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1. Introduction 
 

In recent years, new class of advanced composite 

materials known as functionally graded porous materials 

(FGPM) has introduced in the literature and attracted a lot 

of attention by researchers. These materials have found 

practical applications in many scientific and engineering 

fields (i.g., aerospace, vehicles, civil, mechanical, nuclear 

and biomedical) due to their smooth variation in properties. 

On the other hand, the modeling, analysis and optimization 

of basic structures (beams, plates and shells) interacting 

with the elastic foundations is a topic in engineering. As 

basic structural elements, circular plates composed from 

heterogeneous porous materials supported by elastic 

foundations have found a wide range of engineering 

applications. Typical examples may be found in the design 

and analysis of interaction between structure and foundation 

of storage tanks and silos, driven plates of friction clutches 

and brake disks of machine tools and vehicles. Besides, in 

modern engineering this topic may be used to formulate the 
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effect of the artificial organs interacting with the biological 

medium and nano-plates embedded in an elastomeric 

substrate. 

Taking into account the plate theories, many researchers 

have been used analytical methods to study the static 

bending, buckling behavior, vibration problems and 

dynamic response of heterogeneous circular plates. In this 

regard, axisymmetric bending of thick functionally graded 

circular plates with various outer edge conditions was 

studied by Saidi et al. (2009), based on third order shear 

deformation plate theory. Fallah and coauthors (2012, 2015) 

used first-order shear deformation plate theory (FSDT) with 

Von Karman geometric non-linearity to investigate the 

bending and post-buckling behaviors of FG circular plates 

under asymmetric loading in conjunction with thermal 

loading and in-plane loading. On the basis of the classical 

plate theory (CPT), Khorshidvand et al. (2014) obtained the 

critical buckling load of porous circular plate integrated 

with piezoelectric sensor-actuator layers under uniform 

radial compression. They employed the energy method and 

calculus of variations to derive the governing equations and 

carried out an eigenvalue solution for the plate with 

clamped edge. Utilizing CPT and FSDT theories, Jabbari et 

al. (2014a, b, c) studied the buckling of a porous circular 

plate. They investigated the effect of porosity and pore fluid 

properties on the critical buckling load. They also studied 

the effect of thermal load and constant applied voltage on 

piezoelectric layers. In other investigation, Jabbari et al. 

(2013) developed an analytical method to obtain the steady 
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state thermal and mechanical stresses of a poro-piezo-FGM 

hollow sphere.  Farzaneh Joubaneh et al. (2015) provided 

an analysis to obtain the critical buckling temperature of 

porous circular plates integrated with piezoelectric sensor-

actuator patches under uniform thermal load. They obtained 

the governing equations, based on the CPT, by employing 

the energy method and calculus of variations. They also 

assumed the material properties of porous plate to vary by a 

power law distribution through the thickness of the plate, 

and the plate pores are saturated with fluid. Mojahedin et al. 

(2016) used the higher order shear deformation plate theory 

(HSDT) to obtain the pre-buckling force and critical 

buckling loads of porous FGM circular plates. They derived 

the equilibrium and stability equations by using energy 

method and the calculus of variations, and considering the 

Sanders non-linear strain-displacement relations. Chen et al. 

(2015) used the Timoshenko beam theory to accomplish the 

static bending and buckling analysis of functionally graded 

porous beams. Benferhat et al. (2016) used sinusoidal shear 

deformation theory and presented an analytical solution to 

investigate the effect of porosity on bending and free 

vibration behavior of simply supported FG rectangular plate 

resting on Winkler-Pasternak foundation. Recently, Akbas 

(2017) employed finite element and Newton-Raphson 

methods to analyze the post-buckling of FG beams with 

porosity effect under compression load. Using the Runge-

Kutta method and deformation map approach, the axially 

symmetric deformations and stability of a geometrically 

nonlinear circular plate subjected to multiparametrical static 

loading have been investigated by Drawshi and Betten 

(1992). 

Differential quadrature (DQ) method as an efficient and 

accurate numerical tool has been used to study the bending, 

buckling, thermoelastic and dynamic behavior of 

homogeneous and heterogeneous circular plates under 

various loads. Civalek and Ulker (2004) used the harmonic 

differential quadrature (HDQ) method to predict the linear 

bending behavior of circular plates. In other study, Civalek 

(2004a) applied the DQ and HDQ methods to illustrate the 

bending, buckling and free vibration analysis of thin 

isotropic plates and elastic columns. Considering the 2D 

thermo-elasticity theory, Sepahi et al. (2010) used the DQ 

method for axisymmetric large deflection response of a 

simply supported annular FG plate resting on a nonlinear 

elastic foundation (Pasternak type). Taking into account the 

first order shear deformation theory (FSDT) and adopting 

this technique, Malekzadeh et al. (2011) studied the free 

vibration of temperature-dependent functionally graded 

annular plates on elastic foundations. The free vibration 

problem of the thick FG annular plates on an elastic 

foundation was investigated by the Yas and Tahouneh 

(2012) based on the 3D theory of elasticity. On the basis of 

the classical plate theory (CPT), Kumar and Lal (2013) 

predicted the free axisymmetric vibration of two directional 

functionally graded annular plates resting on a Winkler 

foundation, using DQ method and Chebyshev collocation 

technique. In their study power law type property 

distribution in both thickness and radial directions is 

considered. Baccicchi and coauthors (2015, 2016) studied 

the vibration characteristic of variable thickness plates, 

shells and doubly-curved shells using GDQ method. 

The differential transformation method (DTM), based 

on the Taylor series expansion, is one of the mathematical 

techniques which has been used to solve the differential 

equation of structures in recent years. Shariyat and Alipour 

(2011) considered the classical plate theory and DTM to 

analyze the free vibration and modal stress of two-

directional functionally graded circular plates embedded on 

two-parameter elastic foundations. The static behavior of 

FG circular plates with power law distribution of 

constituents resting on a Winkler-type elastic foundation 

was studied by Abbasi et al. (2014). On the basis of the 

Mindilin‟s shear deformation plate theory and assuming the 

material properties of the FG circular plate to vary in the 

transverse direction by a power-law and exponentially in 

the radial direction, Alipour and Shariyat (2013) analyzed 

the buckling behavior of variable thickness of 2D-FGM 

circular plates resting on non-uniform elastic foundations 

by using DTM. Lal and Ahlawat (2015a, b) employed the 

CPT and DTM to analyze the buckling and vibration 

behaviors of uniform and non-uniform FG circular plates 

resting on Winkler foundation. 

Numerous investigations have been analytically reported 

in the literature to characterize the bending, dynamic and 

thermoelastic behavior of FG and smart functionally graded 

porous material structures. Li et al. (2008) obtained 

elasticity solutions for transversely isotropic FG circular 

plates subjected to an axisymmetric transverse load in the 

form of an even order polynomials (e.g., q r
k
, k is zero or a 

finite even integer). On the basis of the three dimensional 

theory and utilizing direct displacement method, Wang et 

al. (2010, 2016) presented an analytical solution for the 

axisymmetric bending of FG circular plate and the FG 

annular plates made of magneto-electro-elastic and 

piezoelectric materials, respectively. Sburlati and Bardella 

(2011) developed a three-dimensional elasticity solution for 

the bending problem of the FG thick circular plates 

subjected to axisymmetric conditions. The equilibrium 

equations are described in terms of the potential functions 

based on Plevako‟s representation. The material properties 

were varied along the thickness of the plate. Assuming the 

material properties to vary through the thickness of a sphere 

according to power law functions, Jabbari et al. (2013) 

carried out an analytical solution for the thermo-elastic 

analysis of a poro-piezo-FGM hollow sphere. They 

obtained the temperature distribution along the sphere 

thickness, and solved Navier equations analytically, using 

Legendre polynomials and Euler differential equations 

system to investigate the effect of graded indices, 

compressibility and porosity on mechanical and electrical 

quantities. Yang et al. (2014) presented an approximate 

elasticity solution for the bending analysis of simply 

supported or clamped transversely isotropic FG circular 

plates subjected to a concentrated force at the center of its 

upper face by extending England‟s method.  

Wirowski et al. (2015) analyzed the dynamic behavior 

of FG annular plates resting on a two parameter elastic and 

heterogeneous material foundation using an averaged 

mathematical model. Sladek et al. (2015) considered the 

uncoupled thermo-elasticity theory and meshless local 
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Petrov-Galerkin method to investigate the bending of a 

porous piezoelectric cylinder under thermal loading. 

The semi-analytical method which was originally 

proposed for free vibration analysis of generally laminated 

beams by Chen et al. (2004), is applicable to more 

complicated problems. This approach employs the state 

space method (SSM) to express exactly the plate behavior 

along the thickness direction, and the one dimensional 

differential quadrature (DQ) rule to approximate the radial 

variations of the parameters. Assuming exponentially 

distributed mechanical properties in the thickness direction 

and considering the 3D theory of elasticity, Behravan Rad 

and co-authors (2010, 2012a) discussed static behavior of 

FG circular and annular plates resting on linear elastic 

foundations under the effect of axisymmetric transverse 

load. Nie and Zhong (2007) analyzed the three dimensional 

free and forced vibration of FG circular plate with various 

boundary conditions. Alibeigloo and Simintan (2011) 

investigated the static response of the FG circular and 

annular plates embedded in piezoelectric layers. Jodaei 

(2014) reported the static behavior of functionally graded 

piezoelectric annular plates resting on a Pasternak type 

elastic foundation. Behravan Rad (2015) extracted a new 

differential equation to describe the normal interaction 

between gradient hybrid foundation-structure, and analyzed 

the thermoelastic behavior of the FG circular plates 

supported by unconventional hybrid foundation under 

asymmetric and non-uniform mechanical loads and uniform 

thermal load, on the basis of the classical thermo-elasticity 

theory.    

Assuming the material properties to vary with an 

exponential law in both thickness and radial directions, Nie 

and Zhong (2007a) investigated the axisymmetric bending 

of 2D-FG circular and annular plates. Davoodi et al. (2012) 

demonstrated the free vibration problem of multi-directional 

FG circular and annular plates. Their work covers the effect 

of different parameters on natural frequencies and 

corresponding mode shapes. Tahouneh and Yas (2014) 

analyzed the free vibration of thick multidirectional FG 

annular sector plates under various boundary conditions. In 

other study, Yas and Moloudi (2015) used this method to 

make three-dimensional free vibration analysis of multi-

directional functionally graded piezoelectric annular plates 

on a two parameter elastic foundation. Asgari (2015) 

considered the finite element and Genetic Algorithm 

methods to optimize the materials distribution in a thick 

hollow cylinder with finite length made of 2D-FGMs under 

steady-state thermo-mechanical loading.  In a series of 

papers, Behravan Rad and co-authors (2012b, 2013a, b) 

developed a semi-analytical solution to demonstrate the 

static behavior of uniform and non-uniform multi-

directional functionally graded circular and annular plates 

supported by uniform and variable elastic foundations under 

compound mechanical loads. The progresses in the 

mechanics of functionally graded materials and structures 

have been reviewed in Gupta and Talha (2015) and 

Swaminathan et al. (2015) in a detailed manner. The 

Development of various semi-analytical numerical methods 

in the mechanics of functionally graded elastic/piezoelectric 

plates and shells has been introduced in Wu and Liu (2016). 

The literature search indicates that there is no work 

covering the three dimensional static analysis of variable 

thickness of two directional functionally graded porous 

material circular plate supported by a heterogeneous hybrid 

foundation including horizontal friction force and subjected 

to compound mechanical loads. Hence, present study is 

devoted to this problem and investigates the static behavior 

of the plate in un-drain condition. Inclined traction and 

concentrated force in the center of the plate are taken into 

account to propose a more general solution. In this work, 

the elastic coefficients of the plate material are assumed to 

be graded in the thickness and radial directions according to 

an exponential law. The formulations are based on the 

three-dimensional theory of the elasticity, and a semi-

analytical approach is employed to solve the governing 

equations. The accuracy of the proposed method is 

validated by comparing the results are available in the 

literature. A convergence study is accomplished to 

demonstrate the rapid convergence of the proposed method 

and its capability to solve the governing equations of 

complicated problems. The effects of material properties 

gradient indices, loads ratio, thickness to radius ratio, 

foundation parameters, foundation friction coefficient, 

variations of compressibility and porosity on the 

displacements and stress components are intensively 

investigated.  

The novelties of the present study may be outlined as 

follows:  

1) Multi-directional functionally graded porous material 

is introduced. 

2) A semi-analytical solution is extended for the static 

analysis of variable thickness of 2D functionally graded 

porous materials (FGPM) circular plate with complicated 

boundary conditions. 

3) The model of structure-foundation interaction is 

developed by considering a horizontal friction force in 

contact surface of plate and foundation. 

4) The effect of concentrated force at the center of solid 

circular plate is approximated by  

considering a shear force uniformly distributed over the 

inner boundary of annular plate.  

5) The effect of compressibility, porosity and foundation 

friction coefficient variations on the static behavior of 

variable thickness of 2D-FGPM circular plate is illustrated 

for the first time. 

6) And last but not least, quite a new and interesting 

stress and deformation results for the  

non-uniform2D-FGPM circular plate are presented. 

7) The static response of multidirectional FG and Porous 

FG circular plates to compound mechanical loads are 

compared, for the first time. 

 

 

2. Mathematical formulations 
 

2.1 Problem description 
 
Consider a continuously varying thickness bi-directional 

porous FGM circular plate with thickness (ho) at the center 

and radius (a) resting on a gradient hybrid foundation and  
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Fig. 1 Geometry of variable thickness of 2D Porous FG 

circular plate resting on a gradient hybrid foundation 

including friction force 

 

 

subjected to compound mechanical loads, as shown in Fig. 

1. The plate is clamped or simply supported at the 

circumferential edge. Its bottom surface is flat and attached 

to supporting medium. The thickness of the plate at upper 

surface varies along the radial direction by continues 

function h(r). A cylindrical coordinate system (r, θ, z) 

whose origin o located at the center of bottom plane of the 

plate is employed to describe the displacement field. 

The plate elastic constants, external loads and plate 

thickness variations are considered as follows 

  0
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ii. Sinusoidal loads 
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Exponential type thickness variation 

  o 1

r
h r exp

a
h

  
   

  
               (4) 

where 0
ijC

 
is the elastic coefficients at the center of 

bottom surface of the plate, n1, n2 denote the parameters 

indicating the trends of the plate material properties 

gradient, po, qo specify the values of external loads at the 

center of the plate, αi, pi, qi, λi 
and i=1,2,3 characterize the 

plate geometry and external loads variation coefficients. 

 
(a) 

 
(b) 

Fig. 2 Sketch of a non-uniform 2D porous FGM 

circular plate concentrically loaded 

 

 

2.2 FGM circular plate with concentrated force at 
the center 
 

Consider a porous FG circular plate subjected to a 

concentrated force F at the center with thickness h(r) and 

radius a as shown in Fig. 2(a). The concentrated force can 

be approximated with resultant shearing force Qrz(r) at a 

distance r from the center of the plate. The following 

equation can be achieved from equilibrium in the z-

direction. 

rz

F

2 rh
Q 


              (5) 

Now the FGPM circular plate can be replaced by an 

FGPM annular plate. Suppose the FGPM annular plate with 

a small inner radius b and resultant shearing force 

0

F

2 bh(b)
Q 

  
uniformly distributed along the inner edge, 

as depicted in Fig. 2(b). The Eqs. (1) through (4) can be 

stated as  

  0
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     (6d) 
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2.3 Derivation of governing equations 
 

In the absence of body forces, the elastic equilibrium 

equations are 

 1 1
r,r r , rz,z r

11
r ,r , z,z r

1 1
rz,r z, z,z rz

0

0

0

r r

2 rr

r r

 
  


    

 
 

     



   


   

    

   

   
       

(7) 

where σr, σθ, σz, τrz, τrθ are the stress components and the 

comma denotes differentiation with respect to the indicated 

variable.  

The displacements field is considered as (Nie and Zhang 

2007) 
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where u,v,w
 
denote the displacement components in the r, θ

 
 

and z directions. 

The Cauchy‟s strain components are: 

r , r

1 1
,

z , z

u

u(r, ,z)

v(r, ,z)r r

w(r, ,z)

 
 

 



 









 

rz , z , r

1
z , , z

1 1
r , , r

v(r, , z)

u(r, ,z) w(r, ,z)

w(r, ,z) v(r, ,z)r

u(r, ,z) v(r, ,z)r r


 

 
 

  



 


   


 

 

 

    (9) 

where εr, εθ, εz, γrz, γθz, γrθ
 
denote the strain components. 

The linear constitutive relations for a functionally 

graded porous material circular plate are as follows (Jabbari 

et al. 2013) 
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where γ denotes the Biots coefficient of effective stress and 

P is the pore pressure. Other material properties for porous 

materials can be stated as  

 

  

u u

2
u

2
f

u

f fp p

P , , B ,

1
1

 
       



 
 

   
     

 

 



 


  

 (11)  

For fluid in un-drained condition (ψ=0) the first term of 

Eq. (11) leads to  

 r zP                 (12) 

where ψ, ε, Φ, λu, λ, λf, B, ϕp
 
denote the variation of fluid 

content, volumetric strain, Biots Moduli, undrained bulk 

modulus, drained bulk modulus, bulk modulus of fluid, 

compressibility coefficient and porosity. Substituting Eq. 

(12) in to Eq. (10) leads to (Jabbari et al. 2013) 
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In order to transform from physical domain to 

computational domain and to present more general results, 

the following non-dimensional parameters are introduced 

o

u(r, , z) v(r, , z) w(r, , z) r
U , V , W , ,

h(r) h(r) h(r) a

z (r)
, , 0 1

a h(r)

h

  
    

     

 
0 0* * *

ij 33 ij 33ij ij

0
440

i, j 1 ,2, 3 , i, j 4,5,6,

, , 1

C C C CC C

Q C

   

       
 

r z rz

z r

, , , ,
Y Y Y Y

, ,Y 1GPa
Y Y


   

 
 

   

  

  
  

 
 

     (15) 

Taking into account the Eqs. (6)-(15), the normalized 

form of the governing differential equations of the plate in 

the framework of the uncoupled poro-elasticity theory are 

obtained as 
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where 11

b a
exp

1 b a

  
   

   
  , 

 
1

2 1 b a





 , 

2

1
3 1 b a

 

  
   

 
2.4 Coupled effect of gradient hybrid elastic 

foundation 
 
The gradient hybrid foundation model provided by 

Behravan Rad (2015) is employed in this study. It is 

assumed that, the proposed foundation model is perfect, 

attached to the plate, isotropic (Tr=Tθ=T), non-uniform and 

involves the horizontally distributed variable friction force 

in the radial direction. The considered model consists of a 

perfectly flexible membrane under constant tension T and 

two layers of independent axial springs with stiffnesses k1, 

ku as shown in Fig. 1. In the referred coordinate system, the 

distributed normal traction and associated horizontal 

friction force on the plate are expressed as follows 

 

 

(17) 

f fF                        (18) 

where Ψ denotes the foundation reaction per unit area and w 

is the lateral deflection of the bottom surface of the plate. 

k1, T, ku and μf, specify the hybrid foundation stiffnesses and 

foundation friction coefficient, respectively. Two types of 

radial variations of the foundation coefficients are 

considered in the present study. 

i. Exponential type 
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ii. Sinusoidal type 
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T (r, , z) 1 sin cos
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 (19b) 

where k1o (N/m
3
), To (N/m) and kuo (N/m

3
) are the elastic 

coefficients of hybrid foundation at the center of bottom 

surface of the plate and fi, μi and i=1,2,3 characterize the 

foundation inhomogeneity exponents. 

 

 

3. The solution technique 
 

In order to study the static behavior of the FGPM 

circular plate, the expressed differential equations in Eq. 

(16) is solved utilizing a semi-analytical method. By 

employing this method, the mathematical model of 

proposed problem is transformed to computational domain 

and then by implementing the edge and the boundary 

conditions, the established linear eigenvalue system from 

state variables at all sample points is solved. Finally, the 

displacements and stress components of the plate under 

compound mechanical tractions are obtained. 

 

3.1 DQM procedure and its application 
 

Differential quadrature (DQ) method is a numerical 

technique whit fast rate of convergence and less required 

grid points in the solution domain. This method is 

dominated by these two features. DQ method divides the 

continuous domain in to a set of discrete points and replaces 

the derivative of an arbitrary unknown function with the 

weighted linear summation of the function values in the 

2
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whole domain. According to this method, the nth-order 

derivative of a continuous function g(r) defined in an 

interval r[0,1], with respect to argument r at an arbitrary 

given point ri 
can be approximated as follows (Jodaei 2014, 

Behravan Rad 2015) 

( )
( )

1

( )
( )









n N
ni

ij jn
j

g
g

r
rA

r

 

i 1,2, ,N and n 1,2, ,N 1          (20) 

where )(n
ijA  is the weighting coefficients matrix of the nth-

derivative determined by the coordinates of the sample 

points ri and N is the number of the grid points in the radial 

direction. 

There are different ways to estimate the weighting 

coefficient matrix, because different functions may be 

considered as test functions. In this study a set of Lagrange 

interpolation polynomials are employed as test functions to 

procure the weighting coefficients, and to achieve more 

accuracy, the non-uniform grid spacing is adopted. Explicit 

expressions of the first and second derivatives of the 

weighted coefficients matrices and also criterion to adopt 

non-uniformly spaced grid points are as follows (Behravan 

Rad 2012a). The first order derivative of the weighting 

coefficients matrix is 

N

i j
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ik N
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         (21) 

Furthermore, for the second-order derivative, the 

weighting coefficients matrix may be approximated by the 

following relations. 

(2) ik
ii ikik

i k

N
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         (22) 

To achieve the more reliable and accurate results, the 

Chebyshev-Gauss-Lobatto criterion is used as 

 i

1 (i 1)
1 cos a b b

2 N 1
r

   
       

 

i 1,2,3, ,N                (23) 

The partial derivatives of the unknown displacements 

U,V,W
 

with respect to  appeared in Eq. (16) after 

applying the DQ rule at an arbitrary sample point ηi can be 

expressed as 
N
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3.2 Boundary conditions 

 

The following boundary conditions are considered in 

this study 

Clamped: 

u(r, ,z) 0, v(r, ,z) 0, w(r, ,z) 0,       

at r a (25) 

Simply supported: 

r (r, ,z) 0, v(r, ,z) 0, w(r, ,z) 0,       

at r a (26) 

On the inner edge: 

r rz z0
(r, ,z) 0, (r, ,z) , (r, ,z) 0,Q          

at r b (27) 

The bottom and top surfaces boundary conditions are 

  fz z rzr, ,z , 0, ,F        at z 0    (28) 

   z z rzP r, ,z , Q r, ,z , 0,        at z h  (29) 

The associated edge conditions in discretized points can 

be written as follows 

Clamped: 

N N
0 , 0 ,N 0, WU V   at 1

    
(30) 

Simply supported: 

N N
0 , 0 ,N 0, WV    at  1

   
(31) 

On the inner edge: 

1 0 ,  1 0 ,Q   1 0  ,  at b a     (32) 

The discretized forms of the boundary conditions at the 

lower and upper surfaces of the plate, Eqs. (28) and (29) 

can be written as 
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i. Exponential type 

 

 

 

 

 

 

i
lo 14i

i
o 25i

i
uo 36i

17i 4i

28i 6i

39i 8i

i
lo 110i

b / a
exp cos ,

1 b / a

b / a
exp cos ,

1 b / a

b / a
exp cos ,

1 b / a

1 b / a ,

1 b / a ,

1 b / a ,

b / a
exp

1

k f

T f

k f

f

f

f

k f

  
       

  
       

  
       

  

  

  













 

 

 


  

 i
o 211i

sin ,
b / a

b / a
exp sin ,

1 b / a
T f

  
      

  
        




 

 i
uo 312i

b / a
exp sin

1 b / a
k f

  
        


  

ii. Sinusoidal loads 

 

 

 

 

i
lo4i 1

i
o5i 2

i
uo6i 3

1 i
lo7i

b / a
1 sin cos ,

1 b / a

b / a
1 sin cos ,

1 b / a

b / a
1 sin cos ,

1 b / a

b / a
cos cos ,

1 b / a 1 b / a

K

T

K

K

  
         

  
         

  
         

   
         


 


 


 

 


 

 

 

2 i
o8i

3 i
uo9i

b / a
cos cos ,

1 b / a 1 b / a

b / a
cos cos ,

1 b / a 1 b / a

T

K

   
         

   
         

 


 


 

 

 

i
lo10i 1

i
o11i 2

b / a
1 sin sin ,

1 b / a

b / a
1 sin sin ,

1 b / a

K

T

  
         

  
          


 


 

 

 i
uo12i 3

b / a
1 sin sin

1 b / a
K

  
          


   

At 1 , 

 
N

ij j i1i 2i
i j 1

0W WU A,


 
   

 
 

  

   1i
i

i
i

i

0 * i
1 23344

cot g

b / a
exp

1 b / a

WV,

Q

C n nC


 

  
  

   


 



 

 

N

ij j i2i
0 j 1 i
13

1i0
i

33

i

i

i

* i
1 233

1

tg( )

b / a
exp

1 b / a

U UA

C
W,

C
V

P

C n n



  
   
   

  
 

 
 
 



  
  

   










   

(34) 

 
3.3 The state space method 

 

Assembling of governing equations appeared in Eq. (19) 

in a state space notation at all discrete points gives the 

global state equation in a matrix form as    

      i i i i,i ( )( ) D B L
                 (35) 

H e r e ,  i i i , i , i
T

, ii( ) UU V W V W 
 
  

 , 
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Table 1 Mechanical constants (PZT-4) 

FGM constants (GPa) 

C11=C22 C12=C21 C13=C23 C33 C44=C55 C66 

139 78 74 115 25.6 30.5 

Poro constants 

γ λu (GPa) λ (GPa) λf (GPa) B ϕp 

0.27 41 35 35e−6 0.45 0.02 

 

 

 
T

i i0 0 0 0 0L  
 

  are the global state and 

concentrated load vectors along the plate thickness at the 

level of ξ, respectively. Di, Bi are the coefficient matrices at 

sample points. The details of these matrices are 

demonstrated in appendix 1. 

By applying boundary conditions at edges, the Eq. (35) 

leads to the following equation 

  ei ei ei ei,ei ( ) ( )( ) D B L

                     (36) 

where the subscript „e‟ denotes the modified matrix or 

unknown vector taking account of the edge conditions. 

 According to the rules of matrix operation, the general 

solution to Eq. (36) is 

 ei eieiD H( ) exp (0)             (37) 

where the term Hξ
 
is the concentrate load vector defined by  

      e e0
exp L dH D B



       
 

    (38) 

The recent integral is implemented via numerical 

quadrature in the present study.  Eq. (37) establishes the 

transfer relations from the state vector on the bottom 

surface to that at an arbitrary plane ξ of the plate by the 

exponential matrix of exp(ξDei). Setting ξ=1 in Eq. (38) 

gives    

 ei 1ei
(1) (0)exp D Hei 

         
(39) 

where exp(Dei) is the global transfer matrix and H1 is 

obtained by setting the upper bound of integration to unity 

in Eq. (38). Δei(1), Δei(0) are the values of the state variables 

at the upper and lower planes of the plate, respectively. 

Taking into account the state of tractions presented in 

Eqs. (33), (34), the Eq. (39) can be derived in the form of 

algebraic equations as follows 

MX Q                   (40) 

where M is a 6(N-1)×6(N-1) matrix, Q is a mechanical 

traction vector and  

 T
i i i i i i(0) (0) (0) (1) (1) (1)U V W U V WX   , 

( i  = 2, 3,, 1N )             (41) 

By solving Eq. (40), all state parameters at ξ=0, ξ=1
 
are 

obtained. Then, the Eqs. (36) and (13) are used to calculate 

the displacements and stress components at inner points of 

FGPM circular plate. 

4. Numerical results and discussions 
 

This section deals with the semi-analytical based 

numerical results for the static response of clamped and 

simply supported plates resting on a radially graded hybrid 

foundation to compound mechanical tractions. In this 

regard, two types of parametric studies are considered.  

1. Parametric study for static behaviour in the absence 

of foundation friction force (μf=0) 

2. Parametric study for static behaviour in the presence 

of foundation friction force (μf≠0) 

The considered plates in the examples are assumed to be 

composed of PZT-4 at the center of lower surface of the 

plates. To extract the numerical results, the following 

material constants (listed in Table1), boundary conditions 

and other parameters are considered. 

frz F ,  z r, ,z  , 
z 0  ,   at 0 

 
(42a) 

rz 0 , GPa1z ,
z 1GPa  ,  at 1   (42b) 

a 1.0m , 0.03 , b 0.002m , 1 0.1 , 

1 2 3 0.1f f f   , 3
lo uo 1GNk k m  , o 1GN mT  , 

0 0
1p q  , 

1 2 1 2
0.1p p q q    , F 1KN , 

f
0.8

 
(42c) 

 
4.1 Parametric study for static behavior in the 

absence of foundation friction force (μf=0) 
 

This section provides some numerical examples for the 

expressed problem. In this regard, the first example is 

devoted to verification purposes, the next example is 

conducted to convergence study of the presented approach 

and the other examples contain new results. In the plots, the 

effects of material heterogeneity indices, hybrid foundation 

coefficients, loads ratio, foundation graded indices; 

compressibility coefficient and porosity of the structure on 

the elastic field components are investigated. 

 

Example 1: As a verification example, a uniform 

simply supported FG circular plate subjected to a 

concentrated force at the center of the plate considered 

previously by Yang et al. (2014) is reexamined. For the ease 

of comparison with this reference, the same problem is 

considered.  

The validity and accuracy of the present method is 

investigated by solving the dimensionless deflection of the 

simply supported circular plate at a location η=(a−b)/2
 
with 

different thickness-to-radius ratios and gradient indices n1. 

Comparisons of the present semi-analytical results and 

Yang‟s analytical results are shown on Table 2. The 

difference tolerance is taken to be 0.0005 and a good 

accuracy can be observed between the present numerical 

results and the Yang‟s analytical results. It is clear that the 

difference between the results of this study and the results 

of Yang‟s method may be expected, because the nature of 

solution methods is different. Unless otherwise stated, the 

thickness variation of the plate is exponential type in the 

next examples. 
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Table 2 Dimensionless deflection of simply supported 

circular plate at bottom plane and η=0.5 

n1 

h/a=0.1 h/a=0.15 h/a=0.2 

present 
Yang et 

al. (2014) 
present 

Yang et 

al. (2014) 
present 

Yang et 

al. (2014) 

−2 −0.1125 −0.1120 −0.0061 −0.0058 −0.0073 −0.0069 

0 −0.0404 −0.0401 −0.0023 −0.0021 −0.0026 −0.0025 

2 −0.0154 −0.0152 −0.0009 −0.0008 −0.0011 −0.0009 

 

 

Fig. 3 Geometry of variable thickness of 2D Porous FG 

circular plate resting on a gradient hybrid foundation 

without friction force 

 

Table 3 Convergence of the DQ method, w vs. N for 

clamped 2D-FGPM circular plate 

  N 

  3 5 7 9 11 13 15 17 19 

n1 

= 

n2 

0.5 −0.423 −0.429 −0.435 −0.451 −0.451 −0.452 −0.450 −0.451 −0.451 

1 −0.122 −0.127 −0.125 −0.124 −0.124 −0.125 −0.124 −0.124 −0.125 

1.5 −0.046 −0.049 −0.047 −0.047 −0.047 −0.048 −0.047 −0.047 −0.047 

 

Table 4 Convergence of the DQ method, σξ
 
vs. N for simply 

supported 2D-FGPM circular plate 

 
N 

3 5 7 9 11 13 15 17 19 

n1=n2 

0.5 -0.711 -0.751 -0.836 -0.863 -0.863 -0.863 -0.864 -0.863 -0.864 

1 -0.445 -0.546 -0.789 -0.802 -0.803 -0.804 -0.802 -0.802 -0.803 

1.5 -0.258 -0.584 -0.649 -0.659 -0.658 -0.659 -0.659 -0.659 -0.658 

 

 

Example 2: In order to assess the convergence of the 

proposed approach, non-uniform 2D-FGPM clamped and 

simply supported circular plates resting on radially graded 

hybrid foundation (exponential type variation) and 

subjected to asymmetric and quadratic type transverse and 

in-plane loads without horizontal friction force, as shown in 

Fig. 3 are considered. The boundary conditions and 

geometric parameters are the same as those in Eq. (45). The 

effect of the number of the selected sample points on the 

convergence of the dimensionless transverse deflection W 
and dimensionless transverse normal stress σξ

 
at a location 

η=(a−b)/2, θ=60° and ξ=0.5 are presented in Tables 3-4. 

From the tables, it can be seen that W0 and σξ
 
approaches 

asymptotically to a specific value as the number of the 

discretization points increases beyond 9. Hence, present 

formulation converges with a high rate. In the present 

research, nine non-uniformly spaced, discretization points 

are adopted and all plots shown henceforth are obtained  

  

(a) Radial displacement 
(b) Circumferential 

displacement 

  
(c) Transverse displacement (d) Radial stress 

  
(e) Tangential stress (f) Transverse normal stress 

  
(g) Transverse shear stress (h) Transverse shear stress 

Fig. 4 Effect of the material heterogeneity indices on 

displacements and stress components of a clamped circular 

plate at location η=(a−b)/2 and θ=π/3 

 

 

according to these sample points. 

 

Example 3: In the present example, a parametric study 

is performed to illustrate the static behavior of non-uniform 

2D-FGPM clamped circular plate resting on radially graded  
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(i) Tangential shear stress 

Fig. 4 Continued 

 

  

(a) Radial displacement 
(b) Circumferential 

displacement 

  
(c) Transverse displacement (d) Radial stress 

  
(e) Tangential stress (f) Transverse normal stress 

Fig. 5 Influence of the loads ratio on variation of 

mechanical entities across the plate thickness for a clamped 

circular plate at section η=(a−b)/2 and θ=π/6 

 

 

hybrid foundation. The geometric parameters and boundary 

conditions are the same as those in Example 2. The results 

for the influence of different parameters (e.g., material  

  
(g) Transverse shear stress (h) Transverse shear stress 

 
(i) Tangential shear stress 

Fig. 5 Continued 

 

 

heterogeneity graded indices, loads ratio and trends of 

foundation stiffness variations) on elastic field components 

are plotted in Figs. 4 to 6.  

Fig. 4 depicts the influence of elastic graded indices on 

distributions of displacements and stresses along the 

thickness direction for a non-uniform 2D-FGPM solid 

circular plate at a location η=(a−b)/2, θ=60° under 

prescribed loading. Four different material graded indices 

are considered in this examination n1=n2=1, 1.5, 2, 2.5. The 

gradient indices increase cause to decrease U, V and W 

through the thickness of the plate. Moreover, as the Figs. 4 

(a), (b) and (c) show, the distribution of displacements 

transforms to a monotonic distribution with increasing the 

gradient indices. As the Figs. 4 (b), (d) and (e) show, the 

distribution of circumferential displacement, in-plane radial 

and tangential stresses (ση, σΘ) along the thickness are more 

affected by the change of material gradient indices. As the 

Fig. 4(f) shows, the transverse normal stress σξ is slightly 

increased through the thickness direction and converges to 

given boundary conditions at upper surface of the plate. It is 

clear from figure that shear stresses (τηξ, τΘξ) satisfy fully the 

given boundary conditions, and the pick value of the stress 

τηξ decreases as n1, n2 increase. Moreover, the plate becomes 

stiffer for higher values of heterogeneity indices and the 

distribution of stress τηξ converges to linear distribution, 

which is the characteristic of thin and stiffer plate. As the 

Fig. 3(h) shows, the stress τΘξ is slightly decreased at the 

overall thickness of the plate and converges to given 

tangential load at top plane of the plate. Fig. 4(i) shows that 

the distribution of shear stress τηΘ through the thickness 

direction decreases as n1, n2 
increase.  

Fig. 5 presents the effect of various loads ratio on the 

displacements and stress components of the plate at a  
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(a) Radial displacement 
(b) Circumferential 

displacement 

  
(c) Transverse displacement (d) Radial stress 

  
(e) Tangential stress (f) Transverse normal stress 

  
(g) Transverse shear stress (h) Transverse shear stress 

Fig. 6 Effect of the foundation coefficients variations on 

mechanical entities at location η=(a−b)/2 and θ=π/6 for a 

clamped circular plate supported by a gradient hybrid 

foundation 

 

 

location θ=60° and η=(a−b)/2 with gradient indices 

n1=n2=1. Four sets of loads ratio are considered in this 

examination as follows:  

Case 1: 0 0 0
2 , F 37.7q p q  ,    

 
(i) Tangential shear stress 

Fig. 6 Continued 

 

 

Case 2: 0 0 0
4 , F 150.7q p q  ,  

Case 3: 0 0 0
6 , F 226q p q  ,  

Case 4: 
0 0 0

8 , F 301.4q p q  , 

It can be observed from Fig. 5 that the displacements 

(U, W) vary linearly and monotonically in the transverse 

direction, respectively, and circumferential displacement 

(V) and all stress components display an obvious non-linear 

behavior. Fig. 5(d) implies that the radial stress at one point 

is independent from variation of loads ratio. As the Figs. 5 

(e), (h) and (i) indicate, the stress component (σΘ, τΘξ, τηΘ) 

more affected by increasing the in-plane shear traction, 

especially in upper surface of the plate. It is logically 

expected, because the increase of tangential force causes 

extra moment relative to other tractions and consequently 

causes additional compression of the layers in the 

circumferential direction. It is observable from Fig. 5(f) that 

the distribution of stress (σξ) along the thickness direction, 

especially in the top surfaces of the plate is independent 

from changes of in-plane shear traction. This behavior is 

obvious, because of the variation of transverse normal stress 

in the thickness direction mainly dependent to normal 

tractions and structure stiffness. As discussed earlier, the 

distribution of transverse shear stresses (τηξ, τΘξ) through the 

thickness of the plate shown in Figs. 5 (g) and (h) satisfy 

the boundary conditions, and the pick value of τηξ enhances 

by the loads ratio increase. The distribution of shear stress 

(τηξ) versus thickness direction is parabolic and the pick 

value of this stress component increases by enhancing the 

loads ratio, as the Fig. 5(g) confirms. 

In this subsection, the influence of coefficient of the 

elastic foundations on the static behavior of the plate is 

investigated. Results of Fig. 6 are depicted for a section 

loca ted  a t  (θ=30° and  η=(a−b) /2)  and  k 1 o ,  T o , 

kuo=k=1,5,10,15. It is evident that as the stiffness of elastic 

foundations increases, it will absorb much strain energy and 

subsequently, the resulting displacement and stresses 

become smaller, as Fig. 6 confirms. In this case the plate is 

subjected to compound and non-identical moments at the 

top and bottom layers, and radial movement is restricted at 

the outer edge, and the stress field approaches a hydrostatic 

s ta te ;  so  the  normal  s t resses  (σ η ,  σΘ )  become 

compressive/tensile for all points of the plate. For this 

reason, magnitudes of the transverse stresses become 

negligible. Furthermore, due to the elastic foundation  
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reaction, the in-plane shear stress (τηΘ) of the lower surface 

of the plate is larger than the previous cases. The pick value 

of stress (τηξ) becomes less for higher values of foundation 

stiffnesses.  

 

Example 4: In this example, a simply supported 2D-

FGPM circular plate is considered and the effects of 

structure porosity and compressibility coefficient on the 

elastic field components are investigated. The other 

conditions are the same as those in example 2. 

The effects of the compressibility coefficient (B) on the 

resulting displacement and stress components of the plate 

are demonstrated in Fig. 7, for a section at (η=(a−b)/2, 

θ=30°). It can be seen from Fig. 7(a, b) that the plate 

becomes more compliant and stiffer in transverse and radial 

directions as the compressibility coefficient of the plate 

increases; so that the radial and transverse stiffnesses of the 

plate increase and decrease, respectively. For this reason 

and due to in-plane traction the values of circumferential 

displacement (V) and stresses (σΘ, τηΘ) have increased. The 

stress (ση) transforms from tensile at lower surfaces of the 

plate to compressive at upper surfaces of the plate and its 

values decreases with increasing the compressibility 

coefficient at top layers. Furthermore, this stress component 

is independent from variations of compressibility at one 

point, as Fig. 7(d) implies. 

The influence of the porosity of the structure of the plate 

is investigated considering four distinct porosity values 

(ϕp=0.01, 0.02, 0.04, 0.08). Due to presence of 

incompressible fluid content in the pores, increasing the 

porosity leads to a stiffer plate and consequently, to smaller 

 

 

displacement and stress components, as Fig. 8 confirms. 

Results of Fig. 8 are extracted for n1=n2=1, η=(a−b)/2 and 

θ=π/6. The Effect of the porosity on decreasing the 

displacement components becomes less for higher porosity 

values. Indeed, it can be observed that the influences of the 

porosity are opposite to those of the compressibility 

coefficient. Increasing the porosity has also decreased the ση 

and σΘ stress components of the top and bottom layers. 

However, location of the maximum transverse shear stress 

(τηξ) has almost remained unchanged. Furthermore, Figs. 

7(h) and 8(h) reveal that the stress (τΘξ) is independent from 

compressibility and structure porosity variations. 

 

4.2 Static analysis of the problem in the presence of 
foundation friction force  

 

Example 5: In this example, a multidirectional FGPM 

circular plate with clamped edge, variable thickness, 

sinusoidal type tractions and elastic foundations as shown in 

Fig. 2 is considered. The effects of foundation graded 

exponents and foundation friction coefficient on the elastic 

field components are studied. The numerical data necessary 

to do the calculations is considered same as those in 

example 2. 

The influence of the elastic foundation exponents on 

through-thickness distributions of mechanical quantities are 

reported in Fig.9. Results of this figure are plotted for the 

mid radius of the plate (η=(a−b)/2, θ=30°) and μ1=μ2= 

μ3=μ=−0.8,−0.1,0.5,1, n1=n2=1, λ1=λ2=0.2. A quick glance 

at Fig. 9 reveals that the magnitudes of all displacement and 

stress components decrease by increasing the stiffness  

    
(a) Radial displacement (b) Circumferential displacement (c) Transverse displacement (d) Radial stress 

     

(e) Tangential stress 
(f) Transverse normal 

stress 

(g) Transverse shear 

stress 

(h) Transverse shear 

stress 

(i) Tangential shear 

stress 

Fig. 7 Effect of compressibility coefficient on the transverse distribution of mechanical entities of the simply supported 

circular plate at section η=(a−b)/2 and θ=π/6 
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exponent through regular trends. This behavior is logically 

expected, because: when the foundation graded exponents 

increase, the elastic foundation becomes stiffer and it 

 

 

 

absorbs much strain energy and consequently, the resulting 

displacements and stress components become smaller. 

Furthermore, due to the non-uniform foundation friction  

    
(a) Radial displacement (b) Circumferential displacement (c) Transverse displacement (d) Radial stress 

     

(e) Tangential stress 
(f) Transverse normal 

stress 

(g) Transverse shear 

stress 

(h) Transverse shear 

stress 

(i) Tangential shear 

stress 

Fig. 8 Effect of the porosity on variation of mechanical entities across the plate thickness for a simply supported circular plate 

at η=(a−b)/2 and θ=π/6 

    
(a) Radial displacement (b) Circumferential displacement (c) Transverse displacement (d) Radial stress 

     

(e) Tangential stress 
(f) Transverse normal 

stress 

(g) Transverse shear 

stress 

(h) Transverse shear 

stress 

(i) Tangential shear 

stress 

Fig. 9 Effect of the foundation graded indices on variation of mechanical entities across the plate thickness for a circular plate 

with clamped edge at η=(a−b)/2 and θ=π/3 
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force which causes additional compression in the radial 

direction and rotation in the circumferential direction, the 

 

 

 

displacement (V) and stress (τηξ) exhibit more sensitivity 

relative to results discussed in Fig. 6. 

    
(a) Radial displacement (b) Circumferential displacement (c) Transverse displacement (d) Radial stress 

     

(e) Tangential stress 
(f) Transverse normal 

stress 

(g) Transverse shear 

stress 

(h) Transverse shear 

stress 

(i) Tangential shear 

stress 

Fig. 10 Effect of foundation friction coefficient variation on mechanical entities across the plate thickness for a circular plate 

with clamped edge at η=(a−b)/2 and θ=π/3 

    
(a) Radial displacement (b) Circumferential displacement (c) Transverse displacement (d) Radial stress 

     

(e) Tangential stress 
(f) Transverse normal 

stress 

(g) Transverse shear 

stress 

(h) Transverse shear 

stress 

(i) Tangential shear 
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Fig. 11 Three-dimensional representation of displacements and stress components distributions for a clamped circular plate at 

section θ=π/3 
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The effect of the foundation friction coefficient is 

investigated in the results plotted in Fig. 10, for μ1=μ2= 

μ3=1, λ1=λ2=0.2, μf=0.1,0.2,0.4,0.8 and a section located at 

 

 

 

(η=(a−b)/2, θ=60°). As Fig. 10 shows, magnitudes of all 

displacement and stress components decrease by increasing 

the friction coefficient through regular trends. Furthermore, 

    
(a) Radial displacement (b) Circumferential displacement (c) Transverse displacement (d) Radial stress 

     

(e) Tangential stress 
(f) Transverse normal 

stress 

(g) Transverse shear 

stress 

(h) Transverse shear 

stress 

(i) Tangential shear 

stress 

Fig. 12 Effect of thickness to radius ratio on mechanical entities across the plate thickness for a circular plate with clamped 

edge at η=(a−b)/2 and θ=π/3 

    
(a) Radial displacement (b) Circumferential displacement (c) Transverse displacement (d) Radial stress 

     

(e) Tangential stress 
(f) Transverse normal 

stress 

(g) Transverse shear 

stress 

(h) Transverse shear 

stress 

(i) Tangential shear 

stress 

Fig. 13 Transverse distributions of displacements and stress components of the non-uniform circular plate with clamped edge 

and composed from heterogeneous and porous heterogeneous material at section η=(a−b)/2 and θ=π/4 
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as Figs. 10(b), (c) and (g) reveal, rotations of the section, 

transverse deformation and stress (τηξ) are significantly 

affected by foundation friction coefficient changes. 

Three dimensional representations of the simultaneous 

radial and transverse variations of the displacements and 

stress components of the clamped circular plate at section 

θ=60° are portrayed in Fig. 11. This figure reveals that all 

displacements and stress components display an obvious 

non-linear behavior. Furthermore, as figure implies, due to 

non-identical moments that exert in different planes and 

movement restriction of plate at clamped edge, the elastic 

field components exhibit rough and crispy distributions at 

adjacent of outer support. 

In Fig. 12, the effect of the thickness to radius ratio on 

the static behavior of the porous heterogeneous plate is 

presented for thr 0.02,0.04,0.06,0.08  at location of 

radius midpoint and θ=π/3. A quick glance at Fig. 12 

reveals that the increase in the
 

causes decrease in U, V, 

W, ση, σξ
 
components, (U is tension). The pick value of τηξ 

increases as the thickness to radius ratio increases. This 

feature is logically expected, because the distribution of 

transverse shear stress along the thickness direction for 

relative thick plates is quite parabolic while the distribution 

of this stress component for thin plates is parabolic with low 

pick value and tends to linear distribution. Furthermore, as 

Fig. 12(i) shows, the stress τηΘ exhibits somewhat cubic 

distribution for high thickness to radius ratios. 

In order to establish a comparative analysis, the 

dimensionless displacements and stress components are 

extracted to 2D-FG and 2D-FG porous circular plates at 

section θ=π/4 and radius midpoint. The achieved results are 

illustrated in Fig. 13. As the figure shows, the magnitude of 

displacements and stresses (ση, σΘ, τηΘ) for porous FG plate 

are lower than the FG plate. It can be deduced the load 

carrying capacity of porous FG plate is high. 

 
 
5. Conclusions 
 

A three-dimensional elasticity solution is presented for 

static analysis of non-uniform functionally graded porous 

material circular plates resting on gradient hybrid elastic 

foundations including horizontal friction force, under non-

uniform and asymmetric tractions. Results reveal that: 

1) Exponents of the elasticity modulus significantly 

affect the location of the inflection section of the plate 

and consequently, distributions of the displacement and 

stress components are affected. 

2) In stiffer foundations, the stress field approaches a 

hydrostatic state; so that magnitudes of the transverse 

stresses become negligible but the in-plane shear stress 

(τηΘ) of the plate becomes larger.   

3) In the presence of in-plane traction, through thickness 

distribution of stress, (τΘξ) is independent from 

foundation coefficients, compressibility, porosity, 

foundation graded indices and foundation friction 

coefficient variations. 

4) The porosity and compressibility coefficient exhibit 

opposite behavior on elastic field  

components.  

5) Three dimensional theory of elasticity presents an 

accurate prediction of three axes Von-Misses stress, and 

as a result, it can accurately estimate the structure 

strength. 

6) The effect of foundation friction force on 

displacements (U, V) and stress (τηξ) become more 

remarkable for greater friction coefficients. 

7) Load carrying capacity of porous FG plate is higher 

than the FG plate. 

8) The porosity has a very important role on the static 

behavior of the porous heterogeneous plates. 
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1. Elements of state matrix at discretized points  
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2. Elements of concentrated force matrix 

           
           
           

         

         

         

N N N N N N N N N N N N

N N N N N N N N N N N N

N N N N N N N N N N N N

44i
ijN N N N N N N N N NN N

54
ijN N N N N N N N N NN N

64
ijN N N N N N N N N NN N 6N 6N

i1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

B 0 0 0 0 0b

0 0 0 0 0b

0 0 0 0 0b

     

     

     

    

    

     



 
 
 
 
 

   
 

   
     

44 44 44
i i1 ij

54 54 54
ii1 i1 ij

64 64 64
ii1 i1 ij

( j 1) , 0 ( j 1)

( j 1) , 0 ( j 1)

( j 1) , 0 ( j 1)

b d b

b d b

b d b

   

   

   





  
i, j=1,2,3,…,N              (A2) 

610




