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1. Introduction 
 

Functionally graded materials (FGMs) are 

inhomogeneous composites presenting a smooth and 

continuous variations in both compositional profile and 

material characteristics that allow them to be employed in a 

wide range of applications in many engineering devices 

(Shahrjerdi et al. 2011, Ait Amar Meziane et al. 2014, Kar 

and Panda 2015, Akbaş 2015, Houari et al. 2016, Bellifa et 

al. 2017a, Ait Atmane et al. 2017, Menasria et al. 2017, 

Zaoui et al. 2017, Abualnour et al. 2018). Using FGMs lead 

to uniform stress variation in the structures and overcome 

the problems such as jump in stress components between 

layers, interfacial debonding, matrix cracking, etc. In the 

last decade, the trend of employing beams and plates made 

of FGMs for engineering structures has considerably 

increased. Consequently, understanding the behavior of 

structures fabricated by porous FGMs under a variety of 

mechanical and thermal loadings is very important for their 

accurate design.  

Many studies have been proposed by researchers on the 

bending and vibration response of functionally graded (FG) 

beams (Sankar 2001, Ying et al. 2008, Xiang and Yang 

2008, Kapuria et al. 2008, Li 2008, Prakash et al. 2009, 
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Jomehzadeh et al. 2009, Ould Larbi et al. 2013). Sankar 

(2001) proposed an elasticity solution for FG beams. Two-

dimensional elasticity solution of an FG beam with simply 

supported edges is studied by Ying et al. (2008) and natural 

frequencies and mode shapes are presented by employing 

state space method. Xiang and Yang (2008) investigated 

free and forced vibration of a laminated FG beam of 

variable thickness under thermally induced initial stresses. 

The influence of various boundary conditions was 

examined and beam was considered to be subjected to one-

dimensional steady heat conduction in the thickness 

direction before undergoing dynamic deformation. Kapuria 

et al. (2008) discussed the vibration behavior of laminated 

FG beams and results were compared with experimental 

results. Li (2008) presented a novel unified formulation for 

investigating the bending and vibration response of FG 

beams including rotary inertia and shear deformation. All of 

the reviewed studies are based on the classical theory of 

elasticity which has acceptable predictions for bending and 

vibration behavior of macro-scaled structures. According to 

the classical theory of elasticity, anticipated mechanical 

responses are absolutely independent of the structure size 

when they are stated in proper dimensionless forms.  

FGMs are widely employed in micro- and nano-

structures such as thin films in the form of shape memory 

alloys (Craciunescu and Wuttig 2003, Fu et al. 2003), 

micro- and nano-electromechanical systems (MEMS and 

NEMS) (Fu et al. 2004, Witvrouw and Mehta 2005, Lee et 
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al. 2006), atomic force microscopes (AFMs) (Rahaeifard et 

al. 2009) and also FG nanostructures (Janghorbana and 

Zareb 2011, Belkorissat et al. 2015, Zemri et al. 2015, 

Karami and Janghorban 2016, Ahouel et al. 2016, Barati 

and Shahverdi 2016, Bounouara et al. 2016, Mouffoki et al. 

2017, Besseghier et al. 2017, Bouafia et al. 2017, Karami et 

al. 2017a, b). Beams employed in MEMS, NEMS and 

AFMs, have the thickness in the order of microns and sub-

microns. The size-dependent bending and dynamic response 

in micro scales are experimentally checked. For example in 

the micro-torsion test of thin copper wires, Fleck et al. 

(1992) demonstrated that decrease of wires diameter results 

in a noteworthy enhancement of the torsional hardening. 

Stolken and Evans (1998) indicated a considerable increase 

of plastic work hardening induced by the decrease of beam 

thickness in the micro bending test of thin nickel beams. 

Also, size-dependent behaviors are shown in some kinds of 

polymers. For instance, during micro bending tests of 

beams fabricated from epoxy polymers, Lam et al. (1999) 

observed a notable enhancement of bending rigidity 

induced by the beam thickness reduction. McFarland and 

Colton (2005) found an important difference between the 

stiffness values predicted by the classical beam theory and 

the stiffness values determined during a bending test of 

polypropylene micro-cantilever. According to the previous 

experimental outcomes, it can be concluded that size-

dependent behavior is an inherent property of materials 

which appears for a beam when the characteristic size such 

as thickness or diameter is close to the internal material 

length scale parameter (Kong et al. 2008).  

In 1960s some scientifics authors proposed the couple 

stress elasticity theory (Mindlin 1994, Mindlin and Tiersten 

1962, Toupin 1962). In the constitutive equation of this 

theory, we find in addition to the two classical Lame 

constants, two higher-order material length scale 

parameters. Zhou and Li (2001) used this theory to study 

the bending and dynamic behavior of a micro-bar in 

torsional loading. Kang and Xi (2007) investigated the 

resonant frequencies of a micro-beam and indicated that 

these frequencies are size-dependent. 

To reduce the problems encountered in determining 

length scale parameters of materials by experiments, Yang 

et al. (2002) used the modified couple stress theory, which 

in its constitutive equation only one material length scale 

parameter appears. Employing the modified couple stress 

theory, Park and Gao (2006) examined the static behavior of 

an Euler-Bernoulli beam and discussed the outcomes of an 

epoxy polymeric beam bending test. Kong et al. (2008) 

presented the governing equation, initial and boundary 

conditions of an Euler-Bernoulli beam via the modified 

coupled stress theory and the Hamilton principle. They 

showed that the natural frequencies of the beam are size-

dependent. Also, the difference between the natural 

frequencies computed by the classical beam theory and 

those obtained by the modified couple stress theory is 

considerable when the beam property size is comparable to 

the internal material length scale parameter.  

Because of the vast applications of functionally graded 

materials in MEMS and NEMS, and also the fact that the 

classical continuum theory is unable to predict size-

dependent mechanical responses of microstructures, the use 

of the non-classical theory of elasticity to the 

microstructures made of FGMs seems to have great merits. 

Recently, Lü et al. (2009a) developed a generalized refined 

theory introducing surface effects in order to study the size-

dependent elastic response of FGM ultra-thin films. Lü et 

al. (2009b) also assessed size-dependent elastic mechanical 

responses of nano-scaled FGM films by employing the 

Kirchhoff hypothesis and the continuum theory of surface 

elasticity. Not only FGM thin films but also FGM micro-

beams are often used in MEMS and NEMS. More recently, 

Al-Basyouni et al. (2015) proposed a novel unified beam 

formulation and a modified couple stress theory (MCST) 

that considers a variable length scale parameter in 

conjunction with the neutral axis concept to study bending 

and dynamic behaviors of FG micro beam. Thus, a study on 

the size-dependent mechanical response of a micro-beam 

made of FGMs by employing an appropriate non-classical 

continuum theory capable of capturing small scale effects 

seems to be crucial.  

With the rapid advancement in technology of structure 

components, structures with graded porosity can be 

considered as one of the latest developments in FGMs. The 

structures consider pores into microstructures by taking the 

local density into account. Moreover, a great opportunity in 

a wide range of engineering applications comes into result. 

Researchers have their eyes on development in preparation 

techniques of FGMs such as powder metallurgy, vapor 

deposition, self-propagation, centrifugal casting, and 

magnetic separation (Khor and Gu 2000, Seifried et al. 

2001, Watanabe et al. 2001, Peng et al. 2007, Song et al. 

2007). These techniques have some disadvantages such as 

high costs and complexity of the method. One of the simple 

and suitable ways to fabricate FGM is sintering process. 

During this process, because of the big difference in 

solidification between the material constituents, however, 

porosities or micro voids through material can be produced 

regularly (Zhu et al. 2001). A thorough study has been 

carried out on porosities appearing inside FGM samples 

fabricated by a multistep sequential infiltration method 

(Wattanasakulpong et al. 2012). Porosity may be modify the 

elastic and mechanical properties. Based on this information 

about porosities in FGMs, it is important to consider the 

porosity influence when designing FGM structures. 

However, researches on the mechanical response of porous 

FG structures, are still limited in number. The wave 

propagation of an infinite FG plate having porosities has 

been studied by Ait Yahia et al. (2015) using various simple 

higher-order shear deformation theories. Ait Atmane et al. 

(2015) presented a computational shear displacement model 

for vibrational analysis of FG beams with porosities. 

Wattanasakulpong and Ungbhakorn (2014) examined linear 

and nonlinear vibrations responses of porous Euler FG 

beams with elastically restrained ends. Material properties 

of FG beam have been described by a modified rule of 

mixture. Ebrahimi and Mokhtari (2015) investigated 

transverse vibration behavior of rotating Timoshenko FG 

beams with porosities. DTM was used to solve the 

equations of motion. It was demonstrated that porosity 

volume fractions play a considerable role in vibrations of 
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porous FG beams. Moreover, Wattanasakulpong and 

Chaikittiratana (2015) discussed flexural vibration of 

porous FG beams via Timoshenko beam theory. Chebyshev 

collection technique was employed for solving equations. 

They expressed the porosities yield reduction in the mass 

and strength of FG beams. Ebrahimi and Zia (2015) studied 

the large amplitude nonlinear dynamic of porous FG 

Timoshenko beams. Galerkin and multiple scales 

techniques were used to solve motion equations. Ait 

Atmane et al. (2016) proposed an efficient beam theory to 

investigate static, dynamic, and buckling behavior of porous 

FG beams on elastic foundations. Most recently, Ebrahimi 

et al. (2016) investigated the dynamic response of porous 

FG Euler beams under thermal loading.  

It should be signaled that in, the abovementioned work, 

there is no study on porous FG micro-beam. So, in the 

present work, a modified couple stress theory is proposed to 

investigate the static and dynamic behaviors of porous FG 

micro-beams on the basis on a hyperbolic shear deformation 

beam theory. The micro-scale beam model includes the 

material length scale parameter which can capture the size 

influence. The material properties of the FG micro-beams 

including the length scale parameter are supposed to vary in 

the thickness direction according to power-law distribution 

which is modified to approximate the porous material 

properties with even and uneven distributions of porosities 

phases. An analytical solution is employed to solve the 

governing equations derived from Hamilton’s principle. 

Several numerical and illustrative results are presented to 

indicate the influences of the material length scale 

parameter, gradient index, and porosity parameters on the 

static and dynamic responses of porous FG micro-beams 

 

 

2. Theory and formulation 
 

2.1 Modified couple stress theory 
 

The strain energy, U can be expressed using the 

modified couple stress theory (Yang et al. 2002) by 

   3,2,1,,
2

1
  jidVmU ijijijij 

 
(1) 

Where ζ is the stress tensor, ε is the strain tensor, m is the 

deviatoric part of the couple stress tensor, and χ is the 

symmetric curvature .these tensors are given by 

 iijiij uu ,,
2

1


 
(2) 

 iijiij ,,
2

1
 

 
(3) 

where ui is the displacement vector, and θ is the rotation 

vector that can be defined as 

jkijkue ,
2

1
  (4)

 

where eijk is the permutation symbol. 

 
2.2 Kinematic relations and constitutive relations 

The displacement field of the conventional HSDT is 

given as follows 
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where u0; wb; ws, are three unknown displacements of the 

mid-plane of the plate, such as wb is the bending part and ws 

is the shear one.  

f(z) represents shape function defining the variation of 

the transverse shear strains and stresses across the 

thickness.  

In this article, the shape function is considered given by 

Nguyen (2015) as 
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The nonzero strains of the present refined beam theory 

are presented as 
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In addition, Eqs. (5) and (4),the components of the 

rotation vector are obtained as  
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With, ψ(z)=1+f′(z)  

Substituting Eq. (8) into Eq. (3), the components of the 

curvature tensor take the form 
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2.3 Constitutive relations 
 

Consider a FG plate made of two constituent 

functionally graded materials, the material properties of the 

beam such as Young’s modulus E, masse density ρ and the 

length scale parameter l are considered to change 

continuously across the thickness according to a power law 

distribution. The effective material properties of FG beams 

with two kinds of porosity distributions which are 

distributed identically in two phases of ceramic and metal 

can be expressed by using the modified rule of mixtures as 
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(Ait Yahia et al. 2015, Wattanasakulpong and Ungbhakorn 

2014, Benferhat et al. 2016) 


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Where α is the volume fraction of porosity (α<<1), for 

perfect FGM, α is set to zero, Pc 
and Pm are the material 

properties of ceramic and metal and vc and vm are the 

volume fraction of ceramic and metal separately; the 

compositions are represented in relation to  

1 mc vv  (11) 

In this project, imperfect FGM has been investigated 

witch two types of porosity distributions (even and uneven) 

through the micro-beam thickness due to defect during 

fabrication. 

For the even distribution of porosities FGM-I, the 

effectives material properties are determined as follows 
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Where vc=(0.5+z/h)
p
 is the volume fraction of ceramic. 

For FGM-II defined as uneven porosities the effectives 

materials properties are replaced by following form 

(Wattanasakulpong and Ungbhakorn 2014) 
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The constitutive relations can be written as  
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Where δij is the Kronecker delta, l is the material length 

scale parameter which reflects the effect of couple stress, λ 

and μ are Lame’s constants given by (Al-Basyouni et al. 

2015) 
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2.4. Equations of motion 
 
Hamilton’s principle is employed in this work to 

determine the equations of motion. The principle can be 

expressed in analytical from as (Mahi et al. 2015, Attia et 

al. 2015, Adda Bedia et al. 2015, Bellifa et al. 2016, 

Boukhari et al. 2016, Meksi et al. 2017, Zidi et al. 2017) 
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T

dtKVU
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0  (16) 

Where δU is the virtual strain energy, δV is the virtual 

work done by external loads, and δK is the virtual kinetic 

energy .The virtual strain energy is expressed by (see Eq. 

(1))
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Where L is the length of the micro-scale beam and the 

following stress resultants are expressed as 
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The variation of the work done by the external applied 

forces can be expressed as 
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Where q is the transverse load. 

The variation of kinetic energy is expressed as 
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Where dot-superscript convention denotes the 

differentiation with respect to the time variable t; ρ(z) is the 

masse density; and (I0, I1, I2, J1, J2, K2) are the masse 

inertias defined as 
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Substituting Eqs. (17), (19) and (20) into Eq. (16) and 

integrating by parts, and collecting the coefficients of (δu0, 

δwb, δws), the following equations of motion are obtained 

 

 

2

2

22

2

2

0
10

3

2

2
2

2

1
2

2

2

2

2

22

2

2

0
10

2

1
2

2

2

11000

      

2

1
     

2

1

2

1
:

      

:

:

dx

wd
K

dx

wd
J

dx

ud
JwwI

q
dx

dQ

dx

dY

dx

Yd

dx

Yd

dx

Md
w

dx

wd
J

dx

wd
I

dx

ud
IwwI

q
dx

Yd

dx

Md
w

dx

wd
J

dx

wd
IuI

dx

dN
u

sb

sb

s
s

sb

sb

b
b

sb


































  
(22a) 

 

 

2

2

22

2

2

0
10

3

2

2
2

2

1
2

2

2

2

2

22

2

2

0
10

2

1
2

2

2

11000

      

2

1
     

2

1

2

1
:

      

:

:

dx

wd
K

dx

wd
J

dx

ud
JwwI

q
dx

dQ

dx

dY

dx

Yd

dx

Yd

dx

Md
w

dx

wd
J

dx

wd
I

dx

ud
IwwI

q
dx

Yd

dx

Md
w

dx

wd
J

dx

wd
IuI

dx

dN
u

sb

sb

s
s

sb

sb

b
b

sb




































 

(22b) 
 

 

2

2

22

2

2

0
10

3

2

2
2

2

1
2

2

2

2

2

22

2

2

0
10

2

1
2

2

2

11000

      

2

1
     

2

1

2

1
:

      

:

:

dx

wd
K

dx

wd
J

dx

ud
JwwI

q
dx

dQ

dx

dY

dx

Yd

dx

Yd

dx

Md
w

dx

wd
J

dx

wd
I

dx

ud
IwwI

q
dx

Yd

dx

Md
w

dx

wd
J

dx

wd
IuI

dx

dN
u

sb

sb

s
s

sb

sb

b
b

sb




































 

(22c) 

 
2.5 Equations of motion in terms of displacements 
 

By employing Eqs. (18) and (22), the equations of 

motion in terms of the displacements are obtained as 

dx

wd
J

dx

wd
IuI

x

w
B

dx

ud
Au

sb

ss


 1100

3

3

11
2

0
2

110

       

:








 
(23a) 

 

 

 

2

2

22

2

2

0
10

4

4

131311

4

4

1311

        

2

1
       

:

dx

wd
J

dx

wd
I

dx

ud
IwwI

q
dx

wd
BAD

dx

wd
ADw

sb

sb

ss

b
b






















 (23b) 

 

 

 

2

2

22

2

2

0
10

2

2

1355

4

4

13131311

4

4

131311
3

0
3

11

        

4

1

2
4

1
      

2

1
:

dx

wd
K

dx

wd
J

dx

ud
JwwI

q
dx

wd
EA

dx

wd
DBAH

dx

wd
BAD

dx

ud
Bw

sb

sb

sS

SS

bss
S










































 

(23c) 

Where A11, D11, etc., are the beam stiffness, defined by 
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2.6 Analytical solutions 
 

In this section, analytical solutions for bending and free 

vibration are presented for a simply supported rectangular 

beam under transverse load q. It is noted that other 

boundary conditions can be treated (Bennai et al. 2015, 

Bellifa et al. 2017b). Based on the Navier approach, the 

solutions are assumed as 
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where Un, Wbn and Wsn are arbitrary parameters to be 

determined ω is the eigenfrequency associated with nth 

eigenmode, and λ=nπ/L the transverse load q is also 

expanded in Fourier series as  
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Where Qn is the load amplitude calculated from 
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The coefficient Qn are given below for some typical loads 

1,0  nqQn
 for sinusoidal load , (35a) 

....3,2,1,
4 0  n
n

q
Qn


 for point load P at the 

midspan, 

(36b) 

Substituting the expansions of U0, Wb, Ws and q
 
from 

Eqs. (27) and (28) into the equations of motion Eq. (25), the 

analytical solutions can be determined from the following 

equations 
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Table 1 Dimensionless transverse deflection of the FG micro-beam for point load, lm=15, h/lm=2, b/h=1 

lc/lm α 
Beam 

theory 

L/h=10 L/h=100 

k=0.3 k=1 k=3 k=10 k=0.3 k=1 k=3 k=10 

1/3 

0 

CBT 

0.3207 0.4081 0.5201 0.6054 0.3207 0.4081 0.5201 0.6054 

0.1 0.3395 0.4454 0.5901 0.6948 0.3395 0.4454 0.5901 0.6948 

0.2 0.3585 0.4863 0.6759 0.8070 0.3585 0.4863 0.6759 0.8070 

0 

FSDT 

0.3302 0.4199 0.5376 0.6329 0.3208 0.4083 0.5203 0.6057 

0.1 0.3495 0.4581 0.6095 0.7269 0.3396 0.4455 0.5903 0.6951 

0.2 0.3690 0.4999 0.6975 0.8454 0.3586 0.4865 0.6762 0.8074 

0 

IHSDT 

0.3281 0.4169 0.5331 0.6233 0.3208 0.4082 0.5202 0.6056 

0.1 0.3474 0.4551 0.6051 0.7173 0.3396 0.4455 0.5903 0.6951 

0.2 0.3670 0.4970 0.6936 0.8371 .3586 0.4864 0.6761 0.8074 

1 

0 

CBT 

0.1846 0.2649 0.3963 0.5380 0.1846 0.2649 0.3963 0.5380 

0.1 0.2006 0.2931 0.4481 0.6155 0.2006 0.2931 0.4481 0.6155 

0.2 0.2177 0.3242 0.5090 0.7080 0.2177 0.3242 0.5090 0.7080 

0 

FSDT 

0.1908 0.2736 0.4106 0.5631 0.1847 0.2651 0.3964 0.5383 

0.1 0.2071 0.3023 0.4639 0.6447 0.2007 0.2932 0.4483 0.6157 

0.2 0.2247 0.3342 0.5263 0.7425 0.2178 0.3243 0.5092 0.7083 

0 

IHSDT 

0.1877 0.2692 0.4032 0.5509 0.1847 0.2650 0.3963 0.5382 

0.1 0.2039 0.2977 0.4559 0.6312 0.2006 0.2931 0.4482 .6157 

0.2 0.2213 0.3292 0.5178 0.7279 0.2177 0.3242 0.5091 .7082 

3/2 

0 

CBT 

0.1203 0.1876 0.3123 0.4789 0.1203 0.1876 0.3123 0.4789 

0.1 0.1318 0.2081 0.3508 0.5445 0.1318 0.2081 0.3508 0.5445 

0.2 0.1443 0.2307 0.3945 0.6196 0.1443 0.2307 0.3945 0.6196 

0 

FSDT 

0.1252 0.1947 0.3247 0.5020 0.1204 0.1877 0.3124 0.4792 

0.1 0.1369 0.2157 0.3643 0.5712 0.1318 0.2081 0.3509 0.5448 

0.2 0.1498 0.2389 0.4093 0.6509 0.1444 0.2309 0.3947 0.6199 

0 

IHSDT 

0.1219 0.1899 0.3164 0.4883 0.1204 0.1876 0.3123 0.4790 

0.1 0.1335 0.2106 0.3552 0.5555 0.1318 0.2081 0.3508 0.5446 

0.2 0.1462 0.2335 0.3993 0.6329 0.1443 0.2308 0.3946 0.6198 

2 

0 

CBT 

0.0819 0.1356 0.2453 0.4200 0.0819 0.1357 0.2453 0.4200 

0.1 0.0900 0.1505 0.2736 0.4738 0.0900 0.1505 0.2736 0.4738 

0.2 0.0989 0.1669 0.3047 0.5329 0.0989 0.1669 0.3047 0.5328 

0 

FSDT 

0.0861 0.1418 0.2562 0.4412 0.0819 0.1357 0.2454 0.4203 

0.1 0.0944 0.1571 0.2854 0.4982 0.0901 0.1505 0.2737 0.4741 

0.2 0.1036 0.1739 0.3176 0.5611 0.0989 0.1669 0.3048 0.5332 

0 

IHSDT 

0.0829 0.1371 0.2477 0.4266 0.0819 0.1357 0.2453 0.4201 

0.1 0.0910 0.1519 0.2761 0.4812 0.0900 0.1505 0.2736 0.4739 

0.2 0.1000 0.1684 0.3073 0.5414 0.0989 0.1669 0.3047 0.5329 

Classical 

theory 

0 

CBT 

0.4081 0.5966 0.8295 0.9725 0.4081 0.5967 0.8295 0.9725 

0.1 0.4199 0.6289 0.9085 1.0655 0.4199 0.6289 0.9084 1.0655 

0.2 0.4319 0.6644 1.0059 1.1823 0.4319 0.6644 1.0059 1.1823 

0 

FSDT 

0.4203 0.6137 0.8568 1.0158 0.4083 0.5968 0.8298 0.9729 

0.1 0.4324 0.6469 0.9378 1.1144 0.4201 0.6292 0.9088 1.0660 

0.2 0.4448 0.6830 1.0377 1.2385 0.4321 0.6646 1.0063 1.1828 

0 

IHSDT 

0.4196 0.6133 0.8610 1.0259 0.4083 0.5968 0.8298 0.9730 

0.1 0.4318 0.6466 0.9441 1.1343 0.4201 0.6292 0.9088 1.0662 

0.2 0.4443 0.6831 1.0473 1.2813 0.4321 0.6646 1.0064 1.1834 
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3. Numerical results and discussion 
 

3.1 Verification studies 
 

In this section, static bending and dynamic of FG micro-

beam are proposed based on the modified couple stress 

theory and porosity distribution. 

The FG micro-beams are composed of metal (Al: Em=70 

 

 

GPa, ρm=2702 kg/m
3
, vm=0.3) and ceramic (SiC: Em=427 

GPa, ρc=3100 kg/m
3
, vm=0.17) (Ansari et al. 2011). 

The employed non-dimensional quantities are: 

Non-dimensional transverse deflection: 

loaduniformfor100

loadpointfor100
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Table 2 Dimensionless transverse deflection of the FG micro-beam for uniform load, lm=15, h/lm=2, b/h=1 

lc/lm α 
Beam 

theory 

L/h=10 L/h=100 

k=0.3 k=1 k=3 k=10 k=0.3 k=1 k=3 k=10 

1/3 

0 

CBT 

0.2004 0.2551 0.3251 0.3784 0.2004 0.2551 0.3251 0.3784 

0.1 0.2122 0.2784 0.3688 0.4343 0.2122 0.2784 0.3688 0.4343 

0.2 0.2241 0.3039 0.4225 0.5044 0.2241 0.3039 0.4225 0.5044 

0 

FSDT 

0.2053 0.2612 0.3341 0.3926 0.2005 0.2551 0.3252 0.3785 

0.1 0.2173 0.2849 0.3788 0.4509 0.2122 0.2784 0.3689 0.4344 

0.2 0.2294 0.3109 0.4336 0.5242 0.2241 0.3040 0.4226 0.5046 

0 

IHSDT 

0.2043 0.2596 0.3318 0.3877 0.2005 0.2551 0.3251 0.3785 

0.1 0.2163 0.2834 0.3766 0.4460 0.2122 0.2784 0.3689 0.4344 

0.2 0.2284 0.3095 0.4316 0.5202 0.2241 0.3040 0.4226 0.5046 

1 

0 

CBT 

0.1154 0.1656 0.2477 0.3363 0.1154 0.1656 0.2477 0.3363 

0.1 0.1254 0.1832 0.2801 0.3847 0.1254 0.1832 0.2801 0.3847 

0.2 0.1361 0.2026 0.3181 0.4425 0.1361 0.2026 0.3181 0.4425 

0 

FSDT 

0.1186 0.1708 0.2551 0.3493 0.1154 0.1657 0.2477 0.3364 

0.1 0.1288 0.1879 0.2882 0.3998 0.1254 0.1832 0.2802 0.3848 

0.2 0.1397 0.2077 0.3271 0.4604 0.1361 0.2027 0.3182 0.4427 

0 

IHSDT 

0.1169 0.1678 0.2513 0.3430 0.1154 0.1656 0.2477 0.3363 

0.1 0.1271 0.1856 0.2842 0.3929 0.1254 0.1832 0.2801 0.3848 

0.2 0.1379 0.2052 0.3227 0.4530 0.1361 0.2026 0.3182 0.4426 

3/2 

0 

CBT 

0.0752 0.1172 0.1952 0.2993 0.0752 0.1172 0.1952 0.2993 

0.1 0.0824 0.1300 0.2192 0.3403 0.0824 0.1300 0.2192 0.3403 

0.2 0.0902 0.1442 0.2466 0.3873 0.0902 0.1442 0.2466 0.3873 

0 

FSDT 

0.0778 0.1209 0.2016 0.3114 0.0752 0.1173 0.1952 0.2995 

0.1 0.0851 0.1339 0.2263 0.3542 0.0824 0.1301 0.2193 0.3405 

0.2 0.0930 0.1484 0.2542 0.4035 0.0902 0.1442 0.2467 0.3874 

0 

IHSDT 

0.0761 0.1185 0.1973 0.3043 0.0752 0.1172 0.1952 0.2994 

0.1 0.0833 0.1314 0.2216 0.3461 0.0824 0.1300 0.2193 0.3404 

0.2 0.0912 0.1456 0.2491 0.3943 0.0902 0.1442 0.2466 0.3873 

2 

0 

CBT 

0.0512 0.0848 0.1533 0.2625 0.0512 0.0848 0.1539 0.2625 

0.1 0.0563 0.0941 0.1709 0.2961 0.0563 0.0941 0.1709 0.2961 

0.2 0.0618 0.1043 0.1904 0.3331 0.0618 0.1043 0.1904 0.3331 

0 

FSDT 

0.0534 0.0880 0.1590 0.2736 0.0512 0.0848 0.1534 0.2626 

0.1 0.0585 0.0975 0.1772 0.3088 0.0563 0.0941 0.1710 0.2963 

0.2 0.0642 0.1079 0.1972 0.3478 0.0619 0.1043 0.1905 0.3332 

0 

IHSDT 

0.0517 0.0855 0.1546 0.2659 0.0512 0.0848 0.1533 0.2626 

0.1 0.0568 0.0948 0.1723 0.3001 0.0563 0.0941 0.1709 0.2962 

0.2 0.0624 0.1051 0.1918 0.3376 0.0618 0.1043 0.1905 0.3331 

Classical 

theory 

0 

CBT 

0.2551 0.3729 0.5184 0.6078 0.2551 0.3729 0.5184 0.6078 

0.1 0.2625 0.3931 0.5678 0.6659 0.2625 0.3931 0.5678 0.6659 

0.2 0.2699 0.4152 0.6287 0.7389 0.2699 0.4152 0.6287 0.7389 

0 

FSDT 

0.2612 0.3815 0.5321 0.6295 0.2551 0.3729 0.5186 0.6080 

0.1 0.2687 0.4021 0.5825 0.6904 0.2625 0.3932 0.5679 0.6662 

0.2 0.2764 0.4246 0.6446 0.7671 0.2701 0.4153 0.6289 0.7392 

0 

IHSDT 

0.2609 0.3814 0.5345 0.6351 0.2551 0.3729 0.5186 0.6081 

0.1 0.2685 0.4021 0.5859 0.7011 0.2625 0.3932 0.5679 0.6663 

0.2 0.2762 0.4247 0.6498 0.7897 0.2701 0.4153 0.6289 0.7395 

533



 

Lemya Hanifi Hachemi Amar, Abdelhakim Kaci and Abdelouahed Tounsi 

 

 

 

Non-dimensional stresses: 
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Results tabulated in Tables 1 and 2, show the non- 

 

 

dimensionless deflections of the porous FG micro-beam 

(FGM-I) for the point load and uniform load respectively. It 

can be seen increasing the power law index leads to an 

increase of the non-dimensional deflection for two different 

values of the aspect ratio (L/h=10, 100). The same remark is 

observed for the porosity parameter (α). Consequently, 

these two parameters make the micro beam more flexible. 

The ratio (lc/lm) represents the degree of length scale  

Table 3 Dimensionless fundamental frequency of the FG micro-beam, lm=15, h/lm=2, b/h=1 

lc/lm α 
Beam 

theory 

L/h=10 L/h=100 

k=0.3 k=1 k=3 k=10 k=0.3 k=1 k=3 k=10 

1/3 

0 

CBT 

6.8537 6.1844 5.5717 5.2252 6.8818 6.2121 5.5998 5.2498 

0.1 6.8271 6.0727 5.3697 5.0105 6.8559 6.1009 5.3986 5.0357 

0.2 6.8179 5.9696 5.1579 4.7826 6.8475 5.9986 5.1878 4.8089 

0 

FSDT 

6.7726 6.1127 5.4969 5.1305 6.8819 6.2113 5.5989 5.2488 

0.1 6.7467 6.0035 5.2996 4.9179 6.8559 6.1013 5.3989 5.0358 

0.2 6.7378 5.9026 5.0926 4.6919 6.8474 5.9988 5.1882 4.8089 

0 

IHSDT 

6.7888 6.1295 5.5149 5.1619 6.8811 6.2115 5.5992 5.2491 

0.1 6.7618 6.0185 5.3139 4.9439 6.8553 6.1004 5.3980 5.0350 

0.2 6.7518 5.9159 5.1031 4.7096 6.8469 5.9980 5.1873 4.8081 

1 

0 

CBT 

9.0328 7.6751 6.3832 5.5429 9.0699 7.7095 6.4155 5.5691 

0.1 8.8818 7.4865 6.1621 5.3235 8.9193 7.5214 6.1953 5.3504 

0.2 8.7497 7.3118 5.9437 5.1061 8.7876 7.3473 5.9782 5.1342 

0 

FSDT 

8.9127 7.5760 6.2914 5.4397 9.0716 7.7111 6.4165 5.5694 

0.1 8.7662 7.3926 6.0762 5.2228 8.9208 7.5228 6.1963 5.3506 

0.2 8.6377 7.2225 5.8636 5.0070 8.7890 7.3486 5.9792 5.1344 

0 

IHSDT 

8.9712 7.6247 6.3369 5.4882 9.0693 7.7090 6.4149 5.5685 

0.1 8.8213 7.4379 6.1179 5.2675 8.9186 7.5209 6.1948 5.3498 

0.2 8.6899 7.2649 5.9017 5.0469 8.7870 7.3468 5.9778 5.1336 

3/2 

0 

CBT 

11.1883 9.1220 7.1907 5.8749 11.2343 9.1630 7.2271 5.9026 

0.1 10.9577 8.8852 6.9647 5.6598 11.0039 8.9267 7.0023 5.6883 

0.2 10.7465 8.6668 6.7514 5.4581 10.7932 8.7090 6.7907 5.4882 

0 

FSDT 

11.0087 8.9853 7.0777 5.7619 11.2371 9.1653 7.2285 5.9031 

0.1 10.7878 8.7569 6.8587 5.5492 11.0067 8.9289 7.0037 5.6888 

0.2 10.5850 8.5460 6.6518 5.3487 10.7957 8.7111 6.7920 5.4885 

0 

IHSDT 

11.1261 9.0744 7.1519 5.8274 11.2337 9.1625 7.2267 5.9021 

0.1 10.8978 8.8402 6.9286 5.6125 11.0033 8.9262 7.0019 5.6878 

0.2 10.6886 8.6243 6.7179 5.4097 10.7926 8.7086 6.7903 5.4876 

2 

0 

CBT 

13.5599 10.7269 8.1133 6.2732 13.6157 10.7751 8.1534 6.3028 

0.1 13.2593 10.4474 7.8866 6.0673 13.3153 10.4963 7.9292 6.0979 

0.2 12.9791 10.1913 7.6821 5.8855 13.0355 10.2410 7.7269 5.9180 

0 

FSDT 

13.2865 10.5339 7.9702 6.1470 13.6192 10.7780 8.1562 6.3035 

0.1 13.0036 10.2676 7.7517 5.9433 13.3188 10.4991 7.9311 6.0986 

0.2 12.7392 10.0229 7.5544 5.7619 13.0389 10.2438 7.7287 5.9186 

0 

IHSDT 

13.4945 10.6807 8.0804 6.2328 13.6150 10.7746 8.1539 6.3023 

0.1 13.1973 10.4046 7.8568 6.0281 13.3146 10.4958 7.9289 6.0975 

0.2 12.9202 10.1517 7.6552 5.8468 13.0348 10.2406 7.7266 5.9176 

Classical 

theory 

0 

CBT 

6.0755 5.1151 4.4118 4.1229 6.1004 5.1380 4.4341 4.1423 

0.1 6.1387 5.1101 4.3278 4.0461 6.1645 5.1339 4.3511 4.0664 

0.2 6.2110 5.1075 4.2281 3.9513 6.2379 5.1323 4.2525 3.9730 

0 

FSDT 

6.0037 5.0566 4.3544 4.0507 6.0997 5.1374 4.4335 4.1415 

0.1 6.0663 5.0525 4.2726 3.9733 6.1638 5.1333 4.3505 4.0657 

0.2 6.1378 5.0505 4.1754 3.8778 6.2372 5.1317 4.2520 3.9723 

0 

IHSDT 

6.0066 5.0572 4.3446 4.0325 6.0997 5.1374 4.4334 4.1413 

0.1 6.0688 5.0524 4.2599 3.9427 6.1639 5.1333 4.3504 4.0653 

0.2 6.1399 5.0495 4.1587 3.8217 6.2372 5.1317 4.2518 3.9716 
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Fig. 1 Variation of the dimensionless transverse deflections 

of the FG micro-beam for different values of the parameter 

porosity lc/lm=2, L/h=10, lm=15 μm, b/h=1, k=2: (a) point 

load, (b) uniform load 

 

 

parameter variation within on the beam. It is observed that 

increase of (lc/lm) leads to a reduction deflection and the 

results are significantly different to the case where the 

length scale parameter is considered to be a constant 

(lc/lm=1). This remark is also a confirmation that the 

variation of the length scale parameter needs to be taken 

into account in to investigation of FG micro-beam. In 

addition, it can be concluded that the consideration of the 

variation of ratio (lc/lm) make the micro beam more stiffer 

when increasing (lc/lm). It is found that the CBT 

underestimates the velour of deflections because this theory 

neglects the shear deformation effect. Also the introduction 

of the length scale parameter leads to increase of deflection 

comparatively to a classical theory.  

In Table 3, the dimensionless frequencies corresponding 

to the transverse deformation mode calculated for various 

values of the gradient index (k), the length scale parameter 

(lc/lm) and the porosity parameter (α) are presented. It can be 

observed that the influence of k, lc/lm and α are significant. 

Increasing the porosity parameter leads to a reduction of the 

non-dimensional frequencies. For each value of the gradient 

index k, the non-dimensional frequency diminishes 

considerably as the length scale parameter lc/lm is reduced. 

In Fig. 1, the non-dimensional transverse deflection are 

presented versus the ratio (h/lm) for different porosity 

 

 

Fig. 2 Variation of the dimensionless transverse deflections 

of the FG micro-beam subjected to a point load exponent 

for L/h=10, lm=15 μm, lc/lm=2, (a) h/lm=1, (b) h/lm=8 

 

 

 
Fig. 3 Variation of the normal stress across the thickness of 

the FG micro-beam for different values of the parameter 

porosity with lc/lm=2, L/h=10, lm=15 μm, b=2h, k=2 (a) 

h/lm=1 (b) h/lm=8: (a) point load, (b) uniform load 
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Fig. 4 Variation of the transverse stress across the thickness 

of the FG micro-beam under point load for different values 

of the parameter porosity with lc/lm=2, L/h=10, lm=15 μm, 

b=2h , k=2 (a) h/lm=1, (b) h/lm=8 

 

 

 
Fig. 5 Variation of the dimensionless frequencies the 

thickness of the FG micro-beam for different values of the 

parameter porosity with lc/lm=2, L/h=10, lm=15 μm, b/h=1, 

k=1 (a) the first frequency, (b) the third frequency 
 

 

 
Fig. 6 Variation of the first dimensionless frequency of the 

FG micro-beam for different values of the parameter 

porosity versus the volume fraction exponent for lc/lm=2, 

L/h=10, (a) h/lm=1, (b) h/lm=8 

 

 

parameter (α) with considering L/h=10, k=2 and the length 

scale parameter lc/lm=2. It can be found that decreasing the 

porosity parameter leads to a reduction of deflection for 

both the point load and uniform load. In addition, increasing 

the ratio h/lm makes the micro-beam more flexible. 

Fig. 2 presents the variation of the non-dimensional 

deflection with the gradient index k for different porosity 

parameter (α) and with considering two different values of 

h/lm. It can be observed that the increase of the gradient 

index leads to an increase of the deflection. The 

introduction of the porosity parameter makes the micro-

beam more flexible. 

Fig. 3 presents the normal stress of the FG micro-beam 

with L/h=10 across the thickness for different values of the 

porosity parameter (α) and with considering h/lm=1
 
and 8. It 

can be seen that the normal stress  zLx ,2/
 
decreases as 

the parameter porosity is increased from 0 to 0.2. 

Fig. 4 presents the variation of the transverse stress 

across the thickness of FG micro-beam for different values 

of porosity parameter (α) and for h/lm=1 and 8. It can be 

observed that the transverse stress increases with decreasing 

the porosity parameter (α). 

In Fig. 5, both the first and the third frequency are 

plotted versus the ratio h/lm for different porosity parameter 

(α) with considering L/h=10 and k=1. It can be shown that 

the reduction of the porosity parameter (α) leads to 

increases of dimensionless frequencies. 

Fig 6 illustrates the variation of non-dimensional first 

frequency against the gradient index (k) and the porosity  
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Fig. 7 Variation of the dimensionless transverse deflection 

of the FG micro-beam for two porosity distribution (FGM-

I,FGM-II)  with lc/lm=2, L/h=10, lm=15 μm, b/h=1, k=2, 

α=0.2, (a) point load, (b) uniform load 

 

 

 
Fig. 8 Variation of the dimensionless transverse deflection 

of the FG micro-beam subjected to a point load with the 

volume fraction exponent for two porosity distribution with 

lc/lm=2, L/h=10, lm=15 μm, b/h=1, k=2, α=0.2, (a) h/lm=1, 

(b) h/lm=8 
 

 

 
Fig. 9 Variation of the dimensionless frequencies of the FG 

micro-beam for two porosity distribution (FGM-I,FGM-II)  

with lc/lm=2, L/h=10, lm=15 μm, b/h=1, k=1, α=0.2 (a) the 

first frequency.(b)the third frequency 

 

 

 
Fig. 10 Variation of the  first dimensionless frequencies of 

the FG micro-beam  versus the volume fraction exponent  

for two porosity distribution (FGM-I,FGM-II)  with lc/lm=2, 

L/h=10, lm=15 μm, b/h=1, k=1, α=0.2 (a) h/lm=1 (b) h/lm=8 
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parameter (α) for two different values of the non-

dimensional material parameter h/lm. It can be seen that the 

increase of gradient index leads to a reduction of the 

frequency. In addition, it can be shown that the increase of 

the porosity parameter (α) makes the micro-beams more 

flexible. The comparison between the values of the 

deflection for FG micro-beams with even and uneven 

porosity distribution is shown in Figs. 7 and 8. It can be 

observed that the deflections of the even porosity are higher 

and than uneven ones.  

Figs. 9 and 10 present a comparison between the values 

of the frequencies for FG micro-beams with even and 

uneven porosity distribution. It can be remarked that the 

frequency of the even porosity are lower and than uneven 

ones.  

 
 
5. Conclusions 

 

In this research, a novel size -dependent FG porous 

micro-beams with two porosity distributions is presented 

for bending and vibration analysis. The equations of motion 

are obtained based on a new hyperbolic shear deformation 

theory and a modified couple stress theory. The present 

formulation considers a variable length scale parameter. The 

findings of this study demonstrated that the inclusion of 

couple stress influence and the porosity parameter makes a  

micro-beam stiffer and thus leads to a decrease of the 

deflection and an increase of the frequency. It is concluded 

that various factors such as porosity parameter, porosity 

distribution and gradient index have a considerable effect 

on the non-dimensional deflection and frequency of FG 

micro-beams with porosity which emphasizes the 

importance of inspected porosity volume fraction influence. 

An improvement of present formulation will be included in 

the future investigation to consider the thickness stretching 

effect by using quasi-3D shear deformation models 

(Bessaim et al. 2013, Bousahla et al. 2014, Bourada et al. 

2015, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 

2014, Larbi Chaht et al. 2014, Bennai et al. 2015, Meradjah 

et al. 2015, Hamidi et al. 2015, Draiche et al. 2016, 

Bennoun et al. 2016, Benahmed et al. 2017) and to include 

the thermo-mechanical effects (Bouderba et al. 2013, 

Tounsi et al. 2013, Zidi et al. 2014, Taibi et al. 2015, 

Beldjelili et al. 2016, Bouderba et al. 2016, Bousahla et al. 

2016, Chikh et al. 2017, El-Haina et al. 2017, Fahsi et al. 

2017).  
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