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1. Introduction 
 

Isolated buildings, including heavy damping isolation 

system and light damping superstructure, are typical non-

classically damped systems. Various methods have been 

developed to assess the peak responses for non-classically 

damped systems using response spectrum methods (Singh 

1980, Igusa and Kiureghian 1983, Gupta and Jaw 1986, 

Villaverde 1988, Yang et al. 1990, Sinha and Igusa 1995, 

Zhou et al. 2004). There is also an approximate and 

commonly used approach which ignores the off-diagonal 

elements of damping matrix in undamped modal space so 

that the classical response method, CQC combination rule 

(Kiureghian 1981) can still be applied. Due to the 

characteristic, it is known as forced decoupling method 

(FDM) (Cronin 1976). When the degree of non-classical 

property is heavy, FDM may lead to significant errors 

(Warburton and Soni 1977). For isolated buildings, Tsai and 

Kelly (1988) considered that the response of base-isolated 

structures can be determined by FDM to some degree of 

accuracy. However, their results were based on the 10 

percent damping ratio of the isolation system. In fact, when 

the damping ratio of isolation system increase to 20 percent 

which is a common damping level, the error of FDM 

becomes significant as illustrated in this paper.  

The base-isolated benchmark model developed by 

ASCE, Gavin and Johnson (2006) firstly provide systematic 
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and standardized means by which different analysis 

methods can be evaluated. This model is the University of 

Southern California Teaching Hospital, an existing building 

in Los Angeles, California. In this paper the benchmark 

model is used as a numerical example, which is more 

representative to evaluate the effectiveness of different 

analysis procedures. 

Considering the features of isolated buildings, a 

response spectrum method suitable for isolated structures is 

derived in this paper. The combination rule taking 

multidimensional input excitations into account is based on 

complex complete quadratic combination (CCQC) proposed 

by Zhou et al. (2004). Due to the non-classical damping, 

relative velocity spectra are introduced. Unlike some 

investigators aforementioned who replace velocity spectra 

by pseudo-velocity spectra, which may lead to large errors 

for long period structures, especially for isolated buildings 

with heavy damped isolation system, a new method is 

developed to estimate velocity spectra from the commonly 

used displacement spectra or pseudo acceleration spectra 

based on random vibration theory. Thereafter, the errors of 

FDM are discussed from the energy viewpoint. As a 

numerical example, the base-isolated benchmark model 

aforementioned is presented to illustrate the application of 

the rule, and a comparative study with time history 

solutions as exact results and FDM are performed to 

demonstrate their validity and accuracy. 

 

 

2. Equations of motion 
 

Isolated buildings can be divided into superstructure and 

isolation system as shown in Fig. 1. Let Ms, Cs and Ks  
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Fig. 1 A base-isolated structure in three-dimensional space 
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Fig. 2 The superstructure subjected to ground excitation and 

the acceleration of the isolation base 

 

 

represent mass matrix, damping matrix and stiffness matrix 

of the superstructure in fixed-base, respectively. It is worth 

to note that Cs is a classical damping matrix. Since the 

isolation slab is so rigid that all isolation bearings can 

deform uniformly, the isolation system can be modeled by 

an equivalent element at the center of mass of the base.  

It is convenient to work with relative displacements of 

the superstructure respect to the isolation base. The 

superstructure is subjected to the ground motion and the 

acceleration of the isolation base as shown in Fig. 2.  

Considering three-component ground excitation, the 

dynamic equations of the superstructure can be written as 

1

2

[ ( )

                                            ( )]

s s s s s s s s g

s b

t

t

    M u C u K u M R Tu

R u
 (1) 

in which us and ub(t) denote relative nodal displacements of 

the superstructure respect to the isolation base and relative 

nodal displacements of the isolation base respect to the 

ground, respectively. Rs1 and Rs2 are influence matrix of the 

seismic input such that their kth column couples the degrees 

of freedom of the superstructure to the corresponding kth 

ground and the isolation base motion component, 

respectively (refer to the Appendix A for more details). 
T

1 2 3( ) [ ( )  ( )  ( )]g g g gt u t u t u tu  is the input acceleration 

with horizontal component 1( )gu t  and 2( )gu t  and vertical 

component 3( )gu t . T represents the transformation matrix 

accounting for the effect of input angle θ, which can be 

expressed as  

cos sin 0

sin cos 0
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 

 

 
  
 
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T  (2) 

Based on the Eq. (1), the inertia force vector of the 

superstructure is 1 2[ ( ) ( )]s s s s g s bt t  f M u R Tu R u . 

Then, the forces on the isolation base coming from the 

superstructure can be represented by T

2s sR f . The dynamic 

equations of isolation base with mass matrix Mb, damping 

matrix Cb and stiffness matrix Kb, thus, can be given by 

T T

2 2 2

T

2 1 3

( )

( )

s s s s s s b b b b b b

s s s b s g

   

  
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 (3) 

where Rs3 represents influence matrix of isolation system 

(refer to the Appendix A  for more details). As well known, 

relative displacement vector us can expressed in the form of 

undamped modes of the superstructure, that is us=Φsys, 

where Φs is a matrix including the first n modes, ys are 

modal coordinates. When n<<Ns (the total number of 

degrees of freedom in the superstructure), the size of Eq. (1) 

can be reduced to a large degree. Using us=Φsys, Eq. (1) 

becomes  

T

1

2

[ ( )

                                            ( )]

s s s s s s s s g

s b

t

t

    y C y K y M R Tu

R u


 (4) 

where diag(2 )s i iC , 2diag( )s iK , i=1,…,n, ωi and 

ξi 
are the natural frequencies and viscous damping ratios of 

the superstructure, respectively. Eqs. (4)-(3) can be 

combined to represent the overall equations of motion for 

whole isolated structure, as follows  

* * * * * * *
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where 
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3. Complex mode superposition approach 
 

Normally, C
*
 is a non-classically damped matrix. 

Considering the isolated structure still being a linear 

system, it is very economical to solve Eq. (5) using complex 

Center of mass of the base

Isolation bearing

z

y

x
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superposition mode approach, in which Eq. (5) should be 

expressed in the form of state equations firstly, that is  

g  Av Bv ETu  (6) 

where  
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The size of Eq. (6) becomes twice compared with Eq. 

(5), but it can be reduced by taking a small number of 

modes into account in Eq. (4). For non-classical damping 

systems, due to the non-positive definiteness of matrices A 

and B, the eigenvalue problem is complex-valued of order 

2Nc (Nc denotes the total number of the unknown in Eq. (5) 

) and eigenvalues and eigenvectors occur in conjugate pairs. 

Let λi, ψi, i=1,…2Nc, denote the eigenvalues and 

eigenvectors, respectively, and considering the definition of 

state vector v, eigenvector ψi is the form of ψi=[λiϕi ϕi]
T
, 

wherein ϕi represent mode shapes. Comparing with the case 

of classical damping, we obtain 2i 1i i i i i       . 

By complex mode superposition approach, the vector u
*
 can 

be expressed as 

*

  

1

( ) ( ) ( )]
cN

i i i i i i

i

t t t


  u Tz Tz     (7) 

where zi(t) are modal coordinates and can be obtained by 

( ) ( ) ( )i i i gt t t  z z u  (8) 

and T T T

     /(2 )i i i i i i i E M C       denote modal 

participation factors. Notes that Eq. (4) are first-order 

differential equations and can be solved by classical 

mathematical methods. 

It is more helpful to associate zi(t) with dynamic 

equations of the normalized single degree of freedom 

(SDOF) systems 

2( ) 2 ( ) ( ) ( )i i i i i i gt t t t    q q q u  (9) 

in which ξi 
and ωi 

denote the modal damping ratios and 

undamped natural frequencies, respectively. They can be 

obtained by i i  , Re( )/i i i    . Through the 

derivative of the Duhamel integral, zi(t) can be expressed in 

terms of qi(t) and ( )i tq . That is 

( ) ( ) ( i ) ( )i i i i Di it t t   z q q  (10) 

where 21Di i i     are damped natural frequencies. 

Now substituting Eq. (6) into Eq. (3) will yield 

*

1

( ) ( ) ( )]
cN

i i i i

i

t t t


  u Tq Tq   (11) 

where 
 2Re( )i i i   , 

 2 Re( )i i i i    . This formulation 

is simpler and suitable for random vibration analysis. The 

response of qi(t) and ( )i tq
 

can be evaluated by well-

known numerical method in the time domain. In order to 

gain the response of superstructure, it is still necessary to 

transform the modal displacements ys into physical 

displacements us by undamped modal matrix Φs 
of the 

superstructure. 

'
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i

t t t
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  u T Tq Tq   (12) 

where T T T( ) [ ( )  ( )]s bt t tu u u , ' diag( , )
bs NT I , Nb is the 

total number of degrees of freedom in the isolation system. 

Appendix B represents more details of the derivation for 

Eqs. (7)-(12). Generally, a generic response quantity of 

interest can be expressed as a linear combination of the 

displacement, R(t)=v
T
u(t), where v is a response transfer 

vector which is a function of the geometry and physical 

properties of the structure. According to Eq. (12) the 

response becomes  

1

( ) ( ) ( )]
cN

i i i i

i

R t t t


   Tq Tq   (13) 

in which T ' (1) (2) (3)[   ]i i i i i   T   ,

T ' (1) (2) (3)[   ]i i i i i   T   . The effect of input direction 

is illustrated explicitly from Eq. (13).  

 

 

4. Response spectrum method 

 

Assume the ground motion üg(t) is a stationary Gaussian 

process and with no loss of generality, let üg(t) be a zero-

mean process. Penzien and Watabe (1975) have shown that 

the principal axes of ground motion exist, along which the 

ground motion components can be considered as 

uncorrelated. So the power density spectrum function 

matrix of the ground motion üg(t) can be gained easily as 

1 2 3( ) diag[ ( ), ( ), ( )]g g g gS S S   S . It is well known that 

the response of a linear system subjected to zero-mean 

Gaussian input is also a zero-mean Gaussian process. Then, 

the power spectral density of response R(t) can be given by 





2 T T

1 1

T T

( ) ( ) ( )

                       i [ ( ) ( ) ]

c cN N

R i ij j i ij j

i j

i ij j i ij j
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 

  
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   

   

 (14) 

where T( ) ( ) ( ) ( )ij i j gH H   S TS T is the cross-

spectral density matrix of modal responses qi(t) 
and qj(t), 

and 2 2( ) 1 / ( i2 )i i i iH       denotes the complex 

frequency response function of displacement. It is noted 

that SR(ω) is always real-valued due to the symmetry. In the 

calculation of maximum responses, mean square is the 

quantity of interest. Meanwhile, introduce modal cross-

correlation coefficients 2 2

, , , ,/m ij m ij m ii m jj    , m=0,1,2, in 

which 2

, (i ) ( )dm

m ij ij  



  S , and for the convenience 

of expression, ρ0,ij, ρ1,ij and ρ2,ij are replaced by dd

ij , vd

ij  
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and ( )vv

ij , respectively, where the superscripts “d” and 

“v” mean displacement and velocity. In fact these above 

coefficients reflect the cross-correlation characteristics 

between modal displacement and modal velocity. Then 

according to Eq. (14), the mean square of the response R(t), 
2

R  can be expressed in terms of standard deviations of 

modal responses, 
iq  and 

iq , as  





2 T T

1 1

T T                  [ ]

c c

i j i j

i j i j

N N
vv dd

R i ij q q j i ij q q j

i j

vd vd
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
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 (15) 

Since the power density spectra of the three ground 

motion components are different from each other, the cross-

correlation coefficients are also different in the three input 

directions. 

Let Rmax and Dk(ω, ξ), Vk(ω, ξ) represent the mean value 

of the maximum absolute response R(t), and qk(t), ( )kq t
 

of 

an oscillator with frequency ω and damping ratio ξ, 

respectively and “k” means that these responses are about 

the ground motion component ügk(t). The function Dk(ω, ξ) 

and Vk(ω, ξ) for variable ω and ξ can be defined as the mean 

relative displacement and velocity response spectrum of 

ügk(t). Note that the peak value of a Gaussian stationary 

process over a specified duration can be expressed as the 

product of peak factor and its root mean square (Vanmarcke 

1972). Meanwhile assume the seismic input as white noise 

process and the peak factor of response R(t) being similar to 

modal response peak factors, as done by Kiureghian (1981). 

Therefore, the maximum absolute responses of a structure 

can be evaluated through its response spectrum. That is  
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and Rkx, Rky represent the maximum responses when the 

relative displacement spectra Dk and velocity spectra Vk in 

which “k” devotes ground motion component act along the 

structure reference x and y, respectively. Rkxy
 
is a cross 

term between response Rkx and Rky. Due to the assumption 

of white noise as input excitation, the cross-correlation 

coefficients have closed forms (Zhou et al. 2004) as 

follows (r=ωi/ωj) 
3/2
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Eq. (16) is the modal combination rule of 

multidimensional input excitations for non-classically 

damped systems. It should be noted that both relative 

velocity and displacement spectra exist in Eq. (16). In 

practice, the displacement or pseudo acceleration spectra 

are often known. For convenient expression, some 

researchers always replace relative velocity spectra by 

pseudo velocity spectra, which may result in significant 

errors in long period phase with high damping ratios. 

 

 

5. Estimation of the relative velocity spectrum 
 

As demonstrated in Eq. (16), relative velocity spectra 

are needed to evaluate the maximum seismic design 

responses of isolated buildings. A method is developed 

hereby to estimate relative velocity spectra from commonly 

used relative displacement spectra or pseudo acceleration 

spectra based on random vibration theory. 

As well known, the maximum displacement and 

velocity of a SDOF system subjected to a Gaussian 

excitation can be expressed, respectively, as 

0( , )n dD p      
2( , )n vV p    (17) 

where D(ωn, ξ) and V(ωn, ξ) represent spectra displacement 

and spectra velocity, respectively. 
0

( )dm

m dS   


  , 

m=0,2 are the spectral moments, in which Sd(ω) is the one-

side power spectral density function of displacement 

process. pd and pv are peak factors and their expressions 

developed by Davenport (1964) are used in this paper for its 

simplicity, as follows  

0 02ln 0.5772/ 2lnp v v    (18) 

where τ is the observation time duration, 
0 2 0/ /v     

is the mean zero-crossing rate. Note that the peak factor is a 

function of time duration τ, natural frequency ωn and 

damping ratio ξ of a SDOF system.  

Assuming ground motions to be Gaussian white noise 

processes, that is 0( )
guS S  , where S0 is a constant. The 

spectral moments 
3

0 0 /(4 )nS   , 
2 0 /(4 )nS    

can be obtained (Kiureghian 1980). Then the mean zero-

crossing rate of displacement can be expressed by v0d=ωn/π.  
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So the displacement and velocity peak factors can be 

expressed explicitly, as 

( , ) 2ln( / )

         0.5772/ 2ln( / )

d n n

n
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 
 (19) 

0 0( , ) 2ln 0.5772/ 2lnv n v vp v v      (20) 

where v0v is associated with ωn, ξ and cut-off frequency ωe 

of the input white noise excitation. That is, 

2

0 3/2

2 [ ( 0.25)]n e n

vv
   



 
  

From these formulation, we can observe that the 

displacement peak factor is independent of damping ratio ξ 

when the excitation is a white noise. Therefore, velocity 

spectrum can be expressed in terms of displacement 

response spectrum as follows 

( , ) ( , ) ( , )

             ( , ) ( , )

n n n n

n p n

V D

V

       
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


 (21) 

in which υ(ωn, ξ)=pv/pd, the peak factors pv and pd are 

calculated via Eq. (19) and Eq. (20), respectively. Vp(ωn, ξ) 

represents pseudo-velocity spectrum. The expression 

aforementioned also shows that the convention assuming 

velocity spectrum to be equal to the pseudo-velocity 

spectrum ignores the effect of peak factors. 

To verify the efficiency of Eq. (21), 200 artificially 

generated filtered white noise processes with peak ground 

acceleration of 0.2 g are used. The filtered white noise 

excitations are generated through a modified Kanai-Tajimi 

 

 

 

power spectra model suggested by Clough and Penzien 

(1991) 
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(22) 

in which is S0 a scale factor, ωg and ξg are the filter 

parameters representing the natural frequency and damping 

ratio of the soil layer, respectively, and ωf, ξf are parameters 

of a second filter that is introduced to assure finite variance 

of the ground displacement. Now we consider the stiff soil 

site and set ωg=15 rad/s, ωf=1.5 rad/s, ξg=0.6 and ξf=0.6. 

The PSD scale factor S0 is selected such as to produce a 

mean peak ground acceleration of 0.2g over the ensemble of 

records. The response spectrum consistent with the PSD 

model is obtained via response history analysis of 200 

artificial ground motions. The comparisons, which are 

illustrated in Fig. 3, of velocity spectrum, pseudo-velocity 

spectrum and the proposed method Eq. (21) show the 

efficiency of the proposed method for all levels of damping.  

Sadek et al. (1999), Pekan et al. (1999) and Ramirez et 

al. (2000) also developed similarly simple methods to 

estimate the relative velocity spectrum. However, different 

from the proposed method in this paper, these studies are 

based on the statistical analysis of a selected series of 

earthquake records. Comparisons among these methods are 

shown in Figs. 4 and 5. For the convenience of comparison, 

the periods are selected from 0 to 4 sec. and the damping 

ratios are 0.1, 0.2, 0.3 and 0.4. The earthquake records used 

are suggested by ATC (2008) with 28 near-field and 22 far- 

    
Fig. 3 Comparison of velocity spectra by exact values, pseudo velocity and new method for 20%, 40%, 60%, 80% damping 

ratios using artificial under artificial ground motions 

    
Fig. 4 Comparison of velocity spectra obtained by different methods for 10%, 20%,30% and 40% damping ratios under 28 

near-field ground motions 
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field ground motions and each record is scaled such that the 

maximum ground velocity is 1 m/s in order to facilitate 

direct comparisons of results. From these two figures, it can 

be observed that the method developed by Pekan et al. has 

an excellent agreement with the actual velocity spectrum 

corresponding the 28 near-field ground motions while it 

does not work well for the far-field ground motions. This 

phenomenon can be easily understood because most of the 

utilized earthquake records in the study of Pekan et al. have 

near-fault characteristics. Instead, the method of Sadek et 

al. is more suitable for far-field ground motions. The 

proposed method also has good results for near-filed ground 

motions. On the other hand, for the far-filed ground 

motions, the proposed method is better than the methods 

developed by Pekan et al. and Ramirez et al. 

 

 

6. Discussions of the forced decoupling method 

 

Let M, C and K denote mass, damping and stiffness 

matrix of the whole isolated structure, respectively. For the 

convenience of expression, consider dynamic equations 

subjected to only one seismic component üg(t),  which are 

described by 

( )gu t   Mu Cu Ku Mr  (23) 

where u is the N-dimension vector of building 

displacements respect to ground motion and r represents the 

influence vector. It is obvious that C is non-classical 

damping matrix, and if u is expressed in term of undamped 

modes, u=Φq, Eq. (23) can be described by modal dynamic 

equations, as follows 

2

1

( ) 2 ( ) ( )

( ) ( )     =1,...,

i i i i i i

N

i g ij j

j
j i

q t q t q t

u t q t i N

  

 



 

  
 

(24) 

in which qi(t) is modal coordinate, ξi 
and ωi denote damping 

ratio and natural frequency of the assumed classically 

damped system ignoring the last terms in the above 

equations, respectively. ηi is mode participation factor.
T

 ij i j  C   (ϕi represents undamped mode vector) is the 

off-diagonal term of the transformed damping matrix and it 

is non-zero value for non-classical damping matrix. The 

 

 

equations above demonstrate that modal dynamic equations 

are coupled because of non-classical damping and energy 

transfer occurs among modal dynamic equations. So there 

are two functions of damping for non-classically damped 

systems, one plays a role of energy dissipation, coming 

from diagonal elements in the transformed damping matrix. 

The other is energy transfer resulting from off-diagonal 

terms. Using Fourier transformation, the frequency domain 

expressions of Eq. (24) can be described as  

2 2
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 

   
 

(25) 

where Qi(ω) and Ug(ω) are the Fourier transformations of 

qi(t) and üg(t), respectively. For isolated buildings, the 

responses are always dominated by the first modal response 

due to its larger modal participation factor η1. Compared 

with the first modal velocity 
1( )q t , the other modal 

velocities ( )jq t  are so small that they can be neglected in 

the first mode dynamic equation without introducing large 

errors. Note that the first mode mainly reflects 

characteristics of isolation system since the superstructure is 

very stiff as compared to the isolation system. Hence, using 

Eq. (25), the response of isolation base can expressed as 

(assume isolation base displacement in the mode vector 

being normalized) 

1

2 2

1 1 1

( )
( )

i2

g

b

U
Q

 


   
 

 
 (26) 

The first modal damping ratio ξ1 is mainly contributed 

by the damping ratio of the isolation system, ξb (Kelly 

1997). As can be seen, the displacement amplitude in Eq. 

(26) decreases with ξ1 or ξb increasing. In addition, for other 

modal displacement amplitudes, recognizing that 
1 ( )i bQ   

dominates in 
1

( )
N

ij j

j

Q 


 , j≠i, the results can be simplified 

to 

1

2 2

( ) i ( )
( )

i2

i g i b

i

i i i

U Q
Q

   


  


 

 
 1i   (27) 

when ξb rises, which leads to both the coupling term μi1 
 

and modal damping ratios ξi increasing (Du et al. 2002),  

    
Fig. 5 Comparison of velocity spectra obtained by different methods for 10%, 20%,30% and 40% damping ratios under 22 

far-field ground motions 
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Fig. 6 Model of the superstructure 

 

 

Qi(ω) is dependent on their relative values. In fact, the 

energy dissipation part plays a major role with ξb increasing 

at first, then when ξb rises to a certain degree, the effect of 

energy transfer becomes significant as shown in the 

numerical example of the next section. This phenomena 

implies that optimum damping ratio ξb exists and beyond it 

the responses of superstructure begin to increase.  

In FDM, the coupling terms due to non-classical 

damping are neglected, which implies that energy transfer 

among the modes is broken off. The modal responses are 

approximated by 

2 2

( )
( )     =1,...,

i2

i g

i

i i i

U
Q i N

 


  
 

 
 (28) 

The expression of responses in isolation base is 

consistent with Eq. (26), so FDM can predict displacement 

of isolation base exactly. The breaking of energy transfer 

has little effect on isolation system, while it impacts 

significantly responses of superstructure. Comparing Eq. 

(28) with Eq. (27), responses of superstructure in FDM are 

smaller than exact results. When the damping ratio of 

isolation system is light, little energy transfer occurs and the 

results by FDM can be accepted to some degree accuracy. 

However, with the level of non-classical damping 

increasing, the errors will increase as well. Since the only 

function of damping in the system is absorbing energy, the 

responses will decrease continually with ξb increasing as 

demonstrated in the numerical example in the next section. 

On the other hand, Hanson and Soon (2001) have tried to 

use the exact natural frequencies and modal damping ratios 

calculated by complex eigenvalue procedure to replace 

those in FDM in order to improve the accuracy of FDM, but 

the results are still disappointed. From the viewpoint of 

energy transfer, the errors of FDM come from the ignorance 

of influence among modal responses, which can interpret 

the results of Hanson and Soon.  

 

 

7. Example application 

 

The numerical example is the benchmark structure 

aforementioned, which is a base-isolated eight-story, steel-

braced framed building with 82.4-m-long and 54.3-m-wide, 

as shown in Fig. 6. Floor slabs and the base are assumed to 

be rigid in plane. Therefore, the superstructure and the base 

can be modeled using three master degrees of freedom 

(DOF) including two horizontal displacements and one 

rotational displacement about vertical axis per floor at the 

center of mass. The combined model of the superstructure 

(24 DOFs) and isolation system (3 DOFs) consists of 27 

degrees of freedom. All twenty four modes in the fixed-base 

case are employed to model the superstructure. The 

superstructure damping ratio of each mode is assumed to be 

5%. The first three modal periods of the superstructure in 

the fixed-base are 0.89s, 0.78s and 0.66s, respectively. 

The isolation system in the example is a linear isolation 

system consisting of 92 linear elastomeric bearings and a 

number of viscous dampers. The locations and numbers of 

these bearings are identical to those in the paper of 

Narasimhan et al. (2006).The stiffness applied herein of 

bearings are shown in Table 1, which guarantee stiffness 

eccentricities of the isolated structure as small as -8.08E-2m 

and 1.63E-2m in x and y directions, respectively. There are 

two approaches to calculate the modal properties. One is 

exact method, complex mode method and the other is 

approximate method, FDM. From Table 2 it can be seen 

that the non-classical damping has little influence on the 

modal properties. However, it doesn’t imply that the non-

classical damping has little influence on the structural 

responses as illustrated in the following section. As 

discussed above, the energy transfer due to non-classical 

damping from the isolation system to the superstructure 

may enlarge responses of the superstructure. The table also 

demonstrates that damping of isolation system has a 

significant contribution to modal damping ratios of the 

superstructure and the first three modes are mainly 

controlled by the isolation system. 

 

 

Table 1 Stiffness of the elastomeric bearings 

Stiffness (kN/m) 513 1026 1253 1396 

Corresponding 

Number 

17-25,54-

61,79-87 

1-3,26-31,50-

53,62-64,88-92 
32-49 4-16,65-78 

 

Table 2 Modal properties of the benchmark isolated 

structure 

Mode 

No. 

Damping Ratio of Isolation 

System 20% 

Damping Ratio of Isolation 

System 40% 

Exact FDM Exact FDM 

ξ* (%) T* (s) ξ* (%) T* (s) ξ* (%) T* (s) ξ* (%) T* (s) 

1 18.87 3.14 18.98 3.17 36.68 3.05 37.89 3.17 

2 18.82 2.99 18.74 3.00 37.89 2.93 37.41 3.00 

3 21.71 2.61 21.48 2.61 45.58 2.65 42.89 2.61 

4 12.17 0.56 12.10 0.56 17.42 0.56 17.08 0.56 

5 11.20 0.49 11.14 0.49 15.66 0.49 15.30 0.49 

6 11.52 0.43 11.47 0.43 16.13 0.43 15.91 0.43 

7 9.35 0.22 9.30 0.22 11.74 0.22 11.56 0.22 

8 8.31 0.21 8.28 0.21 10.06 0.21 9.98 0.21 

9 8.42 0.17 8.39 0.17 10.24 0.17 10.16 0.17 

10 6.97 0.14 6.96 0.14 7.85 0.14 7.84 0.14 

*ξ and T denote modal damping ratios and modal periods, 

respectively. 
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(a) X direction 

 
(b) Y direction 

Fig. 7 Mean maximum displacements of the isolation base 

with different incident angle 

 

 
(a) X direction 

 
(b) Y direction 

Fig. 8 Mean maximum displacements of the top story with 

different incident angle 

 

 

Three methods are applied to compute the responses of 

the isolated structure. The first one is exact method which is 

time-history analysis approach using New-mark β 

integration. The second one is the proposed method in this  

 
(a) X direction 

 
(b) Y direction 

Fig. 9 Comparison of mean maximum displacements of the 

isolation base 
 

 

paper which considers the effect of non-classical damping. 

The last one is forced decoupling method (FDM) based on 

classical damping assumption. 100 sets of filtered white 

noise processes with peak ground acceleration of 0.4 g are 

used as input excitations. Each set consists of two 

horizontal motions whose amplitude ratio is 0.85. The 

filtered white noise excitations are generated through the 

modified Kanai-Tajimi power spectra model described as 

Eq. (22). Figs. 7 and 8 show the comparison of exact 

method, FDM and the proposed method with the incident 

angles changing from 0 to π when the damping ratio of 

isolation system is 0.1. As can be seen, the proposed 

method is valid to some degree and the incident angle has 

little effect on accuracy of different methods. Both FDM 

and the proposed method can evaluate the maximum 

responses of isolation base well in all incident angles. 

The effect of damping level in the isolated system on the 

responses is studied and the damping ratio ξb is considered 

from 0 to 0.6. Fig. 9 shows that the mean maximum 

displacements of the isolation base have little differences 

between the proposed method and FDM respect to different 

damping levels of isolation system, which is consistent with 

the discussion aforementioned. However, for responses of 

the superstructure, when the damping ratio of isolation 

system is beyond 0.1, the differences between the proposed 

method and FDM become significant, and the proposed 

method is more accurate than FDM, as illustrated in Figs. 

10 and 11. An interesting phenomenon can be observed that 

with the damping ratio of isolation system increasing, the 

displacement of the isolation base decreases all the time but  
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(a) X direction 

 
(b) Y direction 

Fig. 10 Comparison of mean maximum displacements of 

the top story 
 

 
(a) X direction 

 
(b) Y direction 

Fig. 11 Comparison of the mean maximum story drifts 
 

 

the responses of the superstructure increase firstly then 

decrease, which is consistent with the study results of Kelly 

(1999). It implies that increasing damping of isolation 

 
(a) x component 

 
(b) y component 

Fig. 12 The acceleration spectrum of 28 near-field ground 

motions for 5% damping ratio 
 

 
(a) x component 

 
(b) y component 

Fig. 13 The acceleration spectrum of 22 far-field ground 

motions for 5% damping ratio 
 

 

system doesn’t always decrease the responses of 

superstructure. It is noted that FDM approach doesn’t 

reflect this characteristic. So in practice FDM approach may 
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mislead the design of isolation structures, which is easy to 

lead to insecurity of structures. 

The results shown above are based on the artificial 

ground motions. As is well known, the characteristics of 

actual earthquake ground motion records are very complex. 

Therefore, it is necessary to validate the efficiency of the 

proposed method under real ground motion records. In this 

study, the aforementioned records, i.e., 28 sets of near-field 

and 22 sets of far-field ground motions suggested by ATC-

63, are used and each set of records are scaled such that the 

maximum ground acceleration of one horizontal record, 

whose maximum ground acceleration is larger than the 

other one, is 0.4 g. Meanwhile, this horizontal record is 

named as x component and the other one is y component. 

Their acceleration spectrum corresponding 5% damping 

ratio are illustrated in Figs. 12 and 13. The same methods, 

i.e., time-history approach, the proposed method in this 

paper and FDM, are used in the dynamic analysis. The 

damping ratios of the isolation system arrange from 0 to 0.6 

and the incident angles of all the excitation inputs are 0.  

For the isolated structures, the response quantities of 

interest are the maximum displacement of the isolation base 

and the maximum story-drift of the superstructure. They are 

shown in Figs. 14-17. From these results, the same 

conclusions can be drawn that increasing the damping of 

the isolation system may amplify the responses of the 

superstructure and the proposed method in this paper also 

works well to predict the structural responses. It also can be 

observed that the error of FNM becomes larger under real 

ground motions especially for the superstructure. 

 

 

 

(a) X direction 

 
(b) Y direction 

Fig. 14 Comparison of mean maximum displacements of 

the isolation base under 28 near-field ground motions 

 

 
(a) X direction 

 
(b) Y direction 

Fig. 15 Comparison of the mean maximum story drifts 

under 28 near-field ground motions 
 

 
(a) X direction 

 
(b) Y direction 

Fig. 16 Comparison of mean maximum displacements of 

the isolation base under 22 far-field ground motions 
 
 
8. Conclusions 
 

A rule has been established to combine peak modal 

responses of isolated structures, which can consider 
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(a) X direction 

 
(b) Y direction 

Fig. 17 Comparison of the mean maximum story drifts 

under 22 far-field ground motions 
 

 

multidimensional seismic inputs. The derivation of the rule 

is based on random vibration theory, and its assumptions are 

similar to classical method (CQC). The only shortage is the 

computation of complex eigenvalues due to the two times 

size of structural matrices. But taking only the first small 

number of modes in the superstructure into account, which 

is reasonable for isolated structures, can reduce the 

computational scale significantly. A new method is 

developed to estimate velocity spectra from commonly used 

displacement spectra or pseudo acceleration spectra based 

on random vibration theory in this paper, which can 

evaluate the velocity spectra well at long periods and high 

damping ratios. The discussion of the error in FDM shows 

that non-classical damping mainly impacts the 

superstructure, which is helpful to interpret the numerical 

calculation results. The comparison of time history method, 

the proposed method in this paper and FDM based on the 

base-isolated benchmark model shows that all method are 

consistent in the predicting displacement of isolation base to 

some degree accuracy, however, FDM has remarkable 

errors when the damping ratio of isolation system is beyond 

10 percent and the characteristic that the responses of the 

superstructure may increase with increasing of damping 

ratio of isolation system is not reflected by FDM.  
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Appendix A: Details of the influence matrices Rs1, Rs2 
and Rs3 
 

In practice, a structural system is always modeled by a 

finite number of discrete members and lumped masses and 

for individual mass or node, there normally exist six DOFs 

(ux, uy, uz, θx, θy, θz), i.e., three translations and three 

rotations, in the three-dimensional space. For isolated 

structures, the isolation slab is so rigid that all isolation 

bearings can deform uniformly, the isolation system can be 

modeled by an equivalent element at the center of mass of 

the base. The base, thus, has six DOFs, i.e., three horizontal 

displacements and three rotational displacements. The 

superstructure is subjected to the accelerations of the 

seismic input with three horizontal components and the base 

with six components. Therefore, their influence matrices, 

Rs1 and Rs2, have the following expressions  
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ze  denote the distances to the i-th 

node from the center of mass of the base in x, y and z 

directions, respectively.  

The base has only six DOFs and the influence matrix 

Rs3 of the seismic excitation can be given by 
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As an instance, the benchmark isolated structure used in 

this paper consists of 9 levels and each level has two 

horizontal displacements and one rotational displacement 

about vertical axis per floor at the center of mass. The 

distances (m) to the center of mass of each floor from the 

bottom to the top from the center of mass of the base are 
[ 0.35, 0.32,0.11,0.16,0.16,0.16,0.16,0.16]

[ 1.42, 5.80, 7.20, 9.20, 9.20, 9.20, 9.20, 9.20]
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Response spectrum analysis considering non-classical damping in the base-isolated benchmark building 

 

Thus, the influence matrices Rs1 Rs2 and Rs3 can be 

obtained as  
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Appendix B: Derivations of Eqs.(7)-(12) 
 

For the convenience of description, the state equations 

are written here again, namely  

g  Av Bv ETu  (B.1) 

where  
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Let λ be an admissible eigenvalue. Associated with each 

eigenvalue λ is an admissible eigenvector ψ. The associated 

eigenvalue problem of Eq. (B.1) is given by  

   A B 0  (B.2) 

Since both A and B are non-positive definite matrices, 

eigenvalues λi and the relevant eigenvectors ψi are, in 

general, complex-valued and appear in conjugate pairs. The 

eigenvalue matrix (or spectral matrix), which is the 

assembly of all eigenvalues, is a diagonal matrix and 

denoted as 

 1 1 2 2diag Nc Nc       (B.3) 

The eigenvector matrix, which is the assembly of all 

eigenvectors, is denoted as 

 1 1 2 2 Nc Nc        (B.4) 

In the eigenvector space, the state vector can be 

expressed as 
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where  
T

1 1 2 2( ) [ ( ), ( ), ( ), ( ), , ( ), ( )]Nc Nct w t w t w t w t w t w tw is 

the complex modal coordinate vector in the time domain.  

Substituting Eq. (B.5) into Eq. (B.1) and pre-

multiplying Ψ
T
 to both sides of the resulting equation as 

well as making use of the orthogonality of the eigenvectors 

with respect to A and B, Eq. (B.1) can be transformed as 
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where T T T

     /(2 )i i i i i i i E M C       denotes the modal 

participation factor. Hence, the vector u
*
 can be expressed 

as 
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if let 

( ) ( ) ( )i i i gt t t  z z u  (B.8) 

Applying the Laplace transform to Eqs. (B.7) and (B.8), 

respectively, yields 
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and 
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Substituting Eq. (B.10) into Eq. (B.9) yields 
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(B.11) 

where 
 2Re( )i i i   , 
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Taking the inverse Laplace transform of Eq. (B.11) 

leads to 
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where ( )i tq  and  qi(t) are responses of the normalized 

SDOF system subjected to three-component seismic input , 

i.e.  

2( ) 2 ( ) ( ) ( )i i i i i i gt t t t    q q q u  (B.13) 

Utilizing us=Φsys, the displacement vector of the 

isolated structure in the physical space can be obtained as 

' * '

1

( )
( )

( )

( ) ( ) ( )]

b

c

ss s

Nb b

N

i i i i

i

t
t

t

t t t


    
     
    

   

u y
u

Iu u

T u T Tq Tq



 

 
(B.14) 

where ' diag( , )
bs NT I . 
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