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1. Introduction 

 

Recently, the functionally graded materials have been 

widely used in aerospace technologies, automotive industry, 

electronics, optics, nuclear energy, etc. (Niino et al. 1987, 

Koizumi 1993, Markworth et al. 1995, Mortensen and 

Suresh 1995, Neubrand and Rödel 1997, Suresh and 

Mortensen 1998, Hirai and Chen 1999, Lu et al. 2009, 

Gasik 2010, Nemat-Allal et al. 2011, Parvanova et al. 2013, 

2014, Bohidar et al. 2014). Due to the continuously varying 

properties with location within the material, the functionally 

graded materials have a number of advantages over the 

conventional structural materials. For instance, the 

functionally graded materials are able to withstand effects 

of harsh environment (for example, severe temperature 

gradients) while simultaneously maintaining structural 

integrity. With the development of fabrication technologies, 

various structural components (beams, plates, shells) may 

be produced by using functionally graded materials. 

Fracture is one of the fundamental problems that should be 

analyzed in the evaluation of functionally graded structures 

for durability. Therefore, fracture mechanics considerations 

play an important role in the design of these novel 

materials. This fact clearly indicates the need of 

development of fracture mechanics of these materials. A 

significant amount of attention has been given to fracture in 

functionally graded materials in recent years (Erdogan 
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1995, Pei and Asaro 1997, Paulino 2002, Tilbrook et al. 

2005, Carpinteri and Pugno 2006, Upadhyay and Simha 

2007, Zhang et al. 2013).  

A strip of functionally graded material with a semi-

infinite crack has been studied analytically by Pei and Asaro 

(1997). Bending moments and axial forces have been 

applied on the edge of strip. Methods of linear-elastic 

fracture mechanics have been used in the investigation. 

Analytical solutions have been derived for stress intensity 

factors. 

Theoretical and computational studies have been 

reviewed of the fracture behavior of functionally graded 

linear-elastic materials by Tilbrook, Moon and Hoffman 

(2005). Analyses of stress intensity factors have been 

presented. Cracks of different orientation with respect to the 

material gradient direction have been considered.  

Cracks in functionally graded materials have been 

analyzed also by Carpinteri and Pugno (2006).  

Fracture has been investigated in functionally graded 

linear-elastic beams subjected to three-point bending by 

Upadhyay and Simha (2007). For this purpose, the 

compliance approach has been applied. An equivalent 

homogeneous beam of variable depth has been suggested 

for analysis of the stress intensity factor. It has been shown 

that equivalent beams are quite useful for engineering 

design considerations of cracked components.  

The literature review indicates that fracture in 

functionally graded materials has been studied manly 

assuming linear-elastic behavior. However, in reality, the 

mechanical behavior may be non-linear. Obviously, there is 

a need of developing fracture analyses with taking into 

account the material non-linearity.  
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Fig. 1 Geometry and loading of the CLS beam 

 

 

Fig. 2 Non-linear stress-strain curve with strain energy 

density, u0, and complementary strain energy density, *

0u  

 

 

Therefore, the present paper reports a theoretical study 

of delamination fracture in the functionally graded CLS 

beam configuration assuming non-linear material behavior. 

The fracture was analyzed with the help of J-integral 

approach. The influence was evaluated of material gradient 

and crack location on the non-linear fracture. The J-integral 

solution derived is very suitable for parametric 

investigations. The analysis developed holds for non-linear 

elastic material behavior. However, the analysis is 

applicable also for elastic-plastic behavior, if the external 

load increases only, i.e., if the CLS beam undergoes active 

deformation (Lubliner 2006, Chakrabarty 2006).  

 

 

2. Fracture analysis by using non-linear stress-strain 
relation 

 

The functionally graded beam configuration analyzed in 

the present article is shown in Fig. 1. There is a 

delamination crack of length a located arbitrarily along the 

beam height (it should be noted that the present study was 

motivated also by the fact that functionally graded materials 

can be built up layer by layer (Bohidar et al. 2014), which is 

a premise for appearance of delamination cracks between 

layers (Dolgov 2005, 2016)). The lower crack arm thickness 

is h1. The loading consists of one longitudinal force, F, 

applied at the free end of lower crack arm as illustrated in 

Fig. 1. Therefore, the upper crack arm is stress free. The 

beam has a rectangular cross-section of width, b, and 

height, 2h. The beam is clamped in the right-hand end.  

It was assumed that the mechanical response of beam 

configuration considered can be described by using a non-

linear stress-strain curve (Fig. 2).  

The stress-strain equation was written as (Petrov 2014) 

1

1

gf LD   , (1) 

where σ is the stress, ε is the strain, D, L1, f and g1 are 

material properties. The present analysis was based on the 

small strain assumption (it should be noted that this 

assumption has been widely used in fracture analyses of 

functionally graded materials (Pei and Asaro 1997, 

Carpinteri and Pugno 2006, Upadhyay and Simha 2007)). It 

was also assumed that D is functionally graded along the 

beam cross-section height. The material property D was 

written as a linear function of the coordinate z3 

 3
01

0
2

zh
h

DD
DD 


 ,

 (2) 

where D0 
and D1 are the values of D in the upper and in 

lower edge of beam cross-section, respectively. The z3-axis 

originates from the centre of beam cross-section and is 

directed downward.  

The J-integral approach for functionally graded 

materials (Anlas, Santare and Lambros 2000), was applied 

here in order to perform a theoretical study of non-linear 

fracture in the beam configuration considered. The J-

integral was written as  
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where Γ is a contour of integration going from the lower 

crack face to the upper crack face in the counter clockwise 

direction, u0 is the strain energy density, α is the angle 

between the outwards normal vector to the contour of 

integration and the crack direction, px and py are the 

components of stress vector, u and v are the components of 

displacement vector with respect to the crack tip coordinate 

system xy (x is directed along the crack), ds is a differential 

element along the contour, A is the area enclosed by that 

contour, q is a weight function with a value of unity at the 

crack tip, zero along the contour and arbitrary elsewhere. It 

should be specified that the partial derivative ∂u0/∂x exists 

only if the material property is an explicit function of x 

(Anlas, Santare and Lambros 2000).  

The J-integral was solved by using integration contour, 

Γ, that consists of beam cross-sections ahead and behind the 

crack tip (Fig. 1). It is obvious that the J-integral has non-

zero value only in segments A1 and B of the integration 

contour. Therefore, the J-integral solution was obtained by 

summation 

BA JJJ 
1

, (4) 

where JA1
 and JB are the J-integral values in segments A1 

and B, respectively.  

First, the J-integral solution was obtained in segment A1 

of the integration contour (this segment coincides with the 

lower crack arm cross-section behind the crack tip as 

illustrated in Fig. 1). The J-integral components in segment 

A1 were written as 

0yp ,
1dzds  , 1cos  , (5) 

where the z1-coordinate varies in the interval [−h1/2,h1/2]. 

The curvature, κ1, and neutral axis coordinate, 
11nz , of 

lower crack arm, that are needed in order to determine the 

J-integral other components, were derived from the  
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Fig. 3 Distribution of stresses in the lower crack arm cross-

section 

 

 

equilibrium equations of lower crack arm cross-section.  

It should be specified that the lower crack arm is loaded 

in eccentric tension, because the beam is functionally 

graded (the stresses distribution in lower crack arm is 

shown schematically in Fig. 3). Thus, the equilibrium 

equations of lower crack arm cross-section were written as 


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(6) 
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(7) 

where, according to the Bernoulli’s hypothesis for plane 

sections, the strain, ε, was expressed as  

)(
1111 nzz   . (8) 

It should be mentioned that the Bernoulli’s hypothesis 

for plane sections has been frequently applied when 

analyzing fracture in functionally graded materials (Pei and 

Asaro 1997, Carpinteri and Pugno 2006, Upadhyay and 

Simha 2007). The axial force, N, and bending moment, M, 

in the lower crack arm were written as (Fig. 1) 

0,  MFN . (9) 

Eq. (2) was rewritten as 
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is the value of D in the upper edge of lower crack arm. After 

substitution of Eqs. (1), (8) and (10) in Eqs, (6) and (7), we 

obtained 
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(13) 

Obviously, at L1=0, f=1 and EDD C  01
 (here E is the 

modulus of elasticity) the stress-strain relation (1) 

transforms into the Hooke’s law. This means that at L1=0, 

f=1 and EDD C  01
, Eq. (13) has to transform in the 

formula for curvature of linear-elastic homogeneous beam. 

Indeed, by substitution of L1=0, f=1 and EDD C  01
 in Eq. 

(13), we obtained  
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M
  (14) 

which is the known formula for curvature of homogeneous 

linear-elastic beam of width b and height h1.  

It is clear that at 001  CDD , g1=1 and −L1=E the 

stress-strain relation Eq. (1) transforms also into the Hook’s 

law. Indeed, at 001  CDD , g1=1 and −L1=E Eq. (13) 

transforms also into Eq. (14).  

Eq. (14) was obtained also by substitution of f=1, g1=1, 

DDD C  01  and D−L1=E
 

in Eq. (13). This is a 

consequence from the fact that at f=1, g1=1, DDD C  01  

and D−L1=E, the stress-strain relation Eq. (1) transforms 

again into the Hooke’s law.  

Eqs. (12) and (13) should be solved with respect to κ1 

and 
11nz  by using the MatLab computer program.  

The component px in Eq. (3) was written as 

1
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gf

x LDp    (15) 

where ε was determined by Eq. (8). 

The partial derivative that participates in the first 

integral in (3) was obtained by using the following formula 

from Mechanics of materials 





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u
, (16) 

where ε was found from Eq. (8). 

The strain energy density, u0, is equal to the area OPQ 

enclosed by stress-strain curve (refer to Fig. 2) 
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After substitution of Eq. (1) in Eq. (17), we obtained 
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Partial derivative, ∂u0/∂x, in the second integral in Eq. 

(3) was written as 
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since the strain energy density does not depend explicitly on 

x (the material property D is not a function of x, because the 

material is functionally graded along the beam height only 

(refer to Eq. (2)). 

After substitution of Eqs. (5), (8), (10), (15), (16), (18) 

and (19) in Eq. (3), we obtained 

  



















































2

1
1

2

1
1

0

1

1

1

1

1

2

2

21 f

n

f

nCf

A

z
h

z
h

ff

D
J



 

 
 


































































2

1
1

2

1
1

01

1

1

1

1

2

2

22

1

1 f

n

f

nCf

z
h

z
h

ff

DD  

 

 



































 3

1
1

3

1
1

1
11 223

1
f

n

f

n z
h

z
h

fh
 

 







































 2

1
1

2

1
1

1

1

11

1

222

f

n

f

n

n
z

h
z

h

fh

z  






















































2

1
1

2

1
1

01

1

1

1

2

2

2 f

n

f

nC
f

z
h

z
h

f

D


 

 





































 2

1
1

2

1
101

11 2222

f

n

f

n

C

z
h

z
h

f

DD  

 





































 3

1
1

3

1
1

1

01

11 223

f

n

f

n

C

z
h

z
h

fh

DD  

 
 























































2

1
1

2

1
1

1

011

1

1

1

2

2

2 f

n

f

nC

n

z
h

z
h

fh

DDz  

  


















































2

1
1

2

1
1

11

1

111

1

1

1

11

2

2

21 g

n

g

ng

z
h

z
h

gg

gL  . 

(20) 

The segment, B, of integration contour coincides with 

the cross-section of un-cracked beam portion (Fig. 1), 

which is loaded non-centrically by a tensile force, F. Thus, 

the axial load, N, and the bending moment, M, in the un-

cracked beam portion were written as 

FN  , (21) 











2

1h
hFM , (22) 

The normal stresses in the cross-section of un-cracked 

beam portion induced by N and M are distributed non-

linearly (refer to Eq. (1)) as shown in Fig. 4.  

 

 

 

Fig. 4 Distribution of stresses in the cross-section of un-

cracked beam portion 
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The equations for equilibrium of un-cracked beam 

cross-section ahead of the crack tip were written as 
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(27) 

It should be noted that at L1=0, f=1 and D1=D0=E, Eq. 

(27) transforms in 

33
2

3

Ebh

M
  (28) 

which is the known formula for curvature of homogeneous 

linear-elastic beam of width b and height 2h.  

Eq. (28) was obtained also by substitution of D1=D0=0, 

g1=1 and −L1=E
 
in Eq. (27).  

Also, at f=1, g1=1, D1=D0=D and D−L1=E, Eq. (27) 

transforms again in Eq. (28).  

Eqs. (26) and (27) should be solved as an algebraic 

system with unknowns κ3 and 
33nz  by using the MatLab 

program.  

The J-integral components in segment B of the 

integration contour (Fig. 1) were written as 

xp 1

1

gf LD   , 0yp , (29) 

3dzds  , 1cos  , (30) 







x

u
)(

3333 nzz  . (31) 

The strain energy density was determined by 

substitution of Eq. (25) in Eq. (18) 
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After substitution of Eqs. (19), (29), (30), (31) and (32) 

in Eq. (3), we derived: 
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where κ3 
and 

33nz  were determined from Eqs. (26) and 

(27). 

After substitution of Eqs. (20) and (33) in Eq. (4), the J-

integral final non-linear solution was written as 
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(34) 

It should be mentioned that by substitution of L1=0, f=1, 

EDDD C  001  and h1=h2=h in Eq. (34), we found 

hEb

F
J

2

2

16
  (35) 

Eq. (35) coincides with the formula for strain energy 

release rate in homogeneous linear-elastic CLS 

configuration, when the crack is located in the beam mid-

plane (Hutchinson and Suo 1992, Szekrenyes 2012). It 

should be noted that at D1=D0=0, g1=1, −L1=E and h1=h2=h 

Eq. (34) transforms also in Eq. (35). Besides, at 1f , 

g1=1, DDDD C  001 , D−L1=E
 

and h1=h2=h Eq. (34) 

transforms again in Eq. (35).  

An analysis was developed of the strain energy release 

rate, G, in the functionally graded CLS beam (Fig. 1) with 

considering material non-linearity in order to verify the J-

integral solution Eq. (34). For this purpose, an elementary 

increase of the crack area, dAa, was given (the external 

loading was kept constant). The strain energy release rate, 

associated with dAa, was written as 

a

ext

dA

dUdW
G


  

(36) 

where dWext and dU are the changes of external work and 

strain energy, respectively. The change of external work was 

expressed as 

dUdUdWext  *  (37) 

where dU
*
 is the change of complementary strain energy. 

By substitution of Eq. (37) in Eq. (36), we derived 

adA

dU
G

*

  (38) 

where 

bdadAa   (39) 

Here, da is an elementary crack length increase.  

The complementary strain energy density, *

0u , was 

integrated in the beam volume to obtain the complementary 

strain energy, U
*
 

3

*

01

*

0

2

2

* )(

1

1

dzalbubadzuU

h

h

h

h

 




 (40) 

The complementary strain energy density is equal to the 

area OQR that supplements the area OPQ to a rectangle 

(Fig. 2). Thus, the complementary strain energy density was 

found as 

0

*

0 uu   (41) 

By substitution of Eqs. (1) and (18) in Eq. (41), we 

obtained 

11 1

1

1

1

1
*

0

1









g

g
L

f

f
Du

gf   (42) 

where ε in the lower crack arm and in un-cracked beam  
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Fig. 5 The J-integral value in non-dimensional form as a 

function of D1/D0 ratio for h1/2h=0.25, 0.50 and 0.75 

 

 

portion was calculated by Eqs. (8) and (25), respectively. 

After combining of Eqs. (2), (8), (10), (38), (39) and (42), 

and performing the necessary mathematical operations, we 

derived the equation of strain energy release rate that is 

exact match of Eq. (34). This fact verifies the J-integral 

non-linear solution Eq. (34).  

 

 

3. Effects of material gradient and crack location on 
the non-linear fracture 

 

A parametric study was performed in order to evaluate 

the effects of material gradient and crack location along the 

beam height on the non-linear fracture behavior of 

functionally graded CLS configuration shown in Fig. 1. For 

this purpose, the J-integral value was calculated by using 

Eq. (34) and the results obtained were presented in non-

dimensional form by formula JN=J/(D0b). In these 

calculations, it was assumed that b=0.02 m, h=0.004 m and 

F=500 N. Also, the crack location along the beam height 

was characterized by h1/2h ratio (Fig. 1) in the parametric 

study. The J-integral values generated by the calculations 

were plotted in non-dimensional form against D1/D0 ratio at 

L1/D0=0.2 for h1/2h=0.25, 0.50 and 0.75 in Fig. 5. The 

curves in Fig. 5 indicate that the J-integral value decreases 

with increasing D1/D0 ratio (this finding was attributed to 

increase of the functionally graded CLS beam stiffness). 

Also, it can be observed in Fig. 5 that increase of h1/2h ratio 

leads to decease of the J-integral value (this is due to 

increase of the lower crack arm stiffness and to decrease of 

the bending moment in un-cracked beam portion).  

The influence of material non-linearity on the fracture 

behavior was analyzed too. For this purpose, the J-integral 

value, calculated by Eq. (34), was plotted in non-

dimensional form against the external load magnitude, F, at 

D1/D0=1.5, L1/D0=0.2 and h1/2h=0.25 as shown in Fig. 6. 

Also, calculations were performed of the J-integral at 

D1/D0=1.5 and h1/2h=0.25 assuming linear-elastic material 

behavior of the functionally graded CLS beam (the J-

integral linear-elastic solution was derived by substitution 

of f=1 and L1=0 in Eq. (34)) and the values obtained were 

plotted in non-dimensional form against the external load in 

Fig. 6 for comparison with the non-linear solution. One can  

 

Fig. 6 The J-integral value in non-dimensional form plotted 

against the external load, F (curve 1-linear-elastic material 

behaviour, curve 2-non-linear material behaviour) 

 

 

observe in Fig. 6 that the material non-linear behavior leads 

to increase of the J-integral. Therefore, the material non-

linearity has to be taken into account in fracture mechanics 

based safety design of functionally graded structural 

members.  

 
 
4. Conclusions 
 

Delamination fracture behavior of the CLS functionally 

graded beam configuration was studied theoretically with 

taking into account the material non-linearity.  

The mechanical response of CLS beam was modeled 

analytically with the help of non-linear stress-strain relation. 

It was assumed that the material is functionally graded 

transversally to the beam (linear variation of one of the 

material properties in the stress-strain relation was assumed 

along the beam height). Fracture was analyzed with the help 

of J-integral approach. A non-linear solution of the J-

integral was derived for a delamination crack located 

arbitrary along the beam height. The solution was verified 

by analyzing the strain energy release rate with considering 

the material non-linearity. The influence of material 

gradient and the crack location along the beam height on the 

non-linear fracture behavior was investigated. It was found 

that the J-integral value decreases with increasing lower 

crack arm thickness. This finding was attributed to increase 

of the lower crack arm stiffness and to decrease of the 

bending moment in un-cracked beam portion. Analysis 

revealed also that the J-integral value deceases with 

increasing D1/D0 ratio (refer to Eq. (2)). The influence of 

material non-linearity on the fracture behavior was analyzed 

too. It results obtained indicate that the non-linear material 

behavior leads to increase of the J-integral value (therefore, 

the material non-linearity has to be taken into account in 

fracture mechanics based safety design of functionally 

graded structural members). The analytical approach 

developed in the present paper is very suitable for 

parametric investigations. The results obtained can be used 

for optimization of functionally graded beam structures 

with respect to their fracture performance. The analysis 

developed contributes for the understanding of delamination 

fracture behavior of functionally graded beams with 
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material non-linearity.  
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