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Abstract. In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory
(MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous
material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size
influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to
zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated
through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven
distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions,
porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG
micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical

behavior of porous FG micro-beams.
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1. Introduction

Functionally = graded  materials (FGMs)  are
inhomogeneous composites presenting a smooth and
continuous variations in both compositional profile and
material characteristics that allow them to be employed in a
wide range of applications in many engineering devices
(Shahrjerdi et al. 2011, Ait Amar Meziane et al. 2014, Kar
and Panda 2015, Akbas 2015, Houari et al. 2016, Bellifa et
al. 2017a, Ait Atmane et al. 2017, Menasria et al. 2017,
Zaoui et al. 2017, Abualnour et al. 2018). Using FGMs lead
to uniform stress variation in the structures and overcome
the problems such as jump in stress components between
layers, interfacial debonding, matrix cracking, etc. In the
last decade, the trend of employing beams and plates made
of FGMs for engineering structures has considerably
increased. Consequently, understanding the behavior of
structures fabricated by porous FGMs under a variety of
mechanical and thermal loadings is very important for their
accurate design.

Many studies have been proposed by researchers on the
bending and vibration response of functionally graded (FG)
beams (Sankar 2001, Ying et al. 2008, Xiang and Yang
2008, Kapuria et al. 2008, Li 2008, Prakash ef al. 2009,
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Jomehzadeh ef al. 2009, Ould Larbi et al. 2013). Sankar
(2001) proposed an elasticity solution for FG beams. Two-
dimensional elasticity solution of an FG beam with simply
supported edges is studied by Ying et al. (2008) and natural
frequencies and mode shapes are presented by employing
state space method. Xiang and Yang (2008) investigated
free and forced vibration of a laminated FG beam of
variable thickness under thermally induced initial stresses.
The influence of various boundary conditions was
examined and beam was considered to be subjected to one-
dimensional steady heat conduction in the thickness
direction before undergoing dynamic deformation. Kapuria
et al. (2008) discussed the vibration behavior of laminated
FG beams and results were compared with experimental
results. Li (2008) presented a novel unified formulation for
investigating the bending and vibration response of FG
beams including rotary inertia and shear deformation. All of
the reviewed studies are based on the classical theory of
elasticity which has acceptable predictions for bending and
vibration behavior of macro-scaled structures. According to
the classical theory of elasticity, anticipated mechanical
responses are absolutely independent of the structure size
when they are stated in proper dimensionless forms.

FGMs are widely employed in micro- and nano-
structures such as thin films in the form of shape memory
alloys (Craciunescu and Wuttig 2003, Fu et al. 2003),
micro- and nano-electromechanical systems (MEMS and
NEMS) (Fu et al. 2004, Witvrouw and Mehta 2005, Lee et
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al. 2006), atomic force microscopes (AFMs) (Rahaeifard et
al. 2009) and also FG nanostructures (Janghorbana and
Zareb 2011, Belkorissat et al. 2015, Zemri et al. 2015,
Karami and Janghorban 2016, Ahouel et al. 2016, Barati
and Shahverdi 2016, Bounouara et al. 2016, Mouffoki ef al.
2017, Besseghier et al. 2017, Bouafia et al. 2017, Karami et
al. 2017a, b). Beams employed in MEMS, NEMS and
AFMs, have the thickness in the order of microns and sub-
microns. The size-dependent bending and dynamic response
in micro scales are experimentally checked. For example in
the micro-torsion test of thin copper wires, Fleck et al.
(1992) demonstrated that decrease of wires diameter results
in a noteworthy enhancement of the torsional hardening.
Stolken and Evans (1998) indicated a considerable increase
of plastic work hardening induced by the decrease of beam
thickness in the micro bending test of thin nickel beams.
Also, size-dependent behaviors are shown in some kinds of
polymers. For instance, during micro bending tests of
beams fabricated from epoxy polymers, Lam et al. (1999)
observed a notable enhancement of bending rigidity
induced by the beam thickness reduction. McFarland and
Colton (2005) found an important difference between the
stiffness values predicted by the classical beam theory and
the stiffness values determined during a bending test of
polypropylene micro-cantilever. According to the previous
experimental outcomes, it can be concluded that size-
dependent behavior is an inherent property of materials
which appears for a beam when the characteristic size such
as thickness or diameter is close to the internal material
length scale parameter (Kong et al. 2008).

In 1960s some scientifics authors proposed the couple
stress elasticity theory (Mindlin 1994, Mindlin and Tiersten
1962, Toupin 1962). In the constitutive equation of this
theory, we find in addition to the two classical Lame
constants, two higher-order material length scale
parameters. Zhou and Li (2001) used this theory to study
the bending and dynamic behavior of a micro-bar in
torsional loading. Kang and Xi (2007) investigated the
resonant frequencies of a micro-beam and indicated that
these frequencies are size-dependent.

To reduce the problems encountered in determining
length scale parameters of materials by experiments, Yang
et al. (2002) used the modified couple stress theory, which
in its constitutive equation only one material length scale
parameter appears. Employing the modified couple stress
theory, Park and Gao (2006) examined the static behavior of
an Euler-Bernoulli beam and discussed the outcomes of an
epoxy polymeric beam bending test. Kong et al. (2008)
presented the governing equation, initial and boundary
conditions of an Euler-Bernoulli beam via the modified
coupled stress theory and the Hamilton principle. They
showed that the natural frequencies of the beam are size-
dependent. Also, the difference between the natural
frequencies computed by the classical beam theory and
those obtained by the modified couple stress theory is
considerable when the beam property size is comparable to
the internal material length scale parameter.

Because of the vast applications of functionally graded
materials in MEMS and NEMS, and also the fact that the
classical continuum theory is unable to predict size-

dependent mechanical responses of microstructures, the use
of the non-classical theory of elasticity to the
microstructures made of FGMs seems to have great merits.
Recently, Lii et al. (2009a) developed a generalized refined
theory introducing surface effects in order to study the size-
dependent elastic response of FGM ultra-thin films. Lii et
al. (2009b) also assessed size-dependent elastic mechanical
responses of nano-scaled FGM films by employing the
Kirchhoff hypothesis and the continuum theory of surface
elasticity. Not only FGM thin films but also FGM micro-
beams are often used in MEMS and NEMS. More recently,
Al-Basyouni et al. (2015) proposed a novel unified beam
formulation and a modified couple stress theory (MCST)
that considers a variable length scale parameter in
conjunction with the neutral axis concept to study bending
and dynamic behaviors of FG micro beam. Thus, a study on
the size-dependent mechanical response of a micro-beam
made of FGMs by employing an appropriate non-classical
continuum theory capable of capturing small scale effects
seems to be crucial.

With the rapid advancement in technology of structure
components, structures with graded porosity can be
considered as one of the latest developments in FGMs. The
structures consider pores into microstructures by taking the
local density into account. Moreover, a great opportunity in
a wide range of engineering applications comes into result.
Researchers have their eyes on development in preparation
techniques of FGMs such as powder metallurgy, vapor
deposition, self-propagation, centrifugal casting, and
magnetic separation (Khor and Gu 2000, Seifried et al.
2001, Watanabe et al. 2001, Peng et al. 2007, Song et al.
2007). These techniques have some disadvantages such as
high costs and complexity of the method. One of the simple
and suitable ways to fabricate FGM is sintering process.
During this process, because of the big difference in
solidification between the material constituents, however,
porosities or micro voids through material can be produced
regularly (Zhu et al. 2001). A thorough study has been
carried out on porosities appearing inside FGM samples
fabricated by a multistep sequential infiltration method
(Wattanasakulpong et al. 2012). Porosity may be modify the
elastic and mechanical properties. Based on this information
about porosities in FGMs, it is important to consider the
porosity influence when designing FGM  structures.
However, researches on the mechanical response of porous
FG structures, are still limited in number. The wave
propagation of an infinite FG plate having porosities has
been studied by Ait Yahia et al. (2015) using various simple
higher-order shear deformation theories. Ait Atmane et al.
(2015) presented a computational shear displacement model
for vibrational analysis of FG beams with porosities.
Wattanasakulpong and Ungbhakorn (2014) examined linear
and nonlinear vibrations responses of porous Euler FG
beams with elastically restrained ends. Material properties
of FG beam have been described by a modified rule of
mixture. Ebrahimi and Mokhtari (2015) investigated
transverse vibration behavior of rotating Timoshenko FG
beams with porosities. DTM was used to solve the
equations of motion. It was demonstrated that porosity
volume fractions play a considerable role in vibrations of
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porous FG beams. Moreover, Wattanasakulpong and
Chaikittiratana (2015) discussed flexural vibration of
porous FG beams via Timoshenko beam theory. Chebyshev
collection technique was employed for solving equations.
They expressed the porosities yield reduction in the mass
and strength of FG beams. Ebrahimi and Zia (2015) studied
the large amplitude nonlinear dynamic of porous FG
Timoshenko beams. Galerkin and multiple scales
techniques were used to solve motion equations. Ait
Atmane et al. (2016) proposed an efficient beam theory to
investigate static, dynamic, and buckling behavior of porous
FG beams on elastic foundations. Most recently, Ebrahimi
et al. (2016) investigated the dynamic response of porous
FG Euler beams under thermal loading.

It should be signaled that in, the abovementioned work,
there is no study on porous FG micro-beam. So, in the
present work, a modified couple stress theory is proposed to
investigate the static and dynamic behaviors of porous FG
micro-beams on the basis on a hyperbolic shear deformation
beam theory. The micro-scale beam model includes the
material length scale parameter which can capture the size
influence. The material properties of the FG micro-beams
including the length scale parameter are supposed to vary in
the thickness direction according to power-law distribution
which is modified to approximate the porous material
properties with even and uneven distributions of porosities
phases. An analytical solution is employed to solve the
governing equations derived from Hamilton’s principle.
Several numerical and illustrative results are presented to
indicate the influences of the material length scale
parameter, gradient index, and porosity parameters on the
static and dynamic responses of porous FG micro-beams

2. Theory and formulation

2.1 Modified couple stress theory

The strain energy, U can be expressed using the
modified couple stress theory (Yang et al. 2002) by

U= ;I(og mz BV, (1, §=123) (1)

Where o is the stress tensor, ¢ is the strain tensor, m is the

deviatoric part of the couple stress tensor, and y is the
symmetric curvature .these tensors are given by

€ij :%(ui,j +ui,i) )

Xij :%(Hi,jﬂgi,i) (€))

where u; is the displacement vector, and @ is the rotation
vector that can be defined as

1
0= Eeijk”k,i “4)

where e is the permutation symbol.

2.2 Kinematic relations and constitutive relations

The displacement field of the conventional HSDT is
given as follows

_ _ M g ) Ms
u(x,z,t) =ug(x,y) -z ™ f(2) ™ (5a)
v(x,z,t)=0 (5b)
W(X, Z,t) =W, (X, 1) + W (X, t) (5¢)

where uy; wy; wy, are three unknown displacements of the
mid-plane of the plate, such as wj is the bending part and w;
is the shear one.

[fz) represents shape function defining the variation of
the transverse shear strains and stresses across the
thickness.

In this article, the shape function is considered given by
Nguyen (2015) as

.43z 6z
f(z) =z —sinh 1(—J+ and
@ h ) s
df (2)
dz

(©6)
9(2)=1-

The nonzero strains of the present refined beam theory
are presented as

U, _ o%w o%w,
" e W5
5y=gz=7xy=7yz=0 (7

oW,
7x Ex g(z) ax

In addition, Egs. (5) and (4),the components of the
rotation vector are obtained as

0, =-20 - Zp(0) 2

ox 2 oX ®)

With, y(2)=141(2)
Substituting Eq. (8) into Eq. (3), the components of the
curvature tensor take the form

18wb 1 \8ws
26x2 —v&—3
=—7f
P YR
Zxx:Zyy—Zzz—sz_O

Xxy =~
)

2.3 Constitutive relations

Consider a FG plate made of two constituent
functionally graded materials, the material properties of the
beam such as Young’s modulus E, masse density p and the
length scale parameter / are considered to change
continuously across the thickness according to a power law
distribution. The effective material properties of FG beams
with two kinds of porosity distributions which are
distributed identically in two phases of ceramic and metal
can be expressed by using the modified rule of mixtures as
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(Ait Yahia ef al. 2015, Wattanasakulpong and Ungbhakorn
2014, Benferhat et al. 2016)

a
p= pc(vc _Ej"' pm(vm

Where a is the volume fraction of porosity (a<<l), for
perfect FGM, « is set to zero, P. and P, are the material
properties of ceramic and metal and v. and v, are the
volume fraction of ceramic and metal separately; the
compositions are represented in relation to

a
_ZJ (10)

Ve +V, =1 (11)

In this project, imperfect FGM has been investigated
witch two types of porosity distributions (even and uneven)
through the micro-beam thickness due to defect during
fabrication.

For the even distribution of porosities FGM-I, the
effectives material properties are determined as follows

E(Z):(Ec_Em)vc"'Em_%(Ec"'Em) (12a)
I(Z)Z(IC_Im)Vc"'Im_%(Ic"'lm) (12b)
p(2)=(pc—pm)vc+pm—%(pc+pm) (12¢)

Where v.=(0.5+z/h) is the volume fraction of ceramic.

For FGM-II defined as uneven porosities the effectives
materials properties are replaced by following form
(Wattanasakulpong and Ungbhakorn 2014)

E(Z):(EcEm)Vc+EmZ(Ec+Em)[lzth (133)

1(z)= (1 -1 )vc+|m—‘;‘(|c+|m)[1—2;] (13b)

P(Z)—(Pc—pm)vc+pm—j(pc+pm)[1—2:] (13¢)
The constitutive relations can be written as

m, = 2u(2)I(2)] (14a)

oij = M2)e Sy +2p(2)e (14b)

Where J;; is the Kronecker delta, / is the material length
scale parameter which reflects the effect of couple stress, 4
and x4 are Lame’s constants given by (Al-Basyouni et al.
2015)

Az)= E(z)(2)

E(2)
g ) and ,u(z):i(z)] (15)

h+v

2.4. Equations of motion

Hamilton’s principle is employed in this work to
determine the equations of motion. The principle can be
expressed in analytical from as (Mahi et al. 2015, Attia et
al. 2015, Adda Bedia et al. 2015, Bellifa et al. 2016,

Boukhari e al. 2016, Meksi et al. 2017, Zidi et al. 2017)
T
jo (U +6V —K)dt =0 (16)

Where JU is the virtual strain energy, oV is the virtual
work done by external loads, and JK is the virtual kinetic
energy .The virtual strain energy is expressed by (see Eq.

)

oJ = “‘hh//zz oijosij + m,lé;gu)dzdx

h/2
J. I (O-x5‘9x + 73707 xz
+2m, 5ny +2my, 0y, )dzdx

_I( da;o

2
— MS+1Y1+1Y2 d* o
2 2 dx?

oz

Where L is the length of the micro-scale beam and the
following stress resultants are expressed as

(N.M,.M,)=["" (.2, )o,dz (18a)

d s, (17)
dx?

—(My +Yy)

h/2
Q= gr,dz (18b)

hi/2

h/2 . h/2 .
(Yl,Y2)=Lh/2(1,f )mxydz . Ys =Lh/2f m,dz  (18c)

The variation of the work done by the external applied
forces can be expressed as

N = —J.OLq5(wb +w, )dx (19)

Where ¢ is the transverse load.
The variation of kinetic energy is expressed as

j J‘ h/2
h/2

= j0{|o[u05l]0 +(Wb +V'Vs)(5f\/b +‘5"Vs)]

u&J +U,d hzdx

d dx
[ i) dain, dig ) Q0
2 dx  dx ! dx dx
(04, d,
2l dx  dx

dwy, dov,  dv, dow
+J,| —2 "5 4 s Z7Tb Ihdx
dx dx dx dx
Where dot-superscript convention denotes the
differentiation with respect to the time variable #; p(z) is the

masse density; and ([, I;, L, Ji, J,, K;) are the masse
inertias defined as
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h/2
(o1 15,33, K, )= [(Lz,2% f.2F, g)p(2hz  (21)
-h/2
Substituting Eqgs. (17), (19) and (20) into Eq. (16) and
integrating by parts, and collecting the coefficients of (duy,
owy, Owy), the following equations of motion are obtained

dN . dvi, dw
g — =1 -, —=-1 S
0" dx ot 11 dx 1 dx

(22a)

(22b)

2 2 2
(’)’WS:d ’\25+1d Zl+£d 22

dx 2 dx 2 dx
1d¥;  dQ

+
2 dx dx
22
= 1o (W, + W )+ J Uy e
—1o\WMb s 1 dx

dzwb_ d 2w,
dx? 2 dx?

_‘]2

2.5 Equations of motion in terms of displacements

By employing Egs. (18) and (22), the equations of
motion in terms of the displacements are obtained as
2 3
d Uzo _Bs, ° vzs
dx Ox
N dw, dw,
=lglig — I, —>— s
oo =l T Y1 gy

Mg - A
v (23a)

d*w,
dx*

Wy, _(Dll + A13)

1 d*
—(Dsll + E(Als + Blg)jvl\lls + q
dx (23b)

L du

—|2dzwb ), d 2
dx? dx?
du 1 d*w,
s 1BS11—2 —| D811+ = (A + Bpa) |—2
S 1 e [ 11 2(A13 13)] ax’

1 d4w
—| H%11+ =(Aj3 + 2By + Dy3) |——>
( 1 4(A13 13 13)} o

1 szws

+[A855 +ZE13 d7+q (230)

Where Ay, Dy, etc., are the beam stiffness, defined by

h
2
(All, Dyy,B®11, D%11, H 511): J;/l(z)l;z/z()Z) (29)

2
<22 1,21, 12]az

and

N | T

(AIS’ BlS' D131 E13) =

e F]

_h (30)
2
x u(z)1(z)? dz
h
2
Ass = Jy(z)g(z)zdz (31)

|
N

2.6 Analytical solutions

In this section, analytical solutions for bending and free
vibration are presented for a simply supported rectangular
beam under transverse load ¢. It is noted that other
boundary conditions can be treated (Bennai et al. 2015,
Bellifa et al. 2017b). Based on the Navier approach, the
solutions are assumed as

o U, cos(Ax)e'

0

o= 3w, sin (2" (32)
" w, sin (Ax)e

where U,, W, and W, are arbitrary parameters to be
determined @ is the eigenfrequency associated with nth
eigenmode, and A=nz/L the transverse load g is also
expanded in Fourier series as

4(x, y)= " Q, sin(ix) (33)

n=1

Where Q, is the load amplitude calculated from
2 L .
Q, = I-[O q(x)sin (Ax)dx (34)

The coefficient O, are given below for some typical loads

Q,=0,, n=1 for sinusoidal load , (35a)

Q, :4&, n=1,2,3.... for point load P at the
n

(36b)
midspan,

Substituting the expansions of Uy, W,, W, and ¢ from
Egs. (27) and (28) into the equations of motion Eq. (25), the
analytical solutions can be determined from the following
equations

Sy 0 s m, m, My U, 0

2
0 Sy Spa|—@7 My My Myg | | x3Wy, e =1Qy ¢ (37)
S13 Sz S33 My Mg Mgy Wen Q,
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Table 1 Dimensionless transverse deflection of the FG micro-beam for point load, I,,=15, h/l,,=2, b/h=1

W Beam L/h=10 L/h=100
¢m theory k=0.3 k=1 k=3 k=10 k=0.3 k=1 k=3 k=10
0 0.3207 0.4081 0.5201 0.6054 0.3207 0.4081 0.5201 0.6054
0.1 CBT 0.3395 0.4454 0.5901 0.6948 0.3395 0.4454 0.5901 0.6948
0.2 0.3585 0.4863 0.6759 0.8070 0.3585 0.4863 0.6759 0.8070
0 0.3302 0.4199 0.5376 0.6329 0.3208 0.4083 0.5203 0.6057
1/3 0.1 FSDT 0.3495 0.4581 0.6095 0.7269 0.3396 0.4455 0.5903 0.6951
0.2 0.3690 0.4999 0.6975 0.8454 0.3586 0.4865 0.6762 0.8074
0 0.3281 0.4169 0.5331 0.6233 0.3208 0.4082 0.5202 0.6056
0.1 IHSDT 0.3474 0.4551 0.6051 0.7173 0.3396 0.4455 0.5903 0.6951
0.2 0.3670 0.4970 0.6936 0.8371 .3586 0.4864 0.6761 0.8074
0 0.1846 0.2649 0.3963 0.5380 0.1846 0.2649 0.3963 0.5380
0.1 CBT 0.2006 0.2931 0.4481 0.6155 0.2006 0.2931 0.4481 0.6155
0.2 0.2177 0.3242 0.5090 0.7080 0.2177 0.3242 0.5090 0.7080
0 0.1908 0.2736 0.4106 0.5631 0.1847 0.2651 0.3964 0.5383
1 0.1 FSDT 0.2071 0.3023 0.4639 0.6447 0.2007 0.2932 0.4483 0.6157
0.2 0.2247 0.3342 0.5263 0.7425 0.2178 0.3243 0.5092 0.7083
0 0.1877 0.2692 0.4032 0.5509 0.1847 0.2650 0.3963 0.5382
0.1 IHSDT 0.2039 0.2977 0.4559 0.6312 0.2006 0.2931 0.4482 6157
0.2 0.2213 0.3292 0.5178 0.7279 0.2177 0.3242 0.5091 7082
0 0.1203 0.1876 0.3123 0.4789 0.1203 0.1876 0.3123 0.4789
0.1 CBT 0.1318 0.2081 0.3508 0.5445 0.1318 0.2081 0.3508 0.5445
0.2 0.1443 0.2307 0.3945 0.6196 0.1443 0.2307 0.3945 0.6196
0 0.1252 0.1947 0.3247 0.5020 0.1204 0.1877 0.3124 0.4792
3/2 0.1 FSDT 0.1369 0.2157 0.3643 0.5712 0.1318 0.2081 0.3509 0.5448
0.2 0.1498 0.2389 0.4093 0.6509 0.1444 0.2309 0.3947 0.6199
0 0.1219 0.1899 0.3164 0.4883 0.1204 0.1876 0.3123 0.4790
0.1 IHSDT 0.1335 0.2106 0.3552 0.5555 0.1318 0.2081 0.3508 0.5446
0.2 0.1462 0.2335 0.3993 0.6329 0.1443 0.2308 0.3946 0.6198
0 0.0819 0.1356 0.2453 0.4200 0.0819 0.1357 0.2453 0.4200
0.1 CBT 0.0900 0.1505 0.2736 0.4738 0.0900 0.1505 0.2736 0.4738
0.2 0.0989 0.1669 0.3047 0.5329 0.0989 0.1669 0.3047 0.5328
0 0.0861 0.1418 0.2562 0.4412 0.0819 0.1357 0.2454 0.4203
2 0.1 FSDT 0.0944 0.1571 0.2854 0.4982 0.0901 0.1505 0.2737 0.4741
0.2 0.1036 0.1739 0.3176 0.5611 0.0989 0.1669 0.3048 0.5332
0 0.0829 0.1371 0.2477 0.4266 0.0819 0.1357 0.2453 0.4201
0.1 IHSDT 0.0910 0.1519 0.2761 0.4812 0.0900 0.1505 0.2736 0.4739
0.2 0.1000 0.1684 0.3073 0.5414 0.0989 0.1669 0.3047 0.5329
0 0.4081 0.5966 0.8295 0.9725 0.4081 0.5967 0.8295 0.9725
0.1 CBT 0.4199 0.6289 0.9085 1.0655 0.4199 0.6289 0.9084 1.0655
0.2 0.4319 0.6644 1.0059 1.1823 0.4319 0.6644 1.0059 1.1823
. 0 0.4203 0.6137 0.8568 1.0158 0.4083 0.5968 0.8298 0.9729
Ctl}"l‘zzlr;al 0.1 FSDT 0.4324  0.6469  0.9378 1.1144 0.4201 0.6292  0.9088 1.0660
0.2 0.4448 0.6830 1.0377 1.2385 0.4321 0.6646 1.0063 1.1828
0 0.4196  0.6133  0.8610  1.0259 0.4083 0.5968  0.8298  0.9730
0.1 [HSDT 0.4318 0.6466 0.9441 1.1343 0.4201 0.6292 0.9088 1.0662
0.2 0.4443  0.6831 1.0473 1.2813 0.4321 0.6646  1.0064  1.1834

Where

Si1 = Au/lz, Sy, = (D + A2 ,

S3=—B%11% 555 =(D511+%(A13 + Bla)j/7~4

S33= [H S11+ %(%(Alis +Dy3)+ Bleyn’14

my =lg,my, =—L,A4, My =-J,4,
My, = 1, + 1,47, my, =1 + 3,2,

+ (Asss +% Elajﬂz

my, =1, + K, 22

31)



Table 2 Dimensionless transverse deflection of the FG micro-beam for uniform load, 1,=15, h/l,=2, b/h=1

On the size-dependent behavior of functionally graded micro-beams with porosities

Ll Beam L/h=10 L/h=100
cm theory k=0.3 k=1 k=3 k=10 k=0.3 k=1 k=3 k=10
0 02004 02551 03251 03784 02004 02551 03251  0.3784
0.1 CBT 02122 02784 03688 04343 02122 02784 03688  0.4343
0.2 02241 03039 04225 05044 02241 03039 04225  0.5044
0 02053 02612 03341 03926 02005 02551 03252  0.3785
1/3 0.  FSDT 02173 02849 03788 04509 02122 02784 03689  0.4344
0.2 02294 03109 04336 05242 02241 03040 04226  0.5046
0 02043 02596 03318 03877 02005 02551 03251  0.3785
0. IHSDT 02163 02834 03766 04460 02122 02784 03689  0.4344
0.2 02284 03095 04316 05202 02241 03040 04226  0.5046
0 0.1154  0.1656 02477 03363  0.1154  0.1656 02477  0.3363
0.1 CBT 0.1254  0.1832 02801 03847  0.1254  0.1832 02801  0.3847
0.2 0.1361 02026 03181 04425  0.1361 02026 03181  0.4425
0 0.1186  0.1708 02551 03493  0.1154  0.1657 02477  0.3364
1 0.1  FSDT  0.1288  0.1879 02882 03998  0.1254  0.1832  0.2802  0.3848
0.2 0.1397 02077 03271  0.4604  0.1361 02027 03182  0.4427
0 0.1169  0.1678 02513 03430  0.1154  0.1656 02477  0.3363
0.1 IHSDT  0.1271  0.1856 02842 03929  0.1254  0.1832 02801  0.3848
0.2 0.1379 02052 03227 04530  0.1361 02026 03182  0.4426
0 00752 0.1172  0.1952 02993  0.0752  0.1172  0.1952  0.2993
0.1 CBT 0.0824  0.1300 02192 03403  0.0824  0.1300 02192  0.3403
0.2 0.0902  0.1442 02466 03873  0.0902  0.1442 02466  0.3873
0 00778  0.1209 02016 03114 00752  0.1173  0.1952  0.2995
32 0.  FSDT 00851  0.1339 02263 03542  0.0824  0.1301 02193  0.3405
0.2 0.0930  0.1484 02542 04035  0.0902  0.1442 02467  0.3874
0 00761  0.1185  0.1973 03043  0.0752  0.1172  0.1952  0.2994
0. IHSDT 00833  0.1314 02216 03461 00824  0.1300 02193  0.3404
0.2 0.0912  0.1456 02491 03943  0.0902  0.1442 02466  0.3873
0 0.0512  0.0848  0.1533 02625  0.0512  0.0848  0.1539 02625
0.1 CBT 0.0563  0.0941  0.1709 02961  0.0563  0.0941  0.1709  0.2961
0.2 00618  0.1043  0.1904 03331  0.0618  0.1043  0.1904  0.3331
0 0.0534  0.0880  0.1590 02736  0.0512  0.0848  0.1534  0.2626
2 0.1  FSDT  0.0585  0.0975 0.1772 03088 00563  0.0941  0.1710  0.2963
0.2 00642  0.1079  0.1972 03478  0.0619  0.1043  0.1905  0.3332
0 0.0517  0.0855  0.1546 02659  0.0512  0.0848  0.1533  0.2626
0.1 IHSDT  0.0568  0.0948  0.1723 03001  0.0563  0.0941  0.1709  0.2962
0.2 0.0624  0.1051  0.1918 03376  0.0618  0.1043  0.1905  0.3331
0 02551 03729 05184  0.6078 02551 03729 05184  0.6078
0.1 CBT 02625 03931 05678  0.6659 02625 03931 05678  0.6659
0.2 02699 04152 0.6287 07389 02699 04152  0.6287  0.7389
_ 0 02612 03815 05321  0.6295 02551 03729 05186  0.6080
Ctlﬁ‘zf)‘r"yal 0.1  FSDT 02687 04021 05825 06904 02625 03932 05679  0.6662
0.2 02764 04246  0.6446 07671 02701 04153  0.6289  0.7392
0 02609 03814 05345  0.6351 02551 03729 05186  0.6081
0. IHSDT 02685  0.4021 05859 07011 02625 03932 05679  0.6663
0.2 02762 04247  0.6498 07897 02701  0.4153  0.6289  0.7395

3. Numerical results and discussion

3.1 Verification studies

In this section, static bending and dynamic of FG micro-
beam are proposed based on the modified couple stress
theory and porosity distribution.

The FG micro-beams are composed of metal (47: E,=70
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GPa, p,=2702 kg/m3, v,=0.3) and ceramic (SiC: E,=427
GPa, p,=3100 kg/m’, v,,=0.17) (Ansari et al. 2011).
The employed non-dimensional quantities are:

Non-dimensional transverse deflection:

w =100w

W =100w

=
PL3

=]
CIo'—4

for point load

for uniform load
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Table 3 Dimensionless fundamental frequency of the FG micro-beam, 1,,=15, h/l,;=2, b/h=1

1/l Beam L/h=10 L/h=100
olm theory k=03 k=1 k=3 k=10 k=0.3 k=1 k=3 k=10
0 6.8537  6.1844 55717 52252  6.8818 62121  5.5998 52498
0.1 CBT 6.8271 60727 53697 50105  6.8559  6.1009  5.3986  5.0357
0.2 68179 59696  5.1579 47826  6.8475 59986  5.1878  4.8089
0 67726  6.1127 54969  5.1305  6.8819 62113  5.5989  5.2488
1/3 0.  FSDT 67467  6.0035 52996 49179  6.8559  6.1013 53989  5.0358
0.2 67378 59026  5.0926  4.6919  6.8474 59988  5.1882  4.8089
0 6.7888  6.1295 55149 51619  6.8811 62115 55992 52491
0. IHSDT 67618  6.0185 53139 49439 68553  6.1004 53980  5.0350
0.2 67518 59159 51031 47096  6.8469 59980  5.1873  4.8081
0 9.0328  7.6751 63832 55429  9.0699  7.7095  6.4155  5.5691
0.1 CBT 8.8818  7.4865  6.1621 53235 89193  7.5214  6.1953 53504
0.2 87497 73118 59437 51061 87876  7.3473 59782  5.1342
0 89127 75760 62914 54397  9.0716 77111 64165  5.5694
1 0.1  FSDT 87662 73926  6.0762 52228 89208  7.5228  6.1963  5.3506
0.2 8.6377 72225 58636  5.0070 87890  7.3486 59792  5.1344
0 89712  7.6247 63369 54882  9.0693  7.7090  6.4149  5.5685
0.1 IHSDT 88213 74379  6.1179 52675 89186  7.5209  6.1948  5.3498
0.2 8.6899 72649 59017  5.0469 87870 73468 59778  5.1336
0 11.1883  9.1220  7.1907  5.8749 112343  9.1630  7.2271  5.9026
0.1  CBT 109577 8.8852 69647 56598  11.0039 89267  7.0023  5.6883
0.2 107465  8.6668 67514 54581 107932 87090  6.7907  5.4882
0 11.0087 89853  7.0777 57619 112371  9.1653  7.2285  5.9031
32 0.  FSDT 107878 87569  6.8587  5.5492  11.0067  8.9289  7.0037  5.6888
0.2 10.5850  8.5460  6.6518 53487  10.7957 87111  6.7920  5.4885
0 111261 9.0744  7.1519  5.8274 112337  9.1625  7.2267  5.9021
0. IHSDT 10.8978  8.8402 69286 5.6125 11.0033 89262  7.0019  5.6878
0.2 10.6886  8.6243 67179  5.4097 107926  8.7086  6.7903  5.4876
0 135599 10.7269  8.1133 62732  13.6157 10.7751  8.1534  6.3028
0.1 CBT 132593 104474  7.8866  6.0673 133153 104963  7.9292  6.0979
0.2 129791 10.1913  7.6821  5.8855  13.0355 102410  7.7269  5.9180
0 132865 105339  7.9702  6.1470  13.6192 107780  8.1562  6.3035
2 0.1  FSDT  13.0036 102676 77517 59433 133188 104991  7.9311  6.0986
0.2 12,7392 10.0229  7.5544 57619  13.0389 102438  7.7287  5.9186
0 134945 10.6807 8.0804 62328 136150 107746  8.1539  6.3023
0.1 IHSDT 13.1973 104046  7.8568  6.0281 133146 104958  7.9289  6.0975
0.2 129202 10.1517  7.6552  5.8468  13.0348 102406  7.7266  5.9176
0 6.0755  5.1151 44118 41229  6.1004  5.1380 44341  4.1423
0.1 CBT 6.1387 51101 43278  4.0461  6.1645  5.1339 43511  4.0664
0.2 62110 51075 42281 39513 62379  5.1323 42525  3.9730
_ 0 6.0037  5.0566 43544  4.0507  6.0997  5.1374  4.4335  4.1415
Ctll"::(s;fyal 0.1  FSDT  6.0663 50525 42726 39733  6.1638  5.1333 43505  4.0657
0.2 6.1378  5.0505  4.1754  3.8778 62372 51317 42520  3.9723
0 6.0066  5.0572 43446  4.0325  6.0997  5.1374  4.4334  4.1413
0.1 IHSDT  6.0688 50524 42599 39427  6.1639  5.1333 43504  4.0653
0.2 6.1399 50495 41587  3.8217 62372 51317 42518  3.9716

Non-dimensional stresses:

(Ex,fxz){ﬂ,%j for point load

P
Non-dimensional frequency:

_ol pn

h

E

m

Results tabulated in Tables 1 and 2, show the non-

dimensionless deflections of the porous FG micro-beam
(FGM-I) for the point load and uniform load respectively. It
can be seen increasing the power law index leads to an
increase of the non-dimensional deflection for two different
values of the aspect ratio (L/h=10, 100). The same remark is
observed for the porosity parameter (o). Consequently,
these two parameters make the micro beam more flexible.
The ratio (I¢/l,) represents the degree of length scale



On the size-dependent behavior of functionally graded micro-beams with porosities 535

(a)

A AA
A—Ah
A

144
i

Dimensionless deflection

M B B S s s B B S B S R B
123 456 7 8 9 10111213 14 15 16 17 18 19 20
Thickness/Material parameter,h/m

(b)

—— 0
—— 0.1
—h—=0.2

094

0.84

0.7+

06+

0.54

044

0.34

Dimensionless deflection

0.2+

0.14

0.0 LN B L B

1 I2 3’ 4‘ :5 EI> 78 9 101 121’31‘41’51‘61‘71‘81‘920
Thickness/Material parameter,h/lm

Fig. 1 Variation of the dimensionless transverse deflections

of the FG micro-beam for different values of the parameter

porosity 1/1,=2, L/h=10, [,=15 um, b/h=1, k=2: (a) point

load, (b) uniform load

parameter variation within on the beam. It is observed that
increase of (I/l,) leads to a reduction deflection and the
results are significantly different to the case where the
length scale parameter is considered to be a constant
(I/1,=1). This remark is also a confirmation that the
variation of the length scale parameter needs to be taken
into account in to investigation of FG micro-beam. In
addition, it can be concluded that the consideration of the
variation of ratio (I¢/l,) make the micro beam more stiffer
when increasing (I/l,). It is found that the CBT
underestimates the velour of deflections because this theory
neglects the shear deformation effect. Also the introduction
of the length scale parameter leads to increase of deflection
comparatively to a classical theory.

In Table 3, the dimensionless frequencies corresponding
to the transverse deformation mode calculated for various
values of the gradient index (k), the length scale parameter
(I/1,;,) and the porosity parameter () are presented. It can be
observed that the influence of %, I/l and « are significant.
Increasing the porosity parameter leads to a reduction of the
non-dimensional frequencies. For each value of the gradient
index &, the non-dimensional frequency diminishes
considerably as the length scale parameter I./l, is reduced.

In Fig. 1, the non-dimensional transverse deflection are
presented versus the ratio (h/l,,) for different porosity

(a)

—8—=0
—eo—ou=0.1

A—002 .
084

064 A

Dimensionless transverse deflection

0 5 10 15 20 25 30 35 40 45 50 55
Gradient index (k)
(b)

Dimensionless transverse deflection
m

0 5 10 15 20 25 30 35 40 45 50 55
Gradient index (k)
Fig. 2 Variation of the dimensionless transverse deflections
of the FG micro-beam subjected to a point load exponent
for L/h=10, =15 um, I./l=2, (a) /1,=1, (b) h/[,=8
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Fig. 3 Variation of the normal stress across the thickness of
the FG micro-beam for different values of the parameter
porosity with 1/l,=2, L/h=10, [,=15 um, b=2h, k=2 (a)
h/1,=1 (b) h/[,=8: (a) point load, (b) uniform load
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Fig. 4 Variation of the transverse stress across the thickness
of the FG micro-beam under point load for different values
of the parameter porosity with I/I,=2, L/h=10, /,=15 um,
b=2h , k=2 (a) h/l,=1, (b) W/1,=8
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Fig. 5 Variation of the dimensionless frequencies the
thickness of the FG micro-beam for different values of the
parameter porosity with 1/1,=2, L/h=10, /,=15 um, b/h=1,
k=1 (a) the first frequency, (b) the third frequency
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Fig. 6 Variation of the first dimensionless frequency of the

FG micro-beam for different values of the parameter

porosity versus the volume fraction exponent for I./1,=2,

L/h=10, (a) #/,=1, (b) h/l,=8

parameter (a) with considering L/h=10, k=2 and the length
scale parameter I./l,=2. It can be found that decreasing the
porosity parameter leads to a reduction of deflection for
both the point load and uniform load. In addition, increasing
the ratio h/l,, makes the micro-beam more flexible.

Fig. 2 presents the variation of the non-dimensional
deflection with the gradient index & for different porosity
parameter («) and with considering two different values of
h/l,,. 1t can be observed that the increase of the gradient
index leads to an increase of the deflection. The
introduction of the porosity parameter makes the micro-
beam more flexible.

Fig. 3 presents the normal stress of the FG micro-beam
with L/h=10 across the thickness for different values of the
porosity parameter («) and with considering h/l,,=1 and 8. It
can be seen that the normal stress &,(L/2,z) decreases as
the parameter porosity is increased from 0 to 0.2.

Fig. 4 presents the variation of the transverse stress
across the thickness of FG micro-beam for different values
of porosity parameter («) and for h/l,=1 and 8. It can be
observed that the transverse stress increases with decreasing
the porosity parameter (a).

In Fig. 5, both the first and the third frequency are
plotted versus the ratio h/l,, for different porosity parameter
(o) with considering L/h=10 and k=1. It can be shown that
the reduction of the porosity parameter («) leads to
increases of dimensionless frequencies.

Fig 6 illustrates the variation of non-dimensional first
frequency against the gradient index (k) and the porosity
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parameter (a) for two different values of the non-
dimensional material parameter h/l,. It can be seen that the
increase of gradient index leads to a reduction of the
frequency. In addition, it can be shown that the increase of
the porosity parameter (a) makes the micro-beams more
flexible. The comparison between the values of the
deflection for FG micro-beams with even and uneven
porosity distribution is shown in Figs. 7 and 8. It can be
observed that the deflections of the even porosity are higher
and than uneven ones.

Figs. 9 and 10 present a comparison between the values
of the frequencies for FG micro-beams with even and
uneven porosity distribution. It can be remarked that the
frequency of the even porosity are lower and than uneven
ones.

5. Conclusions

In this research, a novel size -dependent FG porous
micro-beams with two porosity distributions is presented
for bending and vibration analysis. The equations of motion
are obtained based on a new hyperbolic shear deformation
theory and a modified couple stress theory. The present
formulation considers a variable length scale parameter. The
findings of this study demonstrated that the inclusion of
couple stress influence and the porosity parameter makes a
micro-beam stiffer and thus leads to a decrease of the
deflection and an increase of the frequency. It is concluded
that various factors such as porosity parameter, porosity
distribution and gradient index have a considerable effect
on the non-dimensional deflection and frequency of FG
micro-beams with porosity which emphasizes the
importance of inspected porosity volume fraction influence.
An improvement of present formulation will be included in
the future investigation to consider the thickness stretching
effect by using quasi-3D shear deformation models
(Bessaim et al. 2013, Bousahla ef al. 2014, Bourada et al.
2015, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al.
2014, Larbi Chaht ef al. 2014, Bennai et al. 2015, Meradjah
et al. 2015, Hamidi et al. 2015, Draiche et al. 2016,
Bennoun et al. 2016, Benahmed ef al. 2017) and to include
the thermo-mechanical effects (Bouderba ef al. 2013,
Tounsi et al. 2013, Zidi et al. 2014, Taibi et al. 2015,
Beldjelili ef al. 2016, Bouderba et al. 2016, Bousahla et al.
2016, Chikh et al. 2017, El-Haina et al. 2017, Fahsi et al.
2017).
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