher stiffness of the cable-suspended 

structure. Though not shown here, both the modal 

frequencies increase with proportional increase in applied 

loads. However, the variation of modal frequencies is more 

complex under non-proportional loading.  

Fig. 6 depicts the effect of bilinearity ratio upon the 

variation of modal frequencies for a particular case of non-

proportional loading with constant load 𝐹1 = 43710 kN. 

The symmetric modal frequency decreases, while the anti-

symmetric modal frequency increases with 𝐹2 for all 

bilinearity ratios. As shown in Fig. 6(a), for linear elastic 

beam (𝑟 = 1), the modal frequencies vary continuously 

with 𝐹2 . However for the nonlinear elastic concrete 

beams(𝑟 = 0.2) represented in Fig. 6(b), the modal 

frequencies vary continuously as long as the sense of nodal 

moments remains unchanged. Change in sense of any nodal 

moment results in an abrupt change in the flexural rigidity  
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(a) 𝑟 = 1.0 

 
(b) 𝑟 = 0.2 

Fig. 6 Variation of modal frequencies with non-proportional 

loading 

 

 

distribution in the concrete beam, the stiffness matrix of the 

structure and so its modal frequencies. It can also be 

observed from Fig. 6 that, for certain nodal loads, the two 

modal frequencies equal each other. As discussed in the 

Introduction, such a „cross-over phenomenon‟ has earlier 

been predicted for elastic catenaries (Irvine and Caughey 

1974). 

The cable-suspended beams investigated here are 2-

DOF conservative structures with symmetric stiffness 

matrices. Two equivalent forms of expressions for their 

linear modal frequencies (𝜔𝑛 = √𝑀−1𝐾) are expressed in 

Eq. (7). These expressions imply that the linear modal 

frequencies of these structures are always real and positive. 

These two modal frequencies can be equal if and only if the 

stiffness matrix is diagonal. However, the diagonal stiffness 

matrix does not always imply equality of the modal 

frequencies. 
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To recapitulate, the tangent stiffness matrix coefficients 

of these nonlinear structures depend upon the applied nodal 

loads. It has been observed that, upon proportional loading, 

the stiffness matrices of the cable-suspended linear elastic 

beams (𝑟 = 1.0) get diagonalised at certain magnitudes of 

loads. In the first quadrant of load space, there exists one 

point with diagonal stiffness matrix for each load ratio. The 

locus of such points constitutes a continuous curve in the 

load space. It can be observed from Fig. 7 that, for linear 

elastic cable-suspended beams (𝑟 = 1.0), the first quadrant 

of the load space is indeed partitioned by this curve into two 

regions. Within the interior region of the load space, the 

lower frequencies pertains to positive values of 𝐾12 and 

anti-symmetric vibration mode. In contrast, in the outer 

region, 𝐾12 is negative and the symmetric mode has lower 

frequency. For this reason, this curve abcd can be called the 

cross-over curve in the sense described earlier (Irvine and 

Caughey, 1974). However, such is not the case with 

nonlinear elastic cracked concrete beams (𝑟 = 0.2). For 

some range of load ratios (0.7079 to 0.7869 and 2.0235 to 

2.0963), diagonal stiffness may never be obtained for any 

absolute magnitudes of nodal loads. 

Further, for the cable-suspended concrete beams, both 

the nodal moments 𝑀𝐵 and 𝑀𝐶 are positive for segment 

bc of the crossover curve. This is why this segment of the 

cross-over curve nonlinear elastic beam coincides with that 

of the linear elastic beam. The nodal moments 𝑀𝐵 and 𝑀𝐶 

respectively attain negative magnitudes for the segments ef 

and gh of the cross-over curve. 

Both equality of modal frequencies and diagonal 

stiffness matrix represent cross-over phenomenon for the 

special case of two-DOF systems. On both sides of the 

cross-over curve, the lowest modal frequency pertains to 

different vibration modes. On each curve, there exists only 

one point at which the modal frequencies are equal. Points 

A (18510, 87140) kN and B (43710, 135080) kN represent 

load combinations resulting in equal modal frequencies 

respectively for linear and nonlinear (𝑟 = 0.2 ) suspended  

 

 

 

Fig. 7 Partitioning of load-space by cross-over curves 
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(a) Different peak sinusoidal forces 

 
(b) Different bilinearity ratios 

Fig. 8 FDR for different conditions 

 

 

beams. When the modal frequencies are equal, one cannot 

identify which vibration mode pertains to the „lower‟ 

frequency. Similarly, in the case of diagonal stiffness and 

mass matrices, the nodal vibrations are uncoupled and so it 

is meaningless to define and identify symmetric and anti-

symmetric modes. In view of the above, for the present 

case, the diagonal stiffness matrix constitutes more general 

criterion than Irvine‟s criterion of equality of modal 

frequencies. 

 

 

4. Predicted dynamic response 
 

Forced vibrations of cable-suspended beam are 
investigated for the forcing function of the form 𝐹(𝑡) =
𝐹0 + 𝐹𝐿 𝑠𝑖𝑛 𝜔𝑡. Since the suspension cables are known to 
possess little damping, the damping matrix of the structure 
depends only upon the damping properties of the concrete 
deck carrying nodal masses. The constant damping matrix 
is determined by assuming the modal damping ratios as 
0.05. 

 
4.1 Loading case A 
 

The frequency domain response (FDR) plots for the 

structure under sustained dead load and subjected to peak 

sinusoidal forces proportional (𝑞 times) to the first mode 

shape is investigated. The effect of the magnitude of the 

peak sinusoidal forces and bilinearity ratio (𝑟) on the 

dynamic response is presented. As shown in Fig. 8(a), the 

 
(a) Displacements 

 
(b) Flexural moments 

Fig. 9 Typical waveforms for beam node 1 

 

 

first modal resonance frequency of the cracked concrete 

beam (𝑟 = 0.2) decreases with increase in peak sinusoidal 

forces. Also, the first modal resonance peak amplitudes 

increase, but disproportionately, with sinusoidal forces. Two 

irregular subharmonic peaks occur at forcing frequencies 

1.65 rad/s and 1.08 rad/s respectively which are about one-

half and one-third of the fundamental frequency. These 

subharmonic resonance peaks become more pronounce at 

higher peak sinusoidal forces. It can be observed from Fig. 

8(b) that the fundamental resonance peak frequency 

decreases but the peak amplitude increases with decrease in 

bilinearity ratio. However, the second modal resonance 

response is relatively small and is not affected much by 

change in bilinearity ratio. Linear elastic beams (𝑟 = 1) 

do not exhibit any subharmonics. Irregular subharmonic 

resonance peaks observed for nonlinear elastic cracked 

concrete beams become more pronounced at lower 

bilinearity ratios. 

The effect of bilinearity ratio on the time domain 

response of the structure at their fundamental frequencies is 

presented in Fig. 9. The displacement amplitude at first 

node is slightly higher for lower bilinearity ratio. However, 

the effect of bilinearity ratio on the nodal flexural moment 

𝑀𝐵 is substantial and more complex. The maximum value 

of the negative flexural moment is considerably lesser at 

lower bilinearity ratio, but the positive moment is not 

affected. Such an effect is perhaps caused by the lesser 

flexural rigidity (𝐸𝐼2) associated with negative moment at 

lower bilinearity ratio. Similarly, the same positive 

moments are predicted because of the same positive flexural 
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rigidity (𝐸𝐼1) irrespective of the bilinearity ratio. 

 
4.2 Loading case B 
 

The time domain response of a particular cable-

suspended cracked concrete beam structure with diagonal 

stiffness matrix is investigated here. When the sinusoidal 

force is applied only at node 2, the nodal vibration response 

turns out to be uncoupled. To be specific, node 1 does not 

experience any vibrations as shown in Fig. 10(a). Such is 

not the case with the corresponding cable node Q. It 

experiences equal and opposite configurational and elastic 

vibration amplitudes. As shown in Fig. 10(b), these out of 

phase configurational and elastic vibrations cancel out 

resulting in vanishing total response. In contrast, Fig. 10(c) 

shows that, these cable response components being in 

phase, add up to result in much higher vibration amplitude 

at the node where sinusoidal force is applied. 

It is interesting to note that none of the beam moments, 

beam forces and suspender forces vanish at any of the 

nodes. It can be observed from Fig. 11(a) that the nodal 

beam moments are out of phase. In the absence of any 

applied force at node 1, the suspender force and beam force 

at that node are out of phase and cancel each other as 

depicted in Fig. 11(b). Such is not the case with node 2 

where the external sinusoidal force is applied as shown in 

Fig. 11(c). 

 
 

5. Discussion 
 
In this paper, authors‟ earlier theory of cable-suspended 

 

 

 

linear elastic beams is extended to nonlinear cracked 

concrete beams. The tangent stiffness matrix of the cracked 

concrete beam modelled as a FOHM system is used here as 

the secant stiffness matrix as well in the equation of 

dynamic equilibrium of the structure. Using the respective 

tangent stiffness matrices of the cable and the beam, the 

rate-type constitutive equations and third order differential 

equations of motion are derived for the indeterminate cable-

suspended structure. 
Generally, simply supported beams under positive nodal 

loads acting on their span are subjected only to positive 

nodal moments. In view of this, concrete bridge deck beams 

designed with lesser top reinforcement possess different 

flexural rigidity under positive and negative flexural 

moments. Such concrete beams exhibit nonlinear behavior 

only when their point of contra-flexure shifts along their 

span under non-proportional loading. Static analysis of the 

cable-suspended beam shows that the applied nodal dead 

loads are resisted mainly by the cable. The cable-suspended 

beam is subjected to quite small nodal forces and flexural 

moments. In fact, even the positive static loads are 

predicted here to introduce negative force and moment at 

one node of the concrete beam. This counter-intuitive 

finding justifies the stated objective of the present paper, 

viz., to investigate the effect of nonlinearity of the cracked 

concrete deck beam on the static and dynamic response of 

the structure. 

The dead load configuration determined by the BEFS 

Model is found to be remain unaffected by the nonlinearity 

of the concrete beam. The variation of the suspender forces, 

beam forces and moments and beam displacements are 

predicted to vary nonlinearly with non-proportional loading 

   

(a) Nodal moments (b) Suspender and beam force of node 1 (c) Suspender and beam force of node 2 

Fig. 11 Reaction and moment waveforms 

   
(a) Total displacements (b) Node 1 response components (c) Node 2 response components 

Fig. 10 Displacements waveforms 
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as well as general proportional loading. The sense of nodal 

moments and the direction of the support reaction of the 

beam are unaffected by the bilinearity ratio. 

The nodal displacements of the suspension cable are 

shown to be composed of elastic and configurational 

components. The linear modal frequencies of the structure 

are shown to vary nonlinearly with loads. For nonlinear 

elastic concrete beams, the variation of these frequencies is 

discontinuous. Beams with lower bilinearity ratios 

subjected to higher sinusoidal forces are predicted to exhibit 

higher subharmonic resonance response. Different positive 

and negative deviations in the nodal moments from the 

equilibrium state are registered for the nonlinear concrete 

beams executing steady state vibrations. 

Under a particular set of applied nodal loads, the nodal 

response of the structure gets uncoupled because of the 

diagonalization of its tangent stiffness matrix. Application 

of small force at one of the nodes in addition to the above 

sustained load does not introduce any beam displacements 

at the other node. Perturbation by some initial velocity or 

application of additional small sinusoidal force at one node 

causes only that beam node to vibrate. Displacement 

response at any beam node equals the total response at the 

corresponding cable node. Thus, when a beam node does 

not exhibit any displacement response, the total 

displacement of the corresponding cable node also vanishes. 

However, this does not imply that the said cable node does 

not experience any elastic displacement. It is only that the 

elastic displacement there is cancelled by the equal and 

opposite configurational displacement. This mechanical 

„epi-phenomenon‟ at the cable node is not accessible to 

measurement in the laboratory. Being imperceptible, it 

cannot even be experienced in the field. But, it is amenable 

to analysis. To recapitulate further, equality of linear modal 

frequencies of shallow sagging elastic cables has earlier 

been considered to constitute cross-over phenomenon 

(Irvine and Caughey 1974). In this paper, a more general 

criterion, i.e., diagonal stiffness matrix, of crossover 

phenomenon than the equality of modal frequencies is 

proposed for the 2-DOF cable-suspended beam structures. 

Using this newly proposed criterion, a cross-over curve is 

shown to partition the load space into two regions. 

It is generally believed that the force in a suspender 

attached to the beam at a node cannot exceed the external 

force applied at that node. This belief is based upon the 

expectation that both the suspension cable and the 

suspended beam share the nodal external loads. Such a 

belief has turned out to be wrong in the present case. Under 

some applied nodal loads (refer Fig. 2), the beam 

contribution is negative and consequently the suspender has 

to resist an axial force greater than the applied nodal load. 

This has important implications for the design of the 

suspenders as well as the suspension cable. Further, the 

bilinear reinforced concrete beam is expected to possess 

different ultimate resistance to positive and negative 

flexural moments. As shown in Fig. 10(b), the beam should 

be designed for resisting both the positive and negative 

design nodal moments introduced by the loads. 

In this paper, the concrete beams are assumed to be 

cracked a priori at all sections. However, this assumption is 

not valid for real concrete structures wherein the crack 

formation occurs at discrete locations gradually upon 

loading. The process of crack formation in concrete 

structures requires quite complex modelling. A new method 

of numerical simulation of cohesive crack growth in 

concrete structures has recently been proposed (Zhang and 

Bui 2015). For making the theory proposed in this paper 

more realistic, it should be extended to incorporate the 

process of crack formation in concrete beams during 

vibrations. 

 

 

6. Conclusions 
 

In this paper, authors‟ earlier theory of cable-suspended 

linear elastic beams is generalized to cable-suspended 

nonlinear elastic beams. The same constitutive equations 

and equations of motion are valid. This is because, for the 

chosen first order homogeneous beams, the tangent stiffness 

matrix plays the role of secant stiffness matrix as well. 

Some load sets are shown to introduce negative flexural 

moments, negative beam support reactions and nonlinearity 

in the response of bilinear beams with different positive and 

negative flexural rigidity values. Presence of subharmonic 

resonances is predicted. A more general criterion for 

crossover phenomenon is proposed in terms of uncoupled 

nodal response. In such cases, irrespective of the bilinearity 

ratio of the beam, the suspension cable is predicted to 

exhibit configurational and elastic response inaccessible to 

measurement and perception. The proposed theory is 

claimed to be potentially applicable for analysis and design 

of suspension bridges with concrete decks. 
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