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1. Introduction 
 

In recent years, materials with designed mechanical 

characteristics have attracted extensive attention. 

Functionally graded materials (FGMs) with continuous 

variation in composition and characteristics in desired 

directions are utilized to improve the materials performance 

with sudden distributions in material characteristics at the 

interfaces of multilayered structures. Having different 

advantageous characteristics, FGMs are suitable for various 

engineering applications and gained intense interest by 

several researchers (Alshorbagy et al. 2011, Chakraborty et 

al. 2003, Ait Amar Meziane et al. 2014, Pradhan and 

Chakraverty 2015, Wattanasakulpong and Chaikittiratana 

2015, Ait Yahia et al. 2015, Ait Atmane et al. 2015, 

Darılmaz 2015, Mahi et al. 2015, Taibi et al. 2015, Kar and 

Panda 2015, 2016, El-Haina et al. 2017, Menasria et al. 

2017, Ait Atmane et al. 2017). Many investigations are 

reported in literature to investigate the vibration and 

bending behavior of FG structures, here some of these 

disquisitions are mentioned briefly (Tornabene et al. 2014, 

2016, Bellifa et al. 2016, Houari et al. 2016, Boukhari et al. 
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2016, Tounsi et al. 2016, Zidi et al. 2017, Abualnour et al. 

2018). Moreover, structural elements such as beams, plates, 

and membranes in micro or nano-length scale are 

commonly used as components in micro/nano electro-

mechanical systems (MEMS/NEMS).  

Therefore, understanding the mechanical and physical 

properties of nanostructures is necessary for its practical 

applications. 

Nano-plates are one of the most important types of 

nanostructures which can be used as building blocks for the 

fabrication of nano-electro-mechanical systems (NEMs). 

Therefore, it is essential to consider the small scale 

influences  

in their mechanical investigation. Avoid the scale 

parameter in the classical continuum model makes it 

impossible to describe the size influences. Therefore, size 

dependent continuum models such as nonlocal elasticity 

theory of Eringen (1972, 1983) and strain gradient theory 

(Li et al. 2015) are proposed to take into account the small 

scale effects. Lots of works have been realized according to 

Eringen’s nonlocal elasticity theory to examine the size-

dependent behavior of structural systems (Aghababaei and 

Reddy 2009, Natarajan et al. 2012, Nami and Janghorban 

2013, Ebrahimi and Nasirzadeh 2015, Zemri et al. 2015, 

Adda Bedia et al. 2015, Barati et al. 2016, Mouffoki et al. 

2017, Karami et al. 2017). They demonstrated that nonlocal 

elastic theories can only provide softening stiffness with 
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increase of nonlocal parameter. Alshorbagy et al. (2013) 

studied the bending response of nanobeams using nonlocal 

FEM. For investigation of FGM nano-structures, nonlocal 

elasticity model of Eringen is used in many studies. 

Vibration and stability of nonlocal Euler-Bernoulli FG 

nano-beams implementing finite element method is 

investigated by Eltaher et al. (2012, 2013a). Eltaher et al. 

(2013b) presented the effects of neutral axis position on 

natural frequencies of FG macro/nanobeams. Eltaher et al. 

(2014a) examined the vibration behavior of nonlinear 

graduation of nano-Timoshenko beam by considering the 

neutral axis position. By employing the nonlocal 

Timoshenko beam theory, Eltaher et al. (2014b) analyzed 

the static and buckling behaviors of FG nanobeam. 

Rahmani and Jandaghian (2015) discussed stability analysis 

of FG nano-beams using nonlocal third-order shear 

deformable beam model. Hosseini-Hashemi et al. (2013) 

proposed an exact analytical solution for dynamic of FG 

circular/annular Mindlin nano-plates according to a 

nonlocal elasticity. Nami and Janghorban (2014) studied the 

resonance behaviors of FG micro/nano-plates by employing 

Kirchhoff plate theory. Daneshmehr and Rajabpoor (2014) 

employed a nonlocal higher order plate model for buckling 

analysis of FG nano-plates subjected to biaxial in-plane 

loadings using generalized differential quadrature (GDQ). 

Belkorissat et al. (2015) analyzed the dynamic properties of 

FG nano-plates via a novel nonlocal hyperbolic refined 

plate model. Zare et al. (2015) investigated the natural 

frequencies of a FG nano-plate for different combinations 

of boundary conditions. Recently, Bounouara et al. (2016) 

developed a nonlocal zeroth-order shear deformation theory 

for free vibration of FG nanoscale plates resting on elastic 

foundation. Hamed et al. (2016) investigated the free 

vibration of symmetric and sigmoid functionally graded 

nanobeams. Thermal stability can have a destructive effect 

on the safety of structures and thus it is considered as an 

undesired phenomenon in several works (Bachir Bouiadjra 

et al. 2013). Recently, Barati et al. (2016) analyzed the 

thermal buckling behavior of size-dependent FG nano-

plates resting on two-parameter elastic foundation under 

various types of thermal environments based on a new 

refined trigonometric shear deformation theory. More 

reports on the nanomechanics theories may be also found in 

the open literature (see, e.g., Mahmoud et al. 2012, Eltaher 

et al. 2013c, d, Khater et al. 2014, Eltaher et al. 2014c, d, 

Bouafia et al. 2017, Ebrahimi and Salari 2015, Ebrahimi et 

al. 2015, Larbi Chaht et al. 2015, Ebrahimi and Barati 

2016ab, Eltaher et al. 2016a, b, c, d, Ahouel et al. 2016, 

Besseghier et al. 2017). 

Structures are often exposed to heat and moisture during 

manufacturing or use. The variation of temperature and 

moisture leads to a reverse impact on the stiffness and 

strength of the composite materials. The influences of 

thermal or hygrothermal conditions on the FGM structures 

have been examined in many works (see, e.g., Beldjelili et 

al. 2016, Bouderba et al. 2016, Bousahla et al. 2016, 

Hamidi et al. 2015, Tounsi et al. 2013, Zidi et al. 2014, 

Attia et al. 2015, Bouderba et al. 2013). 

In this article, a novel nonlocal trigonometric shear 

deformation theory is proposed for the thermal stability 

analysis of simply supported FG nano-plates on elastic 

foundation subjected to three kinds of thermal loading. The 

consideration of the integral term in the displacement field 

leads to a reduction in the number of variables and 

governing equations. Implementing the stationary potential 

energy, the nonlocal governing equations are derived and 

they are solved via Navier solution technique. Various cases 

of thermal loading such as uniform, linear and sinusoidal 

temperature rises are considered in this study and applied in 

the analysis of FG nano-plates. Finally, the effects of the 

elastic foundation, different thermal loads, gradient index, 

nonlocal parameter, aspect and thickness ratios on the 

thermal stability of embedded FG nano-plates is explored.   

 

 

2. Theory and formulation 
 

2.1 Mori-Tanaka FGM plate model 
 

By employing the Mori-Tanaka homogenization method 

the local effective material characteristics of the FG nano-

plate such as effective local bulk modulus Ke and shear 

modulus μe can be computed 
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Where subscripts m and c represent metal and ceramic, 

respectively and the relation between the volume fraction of 

the ceramic and the metal is defined by 

1 mc VV  (3) 

The volume fraction of the ceramic constituent of the 

FG nano-plate is considered to be expressed by 

p
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Here P is the power law index which defines the 

material variation across the thickness of the plate and Z is 

the distance from the mid-surface of the FG nano-plate. 

Thus, the effective Young’s modulus (E), via the Mori-

Tanaka technique can be written by 
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The thermal expansion coefficient (α) may be given by 
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The material composition of FG nano-plate at the top 

surface (z=+h/2) is considered to be the pure ceramic and it 

vary continuously to the bottom surface (z=−h/2) which is 

pure metal as presented in 
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Fig. 1 Geometry and coordinates of embedded functionally 

graded nano-plate 

 

 

2.2 Displacement base field 
 

The displacement field of the novel theory is expressed 

as follows (Chikh et al. 2017, Bourada et al. 2016, Merdaci 

et al. 2016, Hebali et al. 2016, Meftah et al. 2017, Meksi et 

al. 2017, Fahsi et al. 2017) 
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where u0, v0, w0, and θ are the four unknown displacement 

functions of the mid-surface of the plate. The last variable is 

a mathematical term that allows obtaining the rotations of 

the normal to the mid-plate about the x and y axes (as in the 

ordinary HSDT). The coefficients k1 and k2 depends on the 

geometry. The integrals employed are undetermined.  

f(z) represents a shape function determining the 

transverse shear strain variations and the stress distribution 

within the thickness. The kinematic of the classical plate 

theory (CPT) can be easily obtained, if f(z)=0. In this 

article, the proposed HSDT has a trigonometric function in 

the form 
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The nonzero strains of the proposed plate theory are 

expressed as follows 
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The integrals employed in the above equations shall be 

resolved by a Navier type technique and can be written as 

follows 
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where the coefficients A′ and B′ are expressed according to 

the type of solution employed, in this case via Navier. 

Therefore, A′, B′, k1 and k2 are expressed as follows 
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where α and β are used in expression (26). 

It should be noted that unlike the FSDT, this theory does 

not require shear correction coefficients.  

The stability equations of FG plates under thermal 

loadings may be obtained on the basis of the stationary 

potential energy (Reddy 1984, Klouche et al. 2017). The 

stability equations are expressed as 
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where 
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yN , 
0

xyN  are in-plane applied loads and kw, 

ks are elastic foundation parameters. 

Using constitutive relations, the stress and moment 

resultants are defined by 
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and in this work it is supposed that the nano-plate is under a 

biaxial thermo-mechanical loading and the shear loading is 
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ignored ( T
yx NNN  00 , 00 xyN ) and thermal resultant 

can be expressed as 
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where T(x,y,z) is the temperature rise through-the-thickness. 

 

2.3 The nonlocal elasticity model for FG nano-plate 
 
Based on Eringen’s nonlocal elasticity theory (Eringen, 

1972), the stress state at a point inside a body is considered 

to be a function of strains of all points in the neighbor 

regions. For homogeneous elastic solids, the nonlocal 

stress-tensor components σij at each point x in the solid can 

be expressed as 
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where tij(x′) are the components available in local stress 

tensor at point x which are related to the strain tensor 

components εkl as 
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The concept of Eq. (16) is that the nonlocal stress at any 

point is a weighting average of the local stress of all near 

points, and the nonlocal kernel α(|x′−x|, τ) considers the 

effect of the strain at the point x′ on the stress at the point x 

in the elastic body. The parameter α is an internal 

characteristic length (e.g., lattice parameter, granular 

distance, the length of C-C bonds). Also |x′−x| is Euclidean 

distance and τ is a constant value as follows 

l
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which defines the relation of a characteristic internal length, 

and a characteristic external length, l (e.g., crack length and 

wavelength) by employing a constant, e0, dependent on 

each material. The value of e0 is experimentally determined 

by comparing the scattering curves of plane waves with 

those of atomistic dynamics. 

In the nonlocal elasticity theory, the points undergo 

translational motion as in the classical case, but the stress at 

a point depends on the strain in a region near that point. As 

for physical interpretation, the nonlocal model incorporates 

long range interactions between points in a continuum 

model.  

Such long range interactions occur between charged 

atoms or molecules in a solid. Eringen (1972, 1983) 

numerically obtain the functional form of the kernel. By 

appropriate selection of the kernel function, Eringen shown 

that the nonlocal constitutive equation given in integral 

form (see Eq. (19)) can be represented in an equivalent 

differential form as 
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In which 2 is the Laplacian operator. Hence, the scale 

length e0a considers the effects of small size on the 

behavior of nanostructures. Thus, the constitutive relations 

of nonlocal theory for a FG nano-plate can be written as 
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In which μ=(e0a)2 and the stiffness coefficients, Cij, can 

be defined as 
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Integrating Eq. (20) over the plate’s cross-section area 

yields the force-strain and the moment-strain of the 

nonlocal refined FG nano-plates as follows 
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Where the cross-sectional rigidities are defined as 

follows 
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The nonlocal equations of stability of FG nano-plates in 

terms of the displacement can be obtained by substituting 

Eq. (22), into Eq. (13) as follows 
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3. Solution procedures 
 

In this section, an analytical solution based on the 

Navier method is utilized to solve the nonlocal governing 

equations of a simply supported FG nano-plate. To satisfy 

governing equations of stability and the simply supported 

boundary condition, the displacement variables are adopted 

to be of the form 
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where (Umn, Vmn, Wmn, Xmn) are the unknown Fourier 

coefficients. 

With 

am /   and bn /   (26) 

Inserting Eq. (25) into Eq. (24), leads to 
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Table 1 Material properties of metal and ceramic phases 

Properties Metal Ceramic 

E (Pa) 70 380 

α (K-1) 2310-6 7.4 10-6 

v 0.3 0.3 
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4. Types of thermal loading 
 

4.1 Uniform temperature rise (UTR) 
 
For a FG nanoscale plate at reference temperature T0, 

the temperature is uniformly raised to a final value T which 

the temperature variation is ΔT=T−T0. 

 
4.2 Linear temperature rise (LTR) 
 
For a FG nanoscale plate for which the plate thickness is 

thin enough, the temperature variation is considered to be 

changed linearly within the thickness as follows (Barati et 

al. 2016) 
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where the buckling temperature difference in Eq. (29) is 

ΔT=Tc−Tm and Tc and Tm are the temperature of the top 

surface which is ceramic-rich and the bottom surface which 

is metal-rich, respectively (see Table 1). 

 

4.3 Sinusoidal temperature rise (STR) 
 

The temperature field when FG nano-plate is exposed to 

sinusoidal temperature rise across the thickness can be 

defined as (Na and Kim 2004, Barati et al. 2016) 
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where ΔT=Tc−Tm is temperature change. 

 
 
5. Numerical results and discussions 
 

In this section, illustrative results are presented to 

examine the thermal stability of embedded FG nano-plates 

modeled based on a new nonlocal trigonometric shear 

deformation theory. The material properties of the FG nano-

plate change across the thickness direction according to 

Mori-Tanaka homogenization method. The effects of 

gradient index, scale parameter, various thermal forces, 

elastic foundation parameters and aspect ratio on the critical 

buckling temperatures of the FG nano-plate are  
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Table 2 Minimum critical temperature parameter αTcr of the 

simply supported isotropic plate (a/b=1, α0=1.0×10-6 /K, 

E=1.0×106 N/m2, v=0.3)  

a/h 
Present 

theory 

Noor and Burton 

(1992) 

Matsunaga 

(2005) 

Kettaf 

(2013) 

10 0.1198×10-1 0.1183×10-1 0.1183×10-1 0.1198×10-1 

20 0.3120×10-2 0.3109×10-2 0.3109×10-2 0.3119×10-2 

100 0.1265×10-3 0.1264×10-3 0.1264×10-3 0.1265×10-3 

 

 

investigated. A 5 K increase in metal surface to reference 

temperature T0 of FG nano-plate is considered, i.e., 

Tm−T0=5 K (Barati et al. 2016). The following 

dimensionless of Winkler’s and Pasternak’s elastic 

foundation parameters are used in the present analysis 
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In order to verify the correctness of the present theory, a 

comparison has been made with the results reported by 

 

 

Matsunaga (2005), Kettaf et al. (2013) and Noor and 

Burton (1992) for homogeneous isotropic plates subjected 

to uniform temperature load. The critical buckling 

temperature difference is tabulated in Table 2. From these 

results, it can be confirmed that the present theory is in 

excellent agreement with those obtained by Kettaf et al. 

(2013). 

In the second verification, the results for thermal 

buckling of FG plates under uniform and linear thermal 

loading through the thickness are computed and compared 

with those obtained by CPT, FSDT, TSDT and SSDT as 

shown in Table 3. 

It is clear that the results present considerable 

differences between the shear deformation plate theories 

and the CPT one, indicating the shear deformation 

influence. In addition, a good agreement is obtained 

between the present theory and other HSDTs for all values 

the side-to-thickness ratio a/h and the elastic foundations 

parameters (Kw, Ks).  

Another verification is carried out in this work by 

comparing the obtained results with those computed with  

 
 

 

Table 3 Comparison of critical buckling temperature of simply-supported power-law FG plates (p=1) 

 Theory 

Kw=0 

Ks=0 

Kw=10 

Ks=0 

Kw=0 

Ks=0 

a/h a/h a/h 

5 10 50 5 10 50 5 10 50 

U 

T 

R 

Present 2.67426 0.75858 0.03171 2.83787 0.79949 0.03335 6.06743 1.60688 0.06565 

SSDT (a) 2.67241 0.75845 0.03171 2.83602 0.79935 0.03335 6.06558 1.60674 0.06565 

TSDT (a) 2.67153 0.75840 0.03171 2.83514 0.79930 0.03335 6.06470 1.60669 0.06565 

FSDT 2.67039 0.75837 0.03171 2.83400 0.79928 0.03335 6.06356 1.60667 0.06565 

CPT 3.17751 0.79438 0.03178 3.34112 0.83528 0.03341 6.57068 1.64267 0.06571 

L 

T 

R 

Present 5.00611 1.41332 0.05010 5.31296 1.49003 0.05317 11.36989 3.00427 0.11374 

SSDT (a) 5.00264 1.41307 0.05010 5.30948 1.48978 0.05317 11.36642 3.00402 0.11374 

TSDT (a) 5.00099 1.41297 0.05010 5.30784 1.48968 0.05317 11.36477 3.00391 0.11374 

FSDT 4.99885 1.41292 0.05010 5.30570 1.48964 0.05317 11.36263 3.00387 0.11374 

CPT 5.94993 1.48045 0.05022 6.25678 1.55716 0.05328 12.31372 3.07140 0.11385 

Table 4 Critical buckling temperature of simply-supported FG nano-plates for various shear deformation theories 

(a/b=1, p=1, Kw=Ks=0) 

loading MODEL 

μ=0 nm2 μ=2 nm2 

a/h a/h 

5 10 20 5 10 20 

UTR 

CPT(a) 3199.97 897.771 231.517 2294.24 643.663 165.988 

HPT(a) 3077.83 887.779 230.845 2206.67 636.499 165.506 

SSDT(a) 3077.60 887.735 230.842 2206.51 636.468 165.504 

Present 3078.95 887.823 230.848 2207.47 535.636 656.618 

LTR 

CPT(a) 5874.65 1641.56 416.502 4209.27 1174.32 296.012 

HPT(a) 5650.08 1623.18 415.266 4048.26 1161.15 295.126 

SSDT(a) 5649.66 1623.10 415.260 4047.96 1161.09 295.121 

Present 5874.65 1641.56 416.502 4209.27 1174.32 296.012 

STR 

CPT(a) 7773.35 2172.11 551.116 5569.71 1553.87 391.683 

HPT(a) 7476.19 2147.80 549.481 5356.67 1536.44 390.511 

SSDT(a) 7475.64 2147.69 549.473 5356.27 1536.36 390.505 

Present 7478.90 2147.91 549.486 5358.61 1536.52 390.515 

(a) Results reported from Barati et al. (2016) 
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various plate theories (Barati et al. 2016) such as CPT, 

higher order plate theory (HPT) and SSDT in buckling 

analysis of square FG nano-plates under thermal 

environments when p=1 and (Kw=Ks=0). 

The results of this comparison are presented in Table. 4.  

It can be seen from these results that that the obtained 

critical buckling temperatures using by higher order shear 

deformation models are very close together. But, the CPT 

by ignoring shear deformation influence gives larger values 

for critical temperature. This difference between CPT and 

HSDTs becomes more important for lower values of a/h. 

Table 5 presents the critical buckling temperature of FG 

nano-plate supported by elastic foundation. In this Table, 

we present also the influences of elastic foundation 

parameters, the thermal loads types (UTR, LTR and STR), 

scale parameter (μ) and geometric parameters (a/h and a/b) 

on critical temperature. Compared to the results presented 

by Barati et al. (2016), we can see that Table 5 gives almost 

the same results.  

According to these results, it is clear that for all types of 

thermal loads because of the reducing effect of scale 

parameter on the plate stiffness increasing their values leads 

to a decrease in critical stability temperatures of FG nano-

plates. 

Contrary to scale parameter, Winkler and Pasternak 

parameters have an increasing influence on the both plate 

stiffness and critical stability temperature. In addition, it is 

concluded that for all values of foundation parameters, 

regardless of thermal load type increasing in the ratio a/b 

and the ratio a/h respectively increases and reduces the 

buckling temperatures (ΔTcr) of FG nano-plates. Finally, it 

must be indicated that sinusoidal thermal load (STR) 

produces higher values of critical temperature difference 

compared to those of UTR and LTR, while uniform 

temperature rise provides the lower ones.  

Fig. 2 presents the effect of scale parameter on the 

critical stability temperature (ΔTcr) of square FG nano-

plates with and without elastic foundation for various 

temperature fields. It can be observed that for all type of 
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Fig. 2 Effect of scale parameter on the critical buckling 

temperature of simply-supported square FG nano-plate 

(a/h=10; p=1) 

 

 

temperature distribution the critical stability temperature of 

FG nano-plate decreases when the scale parameter 

increases. This is due to the fact that presence of nonlocality 

makes the plate structure more flexible.  

Table 5 Critical buckling temperature of simply-supported FG nano-plates under various temperature rises (p=1, 

Kw=25, Ks=5) 

Loading μ 

a/b=1 a/b=2 a/b=3 

a/h a/h a/h 

5 10 20 5 10 20 5 10 20 

UTR 

0 6059.95 1633.07 417.160 8712.56 2716.06 729.501 11585.3 4310.76 1251.92 

1 5552.38 1486.72 379.105 8043.41 2489.70 667.366 10687.3 3946.49 1143.63 

2 5188.48 1381.78 351.821 7506.70 2308.14 617.528 9950.91 3647.74 1054.82 

3 4914.80 1302.87 331.301 7066.63 2159.27 576.665 9336.01 3398.30 980.671 

LTR 

0 11133.4 2993.57 757.847 16010.8 4984.88 1332.15 21292.9 7917.01 2292.73 

1 10200.1 2724.46 687.874 14780.4 4568.67 1217.91 19641.8 7247.30 2093.62 

2 9530.96 2531.52 637.706 13793.5 4234.82 1126.27 18287.7 6697.99 1930.33 

3 9027.75 2386.41 599.977 12984.4 3961.10 1051.13 17157.1 6239.33 1793.99 

STR 

0 14731.7 3961.10 1002.78 21185.5 6596.00 1762.71 28174.8 10475.9 3033.74 

1 13496.8 3605.01 910.196 19557.4 6045.27 1611.53 25990.1 9589.64 2770.28 

2 12611.4 3349.70 843.813 18251.6 5603.52 1490.28 24198.4 8862.79 2554.22 

3 11945.5 3157.71 793.890 17180.9 5241.33 1390.86 22702.3 8255.89 2373.81 
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Fig. 3 Effect of power law index on the critical stability 

temperature of simply supported square FG nano-plate 

under uniform temperature rise (a/h=10, μ=2) 
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Fig. 4 Effect of power law index on the critical stability 

temperature of simply supported square FG nano-plate 

under linear temperature rise (a/h=10; μ=2) 
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Fig. 5 Effect of power law index on the critical stability 

temperature of simply supported square FG nano-plate 

under sinusoidal temperature rise (a/h=10; μ=2) 

 

 

Thus, nonlocal plate theory provides lower buckling 

results compared to local plate theory. 

The influences of power law index (p) on variations of 

the critical stability temperature of simply supported FG 

nano-plates under uniform, linear and sinusoidal 

temperature distributions at a/h=10 and μ=2 are 

demonstrated in Figs. 3-5, respectively.  

It can be observed that for all values of elastic 

foundation parameters the critical stability temperature 
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Fig. 6 Influence of side-to-thickness ratio on the critical 

stability temperature of square simply-supported FG nano-

plate (p=1, μ=2) 
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Fig. 7 Influence of Winkler parameter on the critical 

stability temperature of simply supported square FG nano-

plate under various temperature rises (a/h=10, p=1, μ=2, 

Ks=25) 

 

 

decreases with  

Increasing the power law index, where this decrease is 

more sensible according to the lower values of power law 

index. In addition, it is shown that the Pasternak parameter 

has a more considerable effect on the critical stability 

temperature than Winkler parameter.  

Therefore, with an increase of Pasternak constant the 

critical stability temperature increases considerably. 

Fig. 6 presents the variation of the critical stability  
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Fig. 8 Influence of Pasternak parameter on the critical 

stability temperature of simply supported square FG nano-

plate under various temperature rises (a/h=10, p=1, μ=2, 

Ks=25) 

 

 

temperature difference of FG nano-plate versus side-to-

thickness ratio a/h. The FG nano-plate is assumed to be 

exposed to uniform, linear and sinusoidal temperature 

loads.  

It can be observed that as the plate side-to-thickness 

ratio a/h increases the critical stability temperature 

decreases with a severe rate, especially for the case of 

sinusoidal temperature load. To demonstrate the effects of 

elastic foundation coefficients on the thermal stability 

response of FG nano-plate individually, Figs. 7 and 8 show 

the variations of the critical stability temperature difference 

versus the Winkler and Pasternak constants, respectively. 

It is seen from these results that regardless of the type of 

the thermal load, the critical stability temperature arises 

with the increase of Winkler and Pasternak coefficients, 

because of the increment in stiffness of the FG nano-plate. 

Moreover, according to these results, it is clear that 

sinusoidal temperature load (STR) gives larger values of 

ΔTcr than UTR and LTR, while UTR provides the lower 

values for critical temperature. Also, the differences 

between the buckling results of various thermal loads 

become more important for larger values of elastic 

foundation coefficients. 

 
 
6. Conclusions 
 

In this article, thermal stability response of the FG nano-

plates resting on two-parameter elastic foundation subjected 

to various thermal loads is investigated within a new 

nonlocal trigonometric shear deformation theory. By 

proposing further simplifying suppositions to the existing 

HSDTs and with the incorporation of an undetermined 

integral term, the number of unknowns and governing 

equations of the proposed HSDT are reduced by one, and 

thus, make this theory simple and efficient to use. Three 

types of thermal loads including uniform, linear and 

sinusoidal temperature variations are considered in this 

study. Material properties of the FG nano-plates vary 

gradually according to Mori-Tanaka model. Via the 

stationary potential energy and nonlocal constitutive 

relations of Eringen, the nonlocal governing differential 

equations are deduced. Then, these equations are solved by 

employing Navier analytical procedure. Finally, it is 

demonstrated that buckling behaviors of FG nano-plates are 

affected by various parameters such as elastic foundation 

parameters, scale parameter, power law index, thermal 

loadings, and side-to-thickness ratio. It is found that the 

presence of nonlocality reduces the plate stiffness and 

diminishes the critical stability temperature of FG nano-

plates. Contrary to the scale parameter, Winkler and 

Pasternak coefficients enhance the plate structure and 

increase the buckling temperatures. Moreover, it is 

concluded that sinusoidal temperature load provides higher 

critical stability temperatures than uniform and linear 

temperature loads. An improvement of present formulation 

will be considered in the future work to account for the 

thickness stretching effect by using quasi-3D shear 

deformation models (Bessaim et al. 2013, Bousahla et al. 

2014, Swaminathan and Naveenkumar 2014, Sayyad and 

Ghugal 2014, Belabed et al. 2014, Fekrar et al. 2014, 

Hebali et al. 2014, Meradjah et al. 2015, Hamidi et al. 

2015, Bourada et al. 2015, Bennoun et al. 2016, Draiche et 

al. 2016). 

 
 
Acknowledgments 
 

This research was supported by the Algerian National 

Thematic Agency of Research in Science and Technology 

(ATRST) and university of Sidi Bel Abbes (UDL SBA) in 

Algeria. 
 

 

References 
 
Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2018), “A novel quasi-3D trigonometric plate 

theory for free vibration analysis of advanced composite 

plates”, Compos. Struct., 184, 688-697. 

Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and 

Mahmoud, S.R. (2015), “On the thermal buckling 

characteristics of armchair single-walled carbon nanotube 

embedded in an elastic medium based on nonlocal continuum 

elasticity”, Brazil. J. Phys., 45(2), 225-233. 

Aghababaei, R. and Reddy, J.N. (2009), “Nonlocal third-order 

shear deformation plate theory with application to bending and 

vibration of plates”, J. Sound Vib., 326(1-2), 277-289.  

Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. 

(2016) “Size-dependent mechanical behavior of functionally 

graded trigonometric shear deformable nanobeams including 

neutral surface position concept”, Steel Compos. Struct., 20(5), 

963-981. 

Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), 

“An efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under various 

boundary conditions”, J. Sandw. Struct. Mater., 16(3), 293-318. 

Ait Atmane, H., Tounsi, A. and Bernard, F.  (2017), “Effect of 

thickness stretching and porosity on mechanical response of a 

functionally graded beams resting on elastic foundations”, Int. 

J. Mech. Mater. Des., 13(1), 71-84. 

Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. 

(2015), “A computational shear displacement model for 

vibrational analysis of functionally graded beams with 

porosities”, Steel Compos. Struct., 19(2), 369-384. 

Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. 

(2015), “Wave propagation in functionally graded plates with 

399



 

Hafid Khetir, Mohamed Bachir Bouiadjra, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud 

 

porosities using various higher-order shear deformation plate 

theories”, Struct. Eng. Mech., 53(6), 1143-1165. 

Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), “Free 

vibration characteristics of a functionally graded beam by finite 

element method”, Appl. Math. Model., 35(1), 412-425. 

Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2013), 

“Static analysis of nanobeams using nonlocal FEM”, J. Mech. 

Sci. Technol., 27(7), 2035-2041. 

Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. 

(2015), “Free vibration analysis of functionally graded plates 

with temperature-dependent properties using various four 

variable refined plate theories”, Steel Compos. Struct., 18(1), 

187-212.  

Bachir Bouiadjra, R., Adda Bedia, E.A. and Tounsi, A. (2013), 

“Nonlinear thermal buckling behavior of functionally graded 

plates using an efficient sinusoidal shear deformation theory”, 

Struct. Eng. Mech., 48(4), 547-567.  

Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), “Thermo-

mechanical buckling analysis of embedded nanosize FG plates 

in thermal environments via an inverse cotangential theory”, 

Compos. Struct., 141, 203-212. 

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and 

Anwar Bég, O. (2014), “An efficient and simple higher order 

shear and normal deformation theory for functionally graded 

material (FGM) plates”, Compos.: Part B, 60, 274-283. 

Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), “Hygro-

thermo-mechanical bending of S-FGM plates resting on 

variable elastic foundations using a four-variable trigonometric 

plate theory”, Smart Struct. Syst., 18(4), 755-786.  

Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2015), “On vibration properties of functionally 

graded nano-plate using a new nonlocal refined four variable 

model”,  Steel Compos. Struct., 18(4), 1063-1081.  

Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, 

A. (2016), “Bending and free vibration analysis of functionally 

graded plates using a simple shear deformation theory and the 

concept the neutral surface position”, J. Braz. Soc. Mech. Sci. 

Eng., 38(1), 265-275. 

Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), “A novel five 

variable refined plate theory for vibration analysis of 

functionally graded sandwich plates”, Mech. Adv. Mater. Struct., 

23(4), 423-431. 

Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and 

Adda Bedia, E.A. (2013), “A new higher-order shear and 

normal deformation theory for the static and free vibration 

analysis of sandwich plates with functionally graded isotropic 

face sheets”, J. Sandw. Struct. Mater., 15(6), 671-703. 

Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. 

(2017), “Free vibration analysis of embedded nanosize FG 

plates using a new nonlocal trigonometric shear deformation 

theory”, Smart Struct. Syst., 19(6), 601-614. 

Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. 

(2017), “A nonlocal quasi-3D theory for bending and free 

flexural vibration behaviors of functionally graded nanobeams”, 

Smart Struct. Syst., 19(2), 115-126  

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), 

“Thermomechanical bending response of FGM thick plates 

resting on Winkler-Pasternak elastic foundations”, Steel 

Compos. Struct., 14(1), 85-104. 

Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. 

(2016), “Thermal stability of functionally graded sandwich 

plates using a simple shear deformation theory”, Struct. Eng. 

Mech., 58(3), 397-422. 

Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2016), “An efficient shear deformation theory 

for wave propagation of functionally graded material plates”, 

Struct. Eng. Mech., 57(5), 837-859. 

Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. 

(2016), “A nonlocal zeroth-order shear deformation theory for 

free vibration of functionally graded nanoscale plates resting on 

elastic foundation”, Steel Compos. Struct., 20(2), 227-249. 

Bourada, F., Amara, K. and Tounsi, A. (2016), “Buckling analysis 

of isotropic and orthotropic plates using a novel four variable 

refined plate theory”, Steel Compos. Struct., 21(6), 1287-1306. 

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A 

new simple shear and normal deformations theory for 

functionally graded beams”, Steel Compos. Struct., 18(2), 409-

423.  

Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. 

(2016), “On thermal stability of plates with functionally graded 

coefficient of thermal expansion”, Struct. Eng. Mech., 60(2), 

313-335. 

Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. 

(2014), “A novel higher order shear and normal deformation 

theory based on neutral surface position for bending analysis of 

advanced composite plates”, Int. J. Comput. Meth., 11(6), 

1350082. 

Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), “A 

new beam finite element for the analysis of functionally graded 

materials”, Int. J. Mech. Sci., 45(3), 519-539. 

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), 

“Thermal buckling analysis of cross-ply laminated plates using 

a simplified HSDT”, Smart Struct. Syst., 19(3), 289-297 

Daneshmehr, A. and Rajabpoor, A. (2014), “Stability of size 

dependent functionally graded nanoplate based on nonlocal 

elasticity and higher order plate theories and different boundary 

conditions”, Int. J. Eng. Sci., 82, 84-100.  

Darılmaz, K. (2015), “Vibration analysis of functionally graded 

material (FGM) grid systems”, Steel Compos. Struct., Int. J., 

18(2), 395-408.  

Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), “A refined 

theory with stretching effect for the flexure analysis of 

laminated composite plates”, Geomech. Eng., 11(5), 671-690. 

Ebrahimi, F. and Barati, M.R. (2016a), “Nonlocal strain gradient 

theory for damping vibration analysis of viscoelastic 

inhomogeneous nano-scale beams embedded in visco-Pasternak 

foundation”, J. Vib. Control, 1077546316678511.  

Ebrahimi, F. and Barati, M.R. (2016b), “A unified formulation for 

dynamic analysis of nonlocal heterogeneous nanobeams in 

hygro-thermal environment”, Appl. Phys. A, 122, 792. 

Ebrahimi, F. and Nasirzadeh, P. (2015), “A nonlocal Timoshenko 

beam theory for vibration analysis of thick nanobeams using 

differential transform method”, J. Theor. Appl. Mech., 53(4), 

1041-1052. 

Ebrahimi, F. and Salari, E. (2015), “Effect of various thermal 

loadings on buckling and vibrational characteristics of nonlocal 

temperature dependent FG nanobeams”, Mech. Adv. Mater. 

Struct., 23(12), 1379-1397. 

Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), 

“Thermomechanical vibration behavior of FG nanobeams 

subjected to linear and nonlinear temperature distributions”, J. 

Therm. Stress., 38(12), 1362-1388. 

El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “A simple analytical approach for 

thermal buckling of thick functionally graded sandwich plates”, 

Struct. Eng. Mech., 63(5), 585-595. 

Eltaher, M., Khater, M., Abdel-Rahman, E. and Yavuz, M. 

(2014c), “Model for nano-scale bonding wires under thermal 

loading”, Proceedings of the Nanotechnology (IEEE-NANO), 

2014 IEEE 14th International Conference on, IEEE. 

Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and 

Mansour, A. (2014a), “Vibration of nonlinear graduation of 

nano-Timoshenko beam considering the neutral axis position”, 

Appl. Math. Comput., 235, 512-529. 

400



 

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates 

 

Eltaher, M.A., Agwa, M.A. and Mahmoud, F.F. (2016d), 

“Nanobeam sensor for measuring a zeptogram mass”, Int. J. 

Mech. Mater. Des., 12(2), 211-221. 

Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013b). 

“Determination of neutral axis position and its effect on natural 

frequencies of functionally graded macro/nanobeams”, Compos. 

Struct., 99, 193-201. 

Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013d), 

“Vibration analysis of Euler-Bernoulli nanobeams by using 

finite element method”, Appl. Math. Model., 37(7), 4787-4797.  

Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016a), “Nonlinear 

analysis of size-dependent and material-dependent nonlocal 

CNTs”, Compos. Struct., 153, 902-913. 

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), “Free 

vibration analysis of functionally graded size-dependent 

nanobeams”, Appl. Math. Comput., 218(14), 7406-7420. 

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013a), “Static 

and stability analysis of nonlocal functionally graded 

nanobeams”, Compos. Struct., 96, 82-88.  

Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. 

(2014d), “Mechanical analysis of higher order gradient 

nanobeams”, Appl. Math. Comput., 229, 260 

Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014b), 

“Static and buckling analysis of functionally graded 

Timoshenko nanobeams”, Appl. Math. Comput., 229, 283-295. 

Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016c), “A review 

on nonlocal elastic models for bending, buckling, vibrations, 

and wave propagation of nanoscale beams”, Appl. Math. 

Model., 40(5-6), 4109-4128. 

Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahmanb, E. and 

Yavuz, M. (2016b), “On the static stability of nonlocal 

nanobeams using higher-order beam theories”, Adv. Nano Res., 

4(1), 51-64. 

Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. 

(2013c), “Coupling effects of nonlocal and surface energy on 

vibration analysis of nanobeams”, Appl. Math. Comput., 224, 

760-774. 

Eringen, A.C. (1972), “Nonlocal polar elastic continua”, Int. J. 

Eng. Sci., 10, 1-16. 

Eringen, A.C. (1983), “On differential equations of nonlocal 

elasticity and solutions of screw dislocation and surface waves”, 

J. Appl. Phys., 54(9), 4703-4710. 

Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2017), “A four variable refined nth-order shear 

deformation theory for mechanical and thermal buckling 

analysis of functionally graded plates”, Geomech. Eng., 13(3), 

385-410. 

Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), 

“A new five-unknown refined theory based on neutral surface 

position for bending analysis of exponential graded plates”, 

Meccanica, 49(4), 795-810. 

Hamed, M.A., Eltaher, M.A., Sadoun A.M. and Almitani K.H. 

(2016), “Free vibration of symmetric and sigmoid functionally 

graded nanobeams”, Appl. Phys. A, 122(9), 829. 

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. 

(2015), “A sinusoidal plate theory with 5-unknowns and 

stretching effect for thermomechanical bending of functionally 

graded sandwich plates”, Steel Compos. Struct., 18(1), 235-253.  

Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), “A novel 

four variable refined plate theory for bending, buckling, and 

vibration of functionally graded plates”, Steel Compos. Struct., 

22(3), 473-495. 

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda 

Bedia, E.A. (2014), “A new quasi-3D hyperbolic shear 

deformation theory for the static and free vibration analysis of 

functionally graded plates”, ASCE J. Eng. Mech., 140(2), 374-

383. 

Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), 

“An exact analytical solution for free vibration of functionally 

graded circular/annular Mindlin nanoplates via nonlocal 

elasticity”, Compos. Struct., 103, 108-118.  

Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. 

(2016), “A new simple three -unknown sinusoidal shear 

deformation theory for functionally graded plates”, Steel 

Compos. Struct., 22(2), 257-276. 

Kar, V.R. and Panda, S.K. (2015), “Nonlinear flexural vibration of 

shear deformable functionally graded spherical shell panel”, 

Steel Compos. Struct., 18(3), 693-709. 

Kar, V.R. and Panda, S.K. (2016), “Nonlinear thermomechanical 

deformation behaviour of P-FGM shallow spherical shell 

panel”, Chin. J. Aeronaut., 29(1), 173-183.  

Karami, B., Janghorban, M. and Tounsi, A. (2017), “Effects of 

triaxial magnetic field on the anisotropic nanoplates”, Steel 

Compos. Struct., 25(3), 361-374. 

Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. 

(2013), “Thermal buckling of functionally graded sandwich 

plates using a new hyperbolic shear displacement model”, Steel 

Compos. Struct., 15(4), 399-423. 

Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), “A refined and 

simple shear deformation theory for thermal buckling of solar 

functionally graded plates on elastic foundation”, Int. J. 

Comput. Meth., 11(5), 135007. 

Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M, 

(2014), “Surface and thermal load effects on the buckling of 

curved nanowires”, Eng. Sci. Technol., 7(4), 279-283. 

Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, 

S.R. (2017), “An original single variable shear deformation 

theory for buckling analysis of thick isotropic plates”, Struct. 

Eng. Mech., 63(4), 439-446. 

Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Bég, 

O. and Mahmoud, S.R. (2015), “Bending and buckling analyses 

of functionally graded material (FGM) size-dependent 

nanoscale beams including the thickness stretching effect”, Steel 

Compos. Struct., 18(2), 425-442. 

Li, L., Hu, Y. and Ling, L. (2015), “Flexural wave propagation in 

small-scaled functionally graded beams via a nonlocal strain 

gradient theory”, Compos. Struct., 133, 1079-1092. 

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), “A new 

hyperbolic shear deformation theory for bending and free 

vibration analysis of isotropic, functionally graded, sandwich 

and laminated composite plates”, Appl. Math. Model., 39(9), 

2489-2508. 

Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. 

(2012), “Static analysis of nanobeams including surface effects 

by nonlocal finite element”, J. Mech. Sci. Technol., 26(11), 

3555-3563. 

Matsunaga, H. (2005), “Thermal buckling of cross-ply laminated 

composite and sandwich plates according to a global higher-

order deformation theory”, Compos. Struct., 68, 439-454. 

Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi, A. and Adda Bedia, 

E.A. (2017), “ A non-polynomial four variable refined plate 

theory for free vibration of functionally graded thick rectangular 

plates on elastic foundation”, Steel Compos. Struct., 23(3), 317-

330. 

Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, 

E.A. and Mahmoud, SR. (2017), “An analytical solution for 

bending, buckling and vibration responses of FGM sandwich 

plates”, J. Sandw. Struct. Mater., 1099636217698443. 

Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and 

Mahmoud, S.R. (2017), “A new and simple HSDT for thermal 

stability analysis of FG sandwich plates”, Steel Compos. Struct., 

25(2), 157-175. 

Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and 

Mahmoud, S.R. (2015), “A new higher order shear and normal 

401



 

Hafid Khetir, Mohamed Bachir Bouiadjra, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud 

 

deformation theory for functionally graded beams”, Steel 

Compos. Struct., 18(3), 793-809. 

Merdaci, S., Tounsi, A. and Bakora, A. (2016), “A novel four 

variable refined plate theory for laminated composite plates”, 

Steel Compos. Struct., 22(4), 713-732. 

Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “Vibration analysis of nonlocal 

advanced nanobeams in hygro-thermal environment using a 

new two-unknown trigonometric shear deformation beam 

theory”, Smart Struct. Syst., 20(3), 369-383.  

Na, K.S. and Kim, J.H. (2004), “Three-dimensional thermal 

buckling analysis of functionally graded materials”, Compos. B 

Eng., 35(5), 429-437. 

Nami, M.R. and Janghorban, M. (2013), “Static analysis of 

rectangular nanoplates using trigonometric shear deformation 

theory based on nonlocal elasticity theory”, Beilstein J. 

Nanotech., 4(1), 968-973. 

Nami, M.R. and Janghorban, M. (2014), “Resonance behavior of 

FG rectangular micro/nano plate based on nonlocal elasticity 

theory and strain gradient theory with one gradient constant”, 

Compos. Struct., 111, 349-53.  

Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and 

Rabczuk, T. (2012), “Size-dependent free flexural vibration 

behavior of functionally graded nanoplates”, Computat. Mater. 

Sci., 65, 74-80. 

Noor, A. and Burton, W. (1992), “Three-dimensional solutions for 

thermal buckling of multilayered anisotropic plates”, J. Eng. 

Mech., 118, 683-701. 

Pradhan, K.K. and Chakraverty, S. (2015), “Free vibration of 

functionally graded thin elliptic plates with various edge 

supports”, Struct. Eng. Mech., 53(2), 337-354. 

Rahmani, O. and Jandaghian, A.A. (2015), “Buckling analysis of 

functionally graded nanobeams based on a nonlocal third-order 

shear deformation theory”, Appl. Phys. A, 119(3), 1019-1032. 

Reddy, J.N. (1984), Energy Principles and Variational Methods in 

Applied Mechanics, John Wiley, New York. 

Sayyad, A.S. and Ghugal, Y.M. (2014), “Flexure of cross-ply 

laminated plates using equivalent single layer trigonometric 

shear deformation theory”, Struct. Eng. Mech., 51(5), 867-891. 

Swaminathan, K. and Naveenkumar, D.T. (2014), “Higher order 

refined computational models for the stability analysis of FGM 

plates-Analytical solutions”, Eur. J. Mech. A/Solid., 47, 349-

361. 

Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda 

Bedia, E.A. and Mahmoud, S.R. (2015), “A simple shear 

deformation theory for thermo-mechanical behaviour of 

functionally graded sandwich plates on elastic foundations”, J. 

Sandw. Struct. Mater., 17(2), 99-129. 

Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), “Free 

vibrations of free-form doubly-curved shells made of 

functionally graded materials using higher-order equivalent 

single layer theories”, Compos. Part B: Eng., 67, 490-509. 

Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), 

“Effect of agglomeration on the natural frequencies of 

functionally graded carbon nanotube-reinforced laminated 

composite doubly-curved shells”, Compos. Part B: Eng., 89, 

187-218. 

Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), “A new 3-

unknowns non-polynomial plate theory for buckling and 

vibration of functionally graded sandwich plate”, Struct. Eng. 

Mech., 60(4), 547-565. 

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. 

(2013), “A refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich plates”, 

Aerosp. Sci. Technol., 24(1), 209-220. 

Wattanasakulpong, N. and Chaikittiratana, A. (2015), “Flexural 

vibration of imperfect functionally graded beams based on 

Timoshenko beam theory: Chebyshev collocation method”, 

Meccanica, 50(5), 1331-1342. 

Zare, M., Nazemnezhad, R. and Hosseini-Hashemi, S. (2015), 

“Natural frequency analysis of functionally graded rectangular 

nanoplates with different boundary conditions via an analytical 

method”, Meccanica, 50(9), 2391-2408.  

Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), 

“A mechanical response of functionally graded nanoscale beam: 

an assessment of a refined nonlocal shear deformation theory 

beam theory”, Struct. Eng. Mech., 54(4), 693-710. 

Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, 

S.R. (2017), “A novel simple two-unknown hyperbolic shear 

deformation theory for functionally graded beams”, Struct. Eng. 

Mech., 64(2), 145-153. 

Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar 

Bég, O. (2014), “Bending analysis of FGM plates under hygro-

thermo-mechanical loading using a four variable refined plate 

theory”, Aerosp. Sci. Technol., 34, 24-34. 

 

 

CC 

402




